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Abstract. We introduce the notion of a of a hypergraph, which 
is a subset of vertices to be colored so that at least two vertices are of 
the same color. Hypergraphs with both and are called 
mixed hypergraphs. The maximal number of colors for which there exists a 
mixed hypergraph coloring using all the colors is called the upper chromatic 
number of a hypergraph H and is denoted by X(H). An algorithm for 
computing the number of colorings of a mixed hypergraph is proposed. 
The properties of the upper chromatic number and the colorings of some 
classes of hypergraphs are discussed. A greedy polynomial time algorithm 
for finding a lower bound for x( H) of a hypergraph H containing only 
co-edges is 

The cardinality of a maximum stable set of an all-vertex partial hyper­
graph generated by co-edges is called the co-stability number a A (H). A 
hypergraph H is called co-perfect if x( HI) = a.A (HI) for all its wholly-edge 
subhypergraphs H' . Two classes of minimal non co-perfect hypergraphs 
(the so called monostars and cycloids C;r-l, r 3) are found. It is proved 
that hypertrees are co-perfect if and only if they do not contain monostars 
as wholly-edge subhypergraphs. 

It is conjectured that the r-uniform hypergraph H is co-perfect if and 
only if it contains neither monostars nor cycloids C;r-l) r ~ 3, as wholly­
edge subhypergraphs. 

1. Introduction. 

Let X {Xl, X2, . .• 1 Xn} be a set of sources of power supply such that the action 
time of any source is one quantum of time and all sources acting for any given 
quantum of time switch on and switch off synchronously. 

Consider the following general constraints on their common work: 
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1) let A {AI) .. , A k }, Ai <;;:; X, i 1, .. , k, k 1, be a family of subsets 
of X such that at least two sources from every Ai act for the same quantum of time; 

2) let £ {Ell ,Em}, E j <;;:; X, j 1, ... ) m, m 1, be a family of subsets 
of X such that at least two sources from every Ej act for different quanta of time. 

Call the set X with such constraints a system and denote it by H (X, A U E). 
Suppose that H is active ("working") "alive") during any quantum of time if 
at least one source is active for this time. 

We consider the following problem: bow can we scbedule tbe system H in sucb a 
way tbat tbe time of working (wbicb may be understood also as the life time of tbe 
whole system) is longest? 

In this paper we show that this problem may be formulated in terms of Hyper­
graph Coloring Theory and leads to the notion of the upper chromatic number of a 
hypergraph. We develop this Theory and show also that in many cases its methods 
can be successfully used for solving the problem. 

In section 2 we consider two types of colorings (free and strict) and introduce the 
notion of a co-edge (equivalently called an anti-edge) of a hypergraph, which is a 
subset of vertices that is colored in a way that at least two vertices of the co-edge 
have the same color. Hypergraphs having co-edges only are called co-hypergraphs, 
and hypergraphs containing both edges and co-edges are called mixed hypergraphs. 
The upper chromatic number of a mixed hypergraph is the maximal number of colors 
for which there exists a coloring of the hypergraph H using all the colors. 

In the problem above, if we denote the sources by vertices of a hypergraph and 
the given constraints by edges and co-edges, then in any hypergraph coloring every 
monochromatic subset of vertices represents a set of sources that may be switched 
on synchronously. Therefore, the initial scheduling problem is equivalent to the 
problem of finding the upper chromatic number and a corresponding coloring of a 
mixed hypergraph. 

In section 3 a generalization of the connection-contraction algorithm (which we 
name the "splitting-contraction algorithm") for finding all colorings of a mixed hyper­
graph is developed. We prove that for mixed hypergraphs the following fundamental 
equality holds: 

X(H) 

P(H,:A) L ri(H) .. (i) , 

i=x(H) 

where P(H,:A) is the number of free colorings with), colors, ri(H) is the num­
ber of strict colorings with i colors (the chromatic spectrum), X, X are the lower 
and upper chromatic numbers of a mixed hypergraph Hand 
)..().. - 1) . (), - i 1). The class of polynomials which may be chromatic for 
some mixed hypergraph is larger than the class for ordinary hypergraphs, 
mainly because of interactions between edges and For example, adding an 
edge to a hypergraph may decrease X. 

In section 4 we investigate the properties of X(H). It is shown that the so called co­
bistars play an important role in problems concerning the upper chromatic number. 
We find that a mixed hypergraph H has X(H) = IXI 1 if and only if it represents 
a co-bistar. 
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It is well known that there are many interesting and important classes of bipartite 
hypergraphs ; that is hypergraphs for which X(H) 2. However the class of 
their opposites, that the class of co-hypergraphs with X(H) n 2, has appeared 
unexpectedly poor: it consists only of special unions of two co-bistars or of the so 
called holes. 

We propose a consecutive greedy coloring algorithm of complexity O( n 3 k + n 2 k2
) 

where n, k are the vertex and edge numbers respectively, for finding a lower bound 
for X and a corresponding coloring of any co-hypergraph. 

Its main difference from the usual greedy hypergraph coloring algorithm is that 
at each we can lose all but one used this circumstance prevents us from 
obtaining a direct estimate for the upper chromatic number. It shown that the 
maximal number of colors that may be lost in the worst case at each step 
does not exceed the value O(H) + 1, where 

O(H) max mm o(HjY,x) 
Y~X xEY 

and o( H j Y, x) is the difference between the degree and paired degree of a vertex x in 
a wholly-edge subhypergraph generated by the set Y ~ X. It appears that the class 
of co-hypergraphs having O(H) 0 has the property that the greedy algorithm may 
be implemented without re-colorings of vertices. This class is large and, for '-'""- .... u.qJJ.''"', 

includes the hypertrees. So, hypertrees represent the first known class of hypergraphs 
that playa special role in co-hypergraph colorings. 

A method of monochromatic component re-coloring that is the opposite to the 
known method of bi-chromatic chain re-coloring in graph theory is proposed. 

The cardinality of a maximum stable set in an all-vertex partial hypergraph 
generated by co-edges is called the co-stability number a A (H); we have that 
X(H) aA(H), and that the co-stability number plays a role for X(H) analogous to 
that which the maximum clique number w( G) plays for the usual chromatic number 
X( G) for a graph G. It is shown also how one can construct a hypergraph H with 
aA(H) X(H) > k for any k ~ 0 and X > l. 

We introduce the notion of co-perfect hypergraph: a mixed hypergraph H is 
called co-perfect if x( H') a A (H') for all its wholly-edge subhypergraphs H'. Some 
classes of co-perfect and non co-perfect hypergraphs are discussed. Two classes of 
minimal non co-perfect hypergraphs are found: monostars, that have exactly one 
vertex common to all their edges, and cycloids C;r-l' r 3, that are isomorphic to 
the family of all paths on r vertices of a cycle C2r - 1 • It is shown that hypertrees are co­
perfect if and only if they do not contain monostars as wholly-edge subhypergraphs. 

It is conjectured that the r-uniform co-hypergraph H is co-perfect if and only if it 
does not contain co-monostars and co-cycloids C;r-l as wholly-edge subhypergraphs. 
This conjecture is analogous to the strong Berge's conjecture on perfect graphs. 

2. Preliminaries 

Let X = {Xl, X2, .• . ,Xn }, n ~ 1, be a finite set, S = {Sl, S2, . .. , St}, t ~ 1, be a 
family of subsets of X. 
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The pair H S) is called a hypergraph on X (ct ). For any 
F ~ S we call the hypergraph HF F) the all-vertex partial hypergraph, 
generated by the family P 

For any subset Y X we call the hypergraph H/Y = a wholly-edge 
subhypergraph of the hypergraph H if S' consists of all those subsets in S that are 
completely contained in Y. 

Let the hypergraph H (X, S) be given, with IXI nand S Au £, where 
both A and £ are subfamilies of S, in particular, £ and/or A may be empty. Let 
A {A1, ... ,Ak }, I {l, ... ,k}, £ {El'" ,Em}, J {l, ... ,m}, and ~ 
2, i E I, and IEjl ~ 2, j E J. 

We call every Ej , j E J, an "edge", and every Ai) i I, a ilco-edge" or, equiva­
lently, an "anti-edge". We use the prefix "co-" when a statement concerns the sets 
from A. In particular, if [ 0, then H HA will be called a "co-hypergraph". In 
order to emphasize that for the general hypergraph H it may be that A I- 0 and/or 
[ I- 0 we call H a mixed hypergraph [7]. Other terminology that is not explained 
here may be found in [1,3]. Let us have A 0 colors. 

Definition 2.1 [7} A free coloring of a mixed hypergrapb H (X, A u £) with A 
colors is a coloring of its vertices X in such a way that the following four conditions 
bold: 

1) any co-edge Ai) i E I, bas at least two vertices of the same color; 
2) any edge Ej, j E J, has at least two vertices colored differently; 
3) the number of colors used is not greater than A; 
4) all the vertices are colored. 

Note that this definition of a coloring generalizes all those contained in [3] that 
correspond to the case A 0. Now we can say that the edges represent non­
monochromatic subsets, and the co-edges represent the not all differently colored sub­
sets of the vertices. Condition 1) of Definition 2.1 justifies the prefix 'co-'( equivalently 
'anti-') because it means indeed that in any further considerations in colorings at least 
two vertices of any co-edge are considered as one vertex; in particular, a co-edge of 
cardinality 2 is equivalent to a single vertex. Thus from this view-point (only) a 
co-edge is not a usual set. Colorings in which not all the vertices of a hypergraph 
need be colored will be investigated in a separate paper. 

Two free colorings of a hypergraph H are said to be different, if there exists at 
least one vertex that changes color when passing from one coloring to the other. 
Let P(H, A), ,.\ ~ 0, be the chromatic polynomial of a hypergraph H, which is the 
number of different free colorings of H with A colors [ef. 1]. 

Definition 2.2. [~l A free coloring of a hypergraph H with i ~ 0 colors is said to 
be a strict coloring, if exactly i colors are used. 

So, strict colorings exist only for i such that 1 :::; i ::; n. Let us say that two strict 
colorings of H are different if there exist two vertices of H that have the same color 
for one of these colorings and different colors for the other (ef. [2]). 

28 



Definition 2.3, [7} The maximal i for which there exists a strict coloring of a 
mixed hypergraph H with i colors is called the upper chromatic number of H and is 
denoted by X(H). 

Let Ti(H) be the number of strict colorings of a hypergraph H with i 1 colors (d. 
[2]). Let X( H) be the usual (we shall call it sometimes the lower) chromatic number of 
H [1,3] We associate with the hypergraph H the vector R(H) (TI' T2, . .. , Tn) E Rn 
and call it the chromatic spectrum of Hj hence R(H) (0, ... ,0, T)o' .. ,TX' 0, ... 0). 

Definition 2.4. [7} A mixed hypergraph H in which at least one pair of vertices 
cannot be colored because of constraints collision is called uncolorable; for such a 

hypergraph we put X(H) = X(H) O. 

Definition 2.5. [7} The value Xrn(H) 
chromatic number of a hypergraph H. 

(X(H) + X(H))/2 is called the middle 

Definition 2.6. [7} For colorable mixed hypergraphs the value b( H) X X + 1 
is called the breadth of the chromatic spectrum of H. 

If Xm(H) is not an integer, then it means that b(H) is even. If A 0, then 
X(H) n, and we have thus a usual hypergraph coloring. If £. 0, then XCH) 1, 
and we have unusual colorings. 

Moreover, if A -# 0 and £. -# 0, then one can easily construct, for every n 2, 
an un colorable hypergraph H (for which we defined X(H) X(H) 0); this is 
possible only for mixed hypergraphs. 

For example, any complete graph K n , n ~ with at least one added co-edge 
with cardinality ~ 2 cannot be colored. 

Evidently, any mixed hypergraph with X(HA) < X(He) is uncolorable. 

3. Colorings. 

Now in order to calculate P(H, >.) and R(H) for any mixed hypergraph H 
(X, AU£') we provide the following 5 rules. 

1) Let X' be a subset of X. If every pair of vertices of X' is an edge of H, and 
X' itself is a co-edge, then H is uncolorable. Similarly, if X' is a vertex set of a 
connected subgraph consisting of co-edges of cardinality 2, and X' itself is an edge, 
then H also is uncolorable (elimination). 

2) If Ei ~ Ej , i,j E J, then P(H, >.) P(H - E j , >.), R(H) R(H -
Ej ) (clearing). 

3) If Ai ~ A j , '/,,) E I, then P(H, >.) P(H - Aj , ).), R(H) R(H - Aj) 
( co-clearing). 

4) If At = {Xk' Xl}, for some tEl and Xk, Xl E X, such that At -# Es for any 
s E J, then 
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P(H,)..) P(Hl1 )..), R(H) R(Hl ), where 

HI (Xl, Al U £1), Xl (X\{Xk,XI}) U {y}, y is a new vertex; 

if Xk E Ejl or Xl E Ej , j E J, then (Ej\{Xk,Xl})U{y}, otherwise EJ Ej; 

if Xk E A~, or Xl E Ai, J, then At (Ai\{Xk,XI}) U {y}, otherwise At = Ai, 
( contraction). 

5) If {Xkl Xl} 9!- £ and {Xk' Xl} rf. A, then 

P(H,)..) = P(H1 ,)..) + P(H21 )..), R(H) R(Hl ) + R(H2 ), 

where 

The algorithm that allows us to compute P(H,)..) and R(H) for any mixed hy­
pergraph H (X, Au £) a generalization of the connection-contraction algorithm 
[2,4]. The idea is to find a pair of vertices that does not belong to the edge and 
co-edge sets, and to split all colorings of H into two classes with respect to this pair. 
Further, by implementing elimination, clearing, co-clearing and contraction (in that 
order) the initial problem recurrently reduced to the same one for the new pair of 
"simpler" hypergraphs (in sense that one of them has fewer vertices and another has 
more edges of cardinality 2). 

Finally, we obtain a list of complete graphs. We call this algorithm the "splitting­
contraction algorithm" and present it in the following form: 

ALGO RITHM (splitting-contraction). 

INPUT: an arbitrary mixed hypergraph H (X, A U E); 
OUTPUT: a list Z of complete graphs; 

STEP O. Add the hypergraph H to the empty list Y, and set Z {0}. 
STEP 1. Verify the condition of elimination for each hypergraph from Y; delete 

uncolorable hypergraphs from Y. 
STEP 2. Implement clearing, co-clearing, and after that contraction for all hy­

pergraphs from Y. 
STEP 3. Implement one splitting in each hypergraph from Y, where possible; 

delete complete graphs from the list Y and include them in the list if splitting is 
implemented for at least one hypergraph, then go to STEP 1, else go to STEP 4. 

STEP 4. OUTPUT: list Z = {Knl , Kn2 , ••• I KnJ of complete graphs. End. 

Although Algorithm 1 is exponential, it is possible to find polynomial and effective 
modifications for some classes of good hypergraphs. 
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Theorem 3.1. For any mixed bypergrapb H (X, Au Algoritbm 1 finds tbe 
cbromatic polynomial P(H, A) and tbe cbromatic spectrum R(H), and tbe following 
equality balds: 

X(H) 

P(H, A) L Ti(H))..(i). 
i=X(H) 

Proof. If ai is the number of complete graphs with i vertices in the list Z, then it 

follows from rules 1) - 5) and Algorithm 1 that 

P(H,)..) 
i=1 

Since rules 1) 5) and the whole algorithm are equivalent for P(H,)..) as well as for 
R(H), we have also 

Hence from 

n 

Tj(H) L o.iTj(Ki ), j 1, ... n. 
i=l 

{ 
1, 
0, 

1, J 
otherwise 

we conclude that ai Ti, 1, .... 1 n. Thus the theorem follows from P(Ki,)..) 
).. (i) A().. - 1) ... ().. - i + 1) 0 

Theorem 1 shows that the chromatic spectrum R( H) uniquely determines the 
chromatic polynomial P(H, )..), and vice versa. No simple criterion is known for an 
arbitrary polynomial to be the chromatic polynomial of a graph or a hypergraph. 
However, the class of polynomials that may be chromatic for mixed hypergraphs 
is essentially larger than the class for ordinary hypergraphs because of interactions 
between edges and co-edges. As we shall see, such interactions are not simple and 
bring many new properties to hypergraph colorings. 

For example, for H = (X, Au E), where X = {1,2, 3}, A = Al {I, 2, 3}, £ = 
EI = {I, 2, 3}, we have Z = {K21 K 2) K2} = {3K2}, P(H,)..) = 3)..(2) = 3)..2 -

3).., R(H) = (0,3,0), X X = Xm 2, b(H) 1 and the corresponding three 
colorings are the following: (0.0.(3) 1 (0.(30.) and ((30.0.). 

Consider another example. Let H = (X, A U E), where X {1, 2, 3, 4, 5}, A = 
{(1, 2, 3), (1,3,4), (1,4,5), (1, 5, 2)}, £ = {(3,5)}j we have that X(H) = 3, and 
after adding the edge (2,4) we obtain the new hypergraph H l , for which X(Hl) 2. 
It is not hard to see, in general, that adding one co-edge to a hypergraph H can 
increase X(H); and adding one edge to a mixed hypergraph can decrease X(H). 

Let H = (X, Au £) be a mixed hypergraph, He the all-vertex partial hypergraph 
obtained from the edge set £, and HA the all-vertex partial hypergraph obtained 
from the co-edge set A. Then the following inequalities hold: 

x(He) ::; X(H) ::; X(H) ~ X(HA). 
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There is one more unusual property of co-hypergraph colorings, which is impos­
sible for hypergraphs with A = 0. 

We say that a co-edge Ai of the mixed hypergraph H A u £) is dead if 
Ai does not contain any other co-edge, and R( H) R( H - At} One can see, for 
instance, that any co-edge of the co-hypergraph H (X, where X (1,2,3,4) 
and A {(1,2,3),(1,3,4),(1,2,4),(2,3,4)}, is dead, because R(H) R(H -Aj ) 

(I, 7,0,0), j = 1,2,3,4. 

4. Upper chromatic number and co-perfect hypergraphs. 

Let us discuss several properties of the upper chromatic number of a hypergraph 
and related values. 

Definition 4.1. A set T ~ X is called a bitransversal of a mixed hypergraph 
H (X, £ u A) if IT nEil 2: 2 for any i E J. The cardinality of a minimum 
bitransversal is denoted by T2(Ht;). If E does not contain any edge of cardinality 
~ 2, then we put T2(He) = l. 

A co-bitransversal of a mixed hypergraph and T2(HA ) are defined similarly if we 
replace £ by A in the above definition. 

Theorem 4.2. If for a mixed hypergraph H (X, A u £) there exist a minimum 
bitransversal Te ~ X of the hypergraph He and a minimum co-bitransversal T A ~ X 
of the co-hypergraph HA such that ITe n TAl::; 1, then the breadth of the chromatic 
spectrum of H satisfies the inequality: 

b(H) 2: IXI - T2(Ht;) T2(HA ) + 2. 

Proof. Color all the vertices of Te with different colors. After that color the vertices 

of TA with the color of the common vertex (if Te n TA 0, then color TA with the 
first color). Color the vertices of X {Te UTA} with the first color. Then we obtain 
a coloring of H. Hence X(H) ::; T2(He ). If we color all the vertices of X - {Te UTA} 
differently with the colors ITel + 1, ITel + 2, .. 0' then we again obtain a coloring of 
H. Therefore X(H) 2: IXI- T2(HA) + 1. Since b(H) = X(H) - X(H) + 1, the theorem 
follows. 0 

Definition 4.3. A mixed hypergraph is called a co-bistar if there exists a co­
bitransversal of cardinality 2, which is not an edge. 

Definition 4.4. A mixed hypergraph is called a hole if there exists a minimum 
co-bitransversal of cardinality three, which is not an edge, and any two vertices of 
which are not an edge. 

So, for a co-bistar H, T2(HA) = 2, and for a hole H, T2(HA) = 3. 

Note that X(H) = IXI if and only if A = 0. 
Theorem 4.5. For any mixed hypergraph H = (X, Au E), the following condi­

tions are equivalent: 
1) X(H) = IXI - 1; 
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2) H is co-bistar. 

Proof. If X(H) n 1, then there are only two say Xl, x2, which have 
the same color in some strict of H with X colors. If at least one of Xi, i 1, 
does not some I, then all the vertices in Ai are colored 
differently, in contradiction to the definition of a Hence H a co-bistar. 

~r.""T£>,·,,<>llu color the co-bitransversal Xl, with the first color and then the rest 
of the vertices all with different this strict coloring of H n 1. 
colors. Hence X n 1. Since A 0, x(H) 1, and the theorem follows. 0 

Theorem 4.6. For any mixed h"rlP'rrY"T'!>n,h HUE), the following condi­
tions are equivalent: 

1) X(H) = 2; 
2) H is not a co-bistar, and H 

secting co-bitransversals, or a hole. 
either a union of two co-bistars without inter-

Proof. 1) =} 2). Let X(H) n 2. Consider any strict coloring of H with X(H) 
colors. There are two possibilities: 

a) There are two vertices, say Xl, X2, colored with the first color, and two other 
say X4, colored with the second color and the rest of the vertices are 

all colored with different colors; since any must have two vertices colored 
with the same color, and H is not a co-bistar (because if it was, due to Theorem 4.5 
X(H) would equal IXI - 1), it follows that H is a union of two co-bistars without 
intersecting co-bitransversals. 

b) Some three vertices have the same color; hence every co-edge contains at least 
two of them. Since by Theorem 4.5 H is not a co-bistar, it follows that these three 
vertices compose a minimal co-bitransversal; therefore H a hole. 

2) 1) is obvious. 0 

Let H = (X, A) be a co-hypergraph, and let A( x) denotes the set of co-edges 
containing vertex X E X. We say that vertices X and yare adjacent if A( x) n A(y) f. 
0. 

Call the set A( x) n A(y) a co-bistar of the vertex X E X with respect to the 
vertex y and denote it by BS(x,y). Evidently, BS(x,y) BS(y,x). 

So, every vertex y that is adjacent to X forms some co-bistar BS( x, y). Some 
co-bistars of a given vertex may coincide. 

Call the value 

p(x) = max{IBS(x,y)l: y is adjacent to x} 

the paired degree of a vertex x. 
Call the value 

o(H, x) = IA(x)l- p(x) 

the originality of a vertex x in the co-hypergraph H. 
Hence, o( H, x) ;:::: 0, and o( H, x) = 0 means that there exists some other vertex 

y E X which is contained in at least the same set of co-edges. If the vertices of 
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h"np·rrr.,.·",n,h represent different objects in real life, and the 
nr.'"ln,or1",p" (each property is an edge), then an 

because there exists at least one other 
same n1"" ............ 'o,r1" , "'''' the originality of a vertex 
neighbors" 

Definition 4. 7. The value 

O(H) max mm 
Y~X "EY 

o(H/Y, x) 

is called the originality of a hypergraph H. 

are the subsets 
x with o(H, 0 
with at least the 

with its 

Let the co-hypergraph H be colored. Denote the color of vertex by color( x). 

Definition 4.8. The set M ~ X of vertices is called a monochromatic component 
of vertex x, and is denoted by MC( x), if the following conditions hold: 

1) x E M; 
2) for any y E M, color(y) = color( x ); 
3) for every y E M there exists a co-chain, say (x, All Xl, A2l X2,· ., Xt-ll At) Y) 

connecting x and y and such that all the vertices Xl, X2, •.. ,Xt-l belong to M. 
4) M is maximal with respect to inclusion. 

Now in order to find a lower bound for the upper chromatic number we propose a 
greedy coloring algorithm for an arbitrary co-hypergraph H A). The idea is to 
find some good ordering of the vertices and greedily color H successively, maximally 
using the local information. Namely, at each step we use a new color for the next 
vertex and verify the correctness of the coloring obtained; if the coloring is wrong, 
then we re-color some monochromatic component meeting at the neighborhood of the 
given vertex in order to guarantee the correctness of the new coloring and minimize 
the losses of used colors. This method of re-coloring monochromatic components 
is the opposite of the known method of re-coloring bi-chromatic chains from graph 
theory. 

The principal difference from the greedy hypergraph coloring algorithm is that 
at each step we can lose all but one used color; this circumstance prevents us from 
finding an exact estimate of the upper chromatic number. 

ALGORITHM 2 (greedy co-hypergraph coloring). 

INPUT: An arbitrary co-hypergraph H = (X, A), IXI n. 
OUTPUT: A strict coloring of H in some number of colors. 

STEP O. Set the list of used colors U := {0}. 
STEP 1. Set i n; declare Hn := H; find a vertex of minimum originality and 

label it X n • 

STEP 2. Set i := i-I; if i = 0, then go to STEP 5. 
STEP 3. Form a wholly-edge co-hypergraph H/{X - {x n1 • •• , Xi+tl} = Hi. 
STEP 4. Find a vertex of minimum originality in Hi and label it Xi; go to STEP 2. 
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STEP 5. Color the vertex Xl with the first color; set U := UU{I}; i 1, new 
2. 

STEP 6. Set i i + 1; if i n, then go to STEP 10; color the vertex Xi of Hi 
with the new color; set U U U {new} 1 new new + 

STEP Verify the correctness of the of Hi; if there are no co-edges with 
all their vertices of different colors, then go STEP 6. 

STEP 8. Choose in Hi a neighbor y of the vertex Xi, that is contained in a 
set of all differently colored If color( Xi) new, then re-color Xi 

with color(y), set U U {new}, new 1, and go to STEP 7. 
STEP 9. Re-color all the vertices from a monochromatic component MC(y) with 

the color(xi) and go to STEP 7. 
STEP 10. Renumber the colors of the list U in end. 

Complexity. Let us suppose that H 
matrix, IXI n, IAI k. Since finding the '-'~Lf"LHU'LL 
steps, then finding the minimum originality 
may be implemented in the worst case in O( n 3 k) 

Verifying the correctness of the coloring at STEP 7 O(nk2) steps. Choos-
ing the vertex y, finding and re-coloring a monochromatic component Me (y) at 
STEPs 8-9 takes at most O(n2 k) Hence the second part of the algorithm 
rprl111rpq at most O( n 2 k nk2 ) Consequently, the whole algorithm may be 
implemented in O( n 3 k + nk2

) There are possibilities to improve this bound 
by special data structures and 

EXAMPLE. 
Consider the co-hypergraph H = (X, A) such that X (1,2,3,4,5), A 

{AI,A2,A3,A4,A5},AI = (1,2,3), 3,4), A3 = (3,4,5),A4 (4,5,1), A5 = 
(5,1,2). Declare H5 = H. Since all the vertices have the same originality 1, let us 
start with the first vertex: X5 = l. 

Form the wholly-edge co-hypergraph H4 (X4'~) with X 4 (2,3,4, 5), ~ = 
{A2 ) A3}' The first vertex with minimal originality is X4 2. 

Form the wholly-edge co-hypergraph H3 (X3, A3) with X3 (3,4,5), A3 = 
{A3}. The first vertex with minimal originality is X3 3. 

Form the wholly-edge co-hypergraph H2 (X2 , A 2 ) with X 2 (4,5), A2 {0}. 
The first vertex with minimal originality is X2 4. 

Form the wholly-edge co-hypergraph HI = (Xl, AI) with Xl = (5), Al {0}. 
The unique and last vertex is Xl = 5. 

These were the results of steps 1-4. Now start coloring. Let Ci = color(xi), and 
denote the coloring of the respective hypergraph by the vector C = (Cl l C2, C3, C4, C5)' 

STEP 5. C = (0,0,0,0,1). STEP 6. C (0,0,0,2,1). STEP 7. There are no all 
polychromatic co-edges in co-hypergraph H 2 • 

STEP 6. C (0,0,3,2,1). STEP 7. Anti-edge A3 is all polychromatic. 
STEP 8. Re-coloring: C = (0,0,2,2,1). 
STEP 7. There are no all polychromatic co-edges in the co-hypergraph H 3 • 

STEP 6. C (0,3,2,2,1). 
STEP 7. There are no all polychromatic co-edges in the co-hypergraph H 4 • 
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STEP 6. C=(4,3,2,2,1). 
STEP 7. The co-edges AI, A4 ) A5 are each all polychromatic in the co-hypergraph 

H5 • 

STEP 8. Vertices 2 and 5 in the are contained in the 
number 2 of co-edges with all their vertices of different colors. Choose vertex 5. 
Re-coloring: C (1,3,2,2,1). 

STEP 7. The co-edge Al is still all polychromatic. 
STEP 8. Vertices 2 and 3 in the hyperegraph H5 are contained in one l.-U-C;Uk~C; 

with all its vertices of different colors. Choose vertex 3. 
STEP 9. Re-coloring the monochromatic component MC(3) . C (1,3,1,1,1). 
STEP 7. HI H is colored correctly. 
STEP 10. Renumber the colors in increasing order: C (1,2, I, 1, 
End. 

Remark. In contrast to the usual hypergraphs and co-hypergraphs the problem 
of finding at least one coloring for a mixed hypergraph in the general case is N P­
complete. This follows from the fact that in the special case when x( H) x( H) 
the problem is equivalent to finding both chromatic numbers. Mixed hypergraphs 
with X(H) X(H) are still general enough. To see this, consider an arbitrary 
hypergraph H = (X, £), with IXI n, X(H) -::j: n, and construct the sequence of 
mixed hypergraphs 

HT (X,K~ u £), 

where K~ is the r-uniform complete co-hypergraph [3, p.5], 
r-subsets of X, r = n, n - 1, ... ,2. Hence 

X(HA) = X(X, K~ u 0) x(K~) r - 1, 

COI1SlS:tlD,f4. of all the 

because we cannot use more than r - 1 colors. Consider the inequalities 

where x(Hf) = X(H) has a fixed value. There exists exactly one r such that equalities 
hold throughout above. 

Theorem 4.9. The greedy co-hypergraph coloring algorithm finds the originality 
O( H) for any co-hypergraph H. 

Proof. Let t be the maximal value of the minimal originalities over all vertices 
in the order generated by STEPS 1-4. It is clear that t ::; O(H). 

Suppose that t ::; O(H) - 1. Hence in some wholly-edge subhypergraph H* ~ H 
there exists a vertex y such that 

o(H*,y) = min o(H*,z) = O(H) ~ t + 1. 
z 

It is easy to see that the originality of any vertex is a monotone function relative 
to wholly-edge subhypergraph inclusion. This implies that the first vertex of H* 
that was deleted by the algorithm had originality 2: t + 1, and this contradicts the 
definition of t. Consequently, t = O(H).o 
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The co-hypergraph H (X, A) is called a co-hypertree (arboreal p.186]), if 
there exists a tree T such that of H is the vertex set of a subtree of T 

Theorem 4.10. If H (X, A) is a co-bypertree, then O(H) O. 

Proof. Induction on = n. For n 1,2 the assertion is trivial. Assume it is 
true for any hypertree with < n vertices. Consider a vertex x that is terminal in the 
corresponding tree T. Since any of H has cardinality at least 2, o(H,x) O. 
From this and O( H j Y) 0 for Y C X (by the induction hypothesis since H j Y is a 
co-hypertree) it follows that O( H) 0.0 

Hence, the class of co-hypertrees are the first known class of co-hypergraphs that 
occupIes a place in co-hypergraph In general, the class of co-
hypergraphs O( H) 0 is much 

Theorem 4.11. The number of colors tbat may be lost at STEPS 7-9 of Algo­
ritbm 2 does not exceed tbe value O(H) + 1. 

Proof. Let us suppose that we have the worst case at step 7, i.e. all co-edges 
containing vertex Xi in Hi have all their vertices of different colors. Remember that 
in Hi for the vertex Xi, there exists a neighbor y forming the largest co-bistar of Xi. 

If we re-color vertex Xi with color(y), then we are losing one color (new) and at the 
same time correctly color p(Xi) co-edges. Hence, in the worst case, there remain at 
most o( Hi) Xi) IA( Xi) 1-p( Xi) co-edges that still are colored with all different colors. 
Therefore, when re-coloring one vertex with its monochromatic component 
from each of these co-edges with color(x,;), we are losing again at most o(Hi , Xi) 
colors. Consequently, the total number of colors lost is not greater than o( Hi, Xi) + 1. 

Since for any i, 1 ::::; i ::::; n 

the theorem follows. 0 

max min o(HjY, x) 
Y~X xEY 

Theorem 4.12. If lUI = p is the number of colors used by Algorithm 2, then 
X(H) ~ p. 

Proof. This follows immediately from Algorithm 2. 

Definition 4.13. For the mixed bypergraph H = (X, A u E), a set P ~ X is said 
to be co-stable if it does not contain any co-edge Ai, i E I. The co-stability number 
a.A (H) is tbe cardinality of maximum co-stable set in H. 

It follows from this definition that a maximum co-stable set is the largest set 
that could possibly be colored with all different colors. Although a.A (H) equals the 
usual stability number of an all-vertex partial hypergraph HA = (X, A), in mixed 
hypergraphs it plays a completely different role. 

For the mixed hypergraph H, denote by mi(H) (mi(H)), 0 ::::; i ::::; n, the cardi­
nality of the smallest (respectively largest) monochromatic subset of vertices over all 
the riCH) colorings of H with i colors. 
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Proposition 4.14. For any mixed hypergraph H the following inequalities hold: 

Proof. This evident. 0 

Consider a strict coloring of the mixed hypergraph H with t colors and let Y ~ X 
be the largest set of vertices colored with the same color. Since any monochromatic 
subset is a stable set (i.e. it does not contain any edge as a subset), we have t stable 
sets which is a partition of X. 

Take the first vertex from Y and choose one vertex of each color 2,3, ... ,t. The 
set obtained is co-stable because it is polychromatic. Denote it by Pl' Choose the 
second vertex from Y and add one vertex of each of the remaining colors: we have a 
second co-stable set, P2 • We can this procedure exactly IYI times. As a result 
we obtain a partition of X into IYI co-stable subsets ,P2 , •• . , PIYI' 

So, we can state the following 

Proposition 4.15. If M i , 1 :S i :S t, maxi{IMil} q, are monochromatic subsets 
in any coloring of the mixed hypergraph H with t colors, then there exist q co-stable 
subsets Pj , 1 :S j :S q such that 

Proof. This is obvious. 0 

Proposition 4.16. For any mixed hypergraph H (X, A U £) 

Proof. Take one vertex from each color set of X with X(H) colors to form a set 
A. Then A is co-stable. 0 

Mixed hypergraphs with X(H) = Ct,A(H) may be constructed easily, and it is seen 
now that a,A (H) plays a role for X( H) analogous to that the maximal clique number 
plays for the chromatic number in a usual graph G [1]. 

Proposition 4.17. For any k :::: 0 and X k+l one can construct a co-hypergraph 
H for which Ct,A(H) - X(H) > k. 

Proof. Let H = (X, A) be the 3-uniform [1] co-hypergraph with X = 
{I, 2, ... ,2k + 5}, and Al = (1,2,3), A2 (1,4,5), .. ,Ak+2 = (1,2k + 4, 2k + 5) 
such that 

Ai n Aj = {I}, i,j E J = {I, 2, ... k + 2}, i =J j. 

It is easy to verify that Ct,A(H) = 2k + 4 and X(H) = k + 3, hence Ct,A(H) - X(H) = 
k + 1 > k. 0 
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Definition 4.18.{6} A mixed hypergraph H is called a co-perfect hypergraph if 
for all of its wholly-edge subhypergraphs H' the following equality holds; 

Example 4.19. Call a vertex which is incident with at least one co-edge a partial 
vertex. Call a connected (by co-edges) maximal (with respect to inclusion) subgraph 
induced by partial vertices a co-component. Then any colorable mixed graph, in 
which every co-component induces a complete co-subgraph (each pair of vertices is 
a co-edge), is co-perfect. 

Example 4.20. Any n-vertex r-uniform complete co-hypergraph K~ is rn_nA·rH".~T 

Indeed, X(K~) = Ct.JK~) r - 1. 

Theorem 4.21. Any co-bistar H = (X, A U £) is a co-perfect mixed hypergraph. 

Proof. Obviously, X(H) = n - 1 = CtA(H). Now let the co-bitransversal be 
{x,y}. Consider any Y ~ X. 

If HjY contains at least one co-edge, then {x,y} ~ Y, hence HjY is still a co­
bistar and X(HjY) = CtA(HjY) by the above argument. Otherwise, we again have 
X(HjY) CtA(HjY) = IYI. 0 

Denote by T(HA) the co-transversal number of a mixed hypergraph H [d. 3, 
p.53], i.e. the cardinality of smallest subset of vertices that includes at least one 
vertex from every co-edge. 

Definition 4.22. A mixed hypergraph H = (X, Au f), A f- 0, is called a 
co-monostar if the following conditions hold: 

1) T(HA) = 1; 

2) T2( HA) f- 2. 

In other words, a co-monostar is a mixed hypergraph which has exactly one vertex 
in common with each of its co-edges. A co-bistar has at least two such vertices. So, 
the classes of co-monostars and co-bistars have empty intersection. 

It is evident that verifying conditions 1) and 2) may be implemented effectively 
in polynomial time. Note that the example in Proposition 4.17 is a co-monostar. 

Theorem 4.23. Every co-monostar H = (X, Au £) is not a co-perfect mixed 
hypergraph. 

Proof. It follows from the definition of co-monostar that Ct,A(H) = IXI- 1. Since 
H is not a co-bistar, then by theorem 4.5 X(H) "#IXI-l. Hence, X(H) "# Ct,A(H).o 

Example 4.24. A mixed hypergraph if = (X, Al U £1) is called an asymmetric 
complement for a mixed hypergraph H = (X, Au £) if the following implications 
both hold: 
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2) Ai E A {:=} E; = X\Ai E [1. 

Let Ck denote the usual simple cycle of length k) k ~ 3,0 One can verify that the 
C5 is not co-perfect because X(C5 ) 2 and a,A(C5 ) = 3. However, the asymmetric 
complement of any cycle Ck, k ~ 6, is a co-perfect co-hypergraph. It may be 
represented as a union of two co-bistars opposite on Ck, and therefore x( Ck ) 

n - 2 = a(Ck ). 

Definition 4.25. An r-uniform hypergraph H = (X, E), IXI = n ~ 3, r ~ 2, 
is called a cycloid and denoted by C~ if X {O, 1,'0' ,n - I} and £ {{ i, i + 
1 (mod n), .. ,i + r - 1 (mod n)} : i 0, 1, .. ,n - I}. 

A co-cycloid can be similarly defined if [ is replaced by A in the above definition. 
In other words, one can say that for a cycloid there exists a graph Cn = (X, V) 

representing a simple cycle without chords, such that [ coincides with family of all 
paths of length r 1 on Cn0 

Thus the usual cycle Cn = C~ for any n 2: 3. Note that the example given by 
Algorithm 2 is the co-cycloid C:. 

Theorem 4.26. If C~ = (X, A) is a co-cycloid, 3 :s; r :::; n, then the following 
implications hold: 

1) if 2r :::; n + 1, then C~ is not co-perfect; 
2) if 2r ~ n + 2, then C~ is co-perfect. 

Proof. 1) 2r :s; n + 1. If 2r :::; n, then it is evident that all co-edges containing a 
fixed vertex generate a wholly-edge subhypergraph that is a co-monostar, and hence 
C~ is not co-perfect. 

Suppose further that 2r = n + 1. Then C~ does not contain any co-monostar as 
a wholly-edge subhypergraph. 

For r = 3,4, it can be verified directly that C~ is not co-perfect. Hence let r ~ 5. 
Since T( C~) = 2, it follows that a( C~) = n - 2. We show that x( C~) < n - 2. Assume, 
on the contrary, that x( C~) = n - 2. Theorem 4.6 implies that C~ is either a union of 
two co-bistars with non intersecting co-bitransversals, or a hole. We consider these 
two cases: 

a) C~ is a hole. Let Xl, X2, X3 be a bitransversal placed on C~ clockwise in this 
order, and let nij be the number of vertices between Xi and Xj, i, J = 1,2,3. We have 
n12 + n23 + n31 + 3 = n = 2r - 1. Since any co-edge must contain two vertices among 
Xl, X2 and X3, it follows that 

n12 + 1 + n23 < r, 

n23 + 1 + n31 < r, 

n31 + 1 + n12 < r. 
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Summing these inequalities r 5, a contradiction. Consequently, C;r-1 
cannot be hole for any 3. 

b) C~ is a union of two co-bistars with non intersecting bitransversals. Assume 
that Xl, X2 E X represent a bitransversal of the first co-bistar, and X3, X4 a bitransver­
sal of the second co-bistar, and, moreover, Xl, X2, X3, X4 are placed on C~ clockwise 
in this order. Let nij be the number of vertices between Xi and Xj, i,j 1,2,3,4. 
If n12 0 and n34 0, then a co-edge A E A may be found easily such that 
IAn{Xl,Xz}l::; 1 and IAn{x3,x4}1::; 1; so assume that n12+n34::::: 1. We have 
n12 + nn + n34 + n4l + 4 n 2r - 1. Since any co-edge must contain either {Xl, Xz} 
or {X3' X4}, it follows that 

n12 + n14 + n34 + 2 < r. 

By summing the above two inequalities, we have 2r - 1 + n12 + n34 2r which gives 
the contradiction r < r. 

If the vertices XI, X2, X3, X4 are placed on C~ in any other order, then a co-edge 
A E A may easily be found such that IA n {Xl, x2}1 1 and IA n {X3, x4}1 l. 
Consequently, cannot be a union of two co-bistars for any r ::::: 3. Thus the case 
1) is proved. 

2) 2r ::::: n + 2. Since for r n the theorem is evident, let r ::; n - 1. Hence, 
T(C~) 2, a(C~) = n 2 and IAi n Ajl ::::: 2, j E I. Let Xl be a neighbor to X2, 
X3 be a neighbor to X4, and the pair {XI, X2} be opposite to the pair {X3! X4} on C~. 
2r ::::: n+2 implies that for any Ai E A either IAin{XI, X2}! 2, or IAin{x3' X4}! 2. 
Thus C~ is a union oftwo co-bistars with non intersecting co-bitransversals. It follows 
from Theorem 4.6 that X( C~) n - 2. Since every wholly-edge subhypergraph of C~ 
in this case is co-perfect (because it represents a co-bistar), case 2) is proved. 0 

Definition 4.27. A hypergraph H (X,£) is called (p,q,r)-Helly (cf. k-Helly, 
[3J) if for any subfamily of its edges the following implication holds: 

if every p elements of the subfamily have intersection of cardinality at least q, 
then the whole subfamily has intersection of cardinality at least r. 

So, k-Helly hypergraphs from [3] are (k, 1, l)-Helly. Call (2,2,2)-Helly hypergraphs 
bi-Helly hypergraphs. 

Theorem 4.28. Let H = (X, A U E), where IXI = n ~ 6 and IEil 2: 3 for i E J, 
be a mixed hypergraph such that HA = (X, A) is a bi-Belly co-hypergraph with 
IAi! 2: (n + 2)/2, i E I. Then H is co-perfect. 

Proof. From n ::::: 6 and IAil 2: (n + 2)/2, i E I, it follows that for any i,j E I 
IAi n Ajl 2: 2. Since HA is bi-Helly, I niEl Ail 2: 2. Hence H is a co-bistar and 
co-perfect by Theorem 4.21. 0 

Recall that a hypergraph H = (X, £) is simple [3] if Ei. ~ Ej => i = J'. 

Theorem 4.29. A simple co-hypertree H = (X, A) is co-perfect if and only if it 
does not contain any co-monostar as a wholly-edge subhypergraph. 
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Proof. This is evident from Theorem 4.23. 
<¢= Let H (X, A) be a without any co-monostar as a wholly-

edge subhypergraph. Since every wholly-edge subhypergraph of a hypertree is also 
a hypertree, it is enough to show that we can color H with a(H) colors. 

It well known [1-3] that any hypertree satisfies the usual ReIly property, 
for any AI ~ A with Ai n Aj :::/: 0 for any pair Aj E A'it follows that 

We show that I nAi EA' Ai I 2:: 2 for any such AI ~ A. Assume that nAi EA' Ai {x}. 
Consider the wholly-edge subhypergraph 

HI = HI U Ai = ( U Ai) AI), 
AiEA' AiEA' 

where AI ~ AI. Since H is a simple co-hypertree, any co-edge A E Al \A' must 
contain the vertex x. Hence HI is a co-monostar, in contradiction to the theorem 
condition. Therefore I nAiEA' Ail 2:: 2 and H is thus a bi-Relly co-hypergraph, and 
moreover, Ai n Aj :::/: 0 implies IAi n Ajl 2:: 2 for any Ai, Aj E A. 

Consider the problem of finding a minimal transversal [3] of H. For this, construct 
the intersecting (line) graph [3] of H l that is the graph G = (A, V), where (Ai, Aj) E 
V {:} Ai n Aj :::/: 0. Since every clique of the graph G generates a co-bitransversal for 
the respective set of co-edges in H, a minimum of the graph G by cliques 
corresponds to a minimum covering of H by co-bitransversal of H. Let GI ) G2 , . • , Gt 

be the cliques of such a minimal covering of G. Consequently, aA(H) a(H) = 
IXI - t. Let the pair {Xi, Yi} be the co-bitransversals corresponding to the cliques 
Gi , i 1,2, ... t. These all are different because Gi :::/: Gj implies that {Xi, y,:} n 
{Xj, Yj} = 0. Color the vertices Xl, Yl with the first color, X2, Y2 with the second 
color, ... ,Xt, Yt with the t-th color, after that color all the remaining vertices each 
with a different color from t + 1, t + 2, ., IXI - t. Thus we obtain a coloring of H 
with IXI - t = a(H) colors, and the theorem follows. 0 

5. Some problems and directions for future research. 

This paper provides the beginning of Coloring Theory on mixed hypergraphs. 
We introduced the important notion of the upper chromatic number. Although any 
problem that was previously formulated for the lower chromatic number may be re­
formulated for the upper chromatic number, we believe that some new important and 
perspicacious problems and directions of research in this area could be the following 
ones [5,6,7]: 

1. What is the upper chromatic number of co- and mixed hypergraphs without 
odd cycles, and of unimodular, balanced, arboreal, co-arboreal, normal, mengerian, 
paranormal [3, chapter 5] co- and mixed hypergraphs? 
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2. co-perfect co- and mixed hypergraphs and find all causes of non 

3. Is there any relationship between graphs and uniform co-perfect co-
hypergraphs? 

4. Characterize those mixed hypergraphs with bounded breadth of their chromatic 
spectrum, i.e. with b( H) :::; k, in particular b( H) 1 (mixed hypergraphs such that 
X(H) X(H) 0). 

5. Characterize uncolorable mixed hypergraphs, i.e. hypergraphs for which the 
splitting-contraction algorithm gives the empty list Z; it means that X(H) X(H) 
0, R (0, ... 10). 

Let v( k), k 2': 0, be the minimal number n such that there exists a minimal by 
inclusion uncolorable mixed hypergraph H (X, A u £), I X n, for which 

X(HA) - X(HE ) k. 

What are v(k), k = 0,1,2, ... equal to? 
Consider an example for k = O. Let G (X, V) be a graph with X 

{I, 2, 3, 4, 5}, V {(I, 2), (1, 3), (1,4), (1,5), (2, 3), (3,4), (4, 5)}. We have X( G) 
3, T3 1. In the unique coloring of G with 3 colors the vertices 1,2,5 are all col-
ored differently. 

Let further HI (X, Ki + Ao) be a co-hypergraph where X = {1,2, 3, 4, 5}, Ki 
is the 4-uniform complete hypergraph on 5 vertices and Ao (1,2,5). We have 
X( HI) = 3, and in any coloring of HI with 3 colors at least two of vertices 1,2,5 are 
of the same color. 

Construct the mixed hypergraph H = (X, (Ki + Ao) U V). It is uncolorable, and 
X(HA) XCHe) = O. Consequently, v(O) 5. 

6. What are the bi-chromatic co-hypergraphs, i.e. co-hypergraphs with xC H) = 2? 
7. Characterize the hypergraphs with O(H) :::; k, k 2': 0, in particular, O(H) = O. 
8. Investigate the upper chromatic number of co- and mixed planar [2] hyper-

graphs, in particular, the opposite of the four coloring problem. Is it true that the 
upper chromatic number of any planar co-hypergraph without mono-stars is not less 
than n - 4? 

9. Investigate the problems related to the upper chromatic number that are 
opposite to Hadwiger's problem [2]. 

10. Find the meaning of the chromatic polynomial's coefficients and roots for co­
and mixed hypergraphs. 

11. Investigate extremal problems [3, p.130] related to the upper chromatic num­
ber of co- and mixed hypergraphs. 

12. What are the bi-Helly hypergraphs having a perfect (for example, chordal [1]) 
line graph? 

13. Let H be a mixed hypergraph such that its dual hypergraph H* [3, p.2] 
represents a (multi-) graph. In this case X(H) and X(H) could be called the lower 
and upper chromatic indexes of a graph respectively. What are they equal to? 

Vizing's theorem [1] resolves only the special case of this problem. 
14. It is known in genetics [3, p.188] that hypertrees represent natural models 

for species of animals having common hereditary characteristics (populations). In 
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addition, occupy a special place in colorings. Theorem 
4.10 says that O(H) 0 for any hypertree; this means that the greedy coloring 
algorithm may be applied without any of vertices. Since in the case of 
time we cannot re-color the vertices (this would amount to "rescheduling the past"), 
this greedy strategy is the best for finding the longest life time. 

Is it true that any population realizes the co-hypergraph coloring algo-
rithm in its life in order to achieve the longest life time and preserve hereditary 
characteristics? 

Since hypertrees represent as much as the subclass of hypergraphs with O(H) 0, 
may there exist other hereditary systems? 

15. For a mixed hypergraph H (X, A U call a hypergraph II (X, Al U £1) 
a chromatic inversion of H if Al £, £1 A. What are the relations between 
chromatic numbers of H and II, in particular, what are the coloring properties of 
mixed hypergraphs with H = II? 

CONJECTURE 1. The r-uniform co-hypergraph H is co-perfect if and only 
if it does not contain co-monostars and co-cycloids C2r- 11 r 3, as wholly-edge 
subhypergraphs. 

Theorem 4.29 shows that for co-hypertrees this conjecture is true. 

CONJECTURE 2. For any sequence of numbers N (nIl nz, ... , nt) 
such that ni 2:: (ni-l + ni+d/2, i 2, ... ,n -1, and max{n[t/Z],n[(t+2)/2]} = 
maxi{nd there exists such a mixed hypergraph H that nl T x , n2 = r x+l, ... , nt 

rx· 

Acknowledgements 

The author expresses his sincere gratitude to Professor Mario Gionfriddo, to CNR 
of Italy (GNSAGA), and to the University of Catania for a visit to Catania University 
during October-November, 1993, where the final version of this paper was finished. 
The author also thanks Professor Andreas Brandstadt for useful discussions. 

The author is grateful to an anonymous referee for valuable remarks which signif­
icantly improved the presentation of the paper. 

References 

[1] C.Berge, Graphs and Hypergraphs, North Holland, 1973. 

[2] A.A.Zykov, Hypergraphs (in Russian), Uspekhi Mat. Nauk 29, 1974, 89-154. 

[3] C.Berge, Hypergraphs: combinatorics of finite sets, North Holland, 1989. 

44 



[4] A.A.Zykov, The space of Graphs and its Factorizations, Fourth Czechoslovakian 
Symposium on Combinatorics, Graphs and Complexity, J.Nesetril and M.Fiedler 
(Editors), Elsevier Science Publishers B.V., 1992, 371-374. 

[5] V.Voloshin, On the upper chromatic number of a hypergraph, Preprint, Moldova 
State University, 1992. 

[6] V.Voloshin, On the upper chromatic number of a hypergraph, Scientific research 
conference of the Moldova State University, Theses of reports, Kishinev, 1992, 
V.1, p.42. 

[7] V.I.Voloshin, The mixed hypergraphs, Computer Science Journal of Moldova, 
Vol. 1, No 1(1), 1993, p.45-52. 

(Received 27/7/93; revised 18/8/94) 

45 




