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Abstract

The Matrix-Forest Theorem says that for a subset I of vertices of a
digraph, the number of I-rooted spanning forests is the determinant of the
submatrix obtained from the Laplacian by deleting all rows and columns
corresponding to nodes in I. We give an easy bijective proof of this fact.

The rather well-known Matrix-Tree Theorem gives the number of spanning trees of
a graph as a minor of the Laplacian of the graph. This note will give an easy bijective
proof of what one might call the “Matrix-Forest Theorem”, which is a slightly less
general version of the “All Minors Matrix-Tree Theorem” of Chen [2] and Chaiken [3],
while containing the ordinary Matrix-Tree Theorem, see Biggs [1] or Goulden-Jackson
[4]. This new proof should be good for education purposes, taking the theorem down
to a bijective interpretation of the expansion of the determinant.

Let G = (V, E) be a finite directed graph. Between any pair of nodes there may
be arbitrarily many edges, and they are distinguishable. Let d;; denote the number
of edges directed from node 4 to node j in G. Let df = ¥, d;;, the total number
of edges that are directed from 7 to any other node; loops are disregarded. The
Laplacian of G is the square matrix L € RV*V where the element in place (3,7) is df
if 2= j and —d;; if 4 # 5. The row sums of L are zero, so L is singular.

A J-cyclein G, for J C V, is a directed cycle visiting each of the nodes in J once.

For any node 4, by an i-rooted tree in (G we mean a tree where every node has
exactly one outgoing edge except ¢ which has none. In other words, for any node j
in the tree, the path between j and ¢ in the tree is directed towards ¢. (Such a tree
is sometimes called an “in-directed arborescence”.) If the tree reaches all the nodes
in V, it is an s-rooted spanning tree.

For any node set I C V| by an [-rooted spanning forest in G we mean a collection
of t-rooted trees, one for each 7 € I, such that every node in V is in exactly one of
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the components. For example, an {i}-rooted spanning forest is simply an i-rooted
spanning tree; there exists no @-rooted spanning forest.

Theorem 1 (Matrix-Forest Theorem) If G = (V, E) is a digraph with Laplacian
L and I CV, then the number of I-rooted spanning forests in G 1is

spanfg(I) = det Ly,

where Ly denotes the submairiz obtained by deleting the i-th row and column for all
1€ I

The theorem will follow from this lemma:

Lemma 1 spanfg(I) con be determined recursively by

spanfg(l) = df -spanfo(TU{z})— 3  #J-cycles-spanfs(IUJ).
z€JCVN\I
122
where z is eny node in V \ 1.

ProoF. The first term on the righthand side counts pairs consisting of one edge
directed from = and one (I U {z})-rooted spanning forest. When adding an edge e
directed from z to some node y to a (I'U {z})-rooted spanning forest, we get one of
two cases, depending on which of the trees in the forest that contains y:

Case 1: y is a node in a tree rooted in 1 € I. Then by adding e the z-rooted tree
becomes a part of the s-rooted tree, and what remains is an I-rooted spanning forest.

Case 2: y is a node in the z-rooted tree. Then by adding e we get some directed
cycle € = (zy---). Say that J is the set of nodes in C, so C is a J-cycle. Erase the
edges in this cycle. Then all the nodes in J become roots, so we obtain an IUJ-rooted
spanning forest.

It is easily seen that the steps above are invertible. Hence we have described a
bijection that establishes the identity

dF - spanfg (I U {z}) = spanfg () + Z #J-cycles - spanf (I U J),
2 JCV\I
Miz2
which is equivalent to the desired formula. [1

We shall now relate the number of I-rooted spanning forests of G to determinants
of certain submatrices of the Laplacian . Let us adopt the following conventions:
The determinant of an empty submatrix is 1; Sy is the set of permutations on the
set V; Cy C Sy is the set of cyclic permutations on V.

We shall prove the theorem by expanding the determinant in the cycles containing
a certain element. An alternative form of the basic expansion of the determinant of
a matrix A € RV*Y with z € V is

det A = g, det Ay — Z Z H(“‘ﬂ:j’—r(j)) det A;. (1)

zcJCV reCyied
iz2

302



This can be obtained as follows from the basic expansion,
det A = 2 sgn T H @jon(s)-
TESYy JEV

Split the sum into two parts according to whether z is a fixpoint of 7 or not. If = is
not a fixpoint, let 7 be the cycle that contains z in the cycle decomposition of 7, and
let J be the set of elements in the cycle. Thus we have z € J, 7 € C; and, because z
was not a fixpeint, |J| > 2.

det A = ape Y. sgam’ [ ajng

€Sy \{=} FEV\{=}
+ > osent]laig) X seno ] akae-
z‘e{gV TECy jeJ TE€Sy\g keV\J
Ji>2

Since 7 is a cycle on J, the sign of 7 is sgn7 = (—1)"*!. Hence we can multiply
each a; ;) by a (—1) and still have one (—1) left. By using the basic expansion of
the determinant again, twice, we get equation (1).

The theorem is now proved by induction on |V \ |, the size of submatrix L;. If
VIl =0, ie if V=1, then L; is the empty matrix. Since there is only one
V-rooted spanning forest and det L; = 1, the statement is true. Suppose it is true
whenever |V \ I| < p and consider a subset J C V with [V \ I| =p+1 > 0. Choose
some z € V \ I. Equation 1, with A = Ly, az, = d} and —a;; = di; when i # j,
gives:

det Ly = d;: - det LIU{ac} - z Z H dj,r(j) det Lryj.

z€JCV\I 7€C5 jeJ
[1>2

Now, thanks to the induction hypothesis, det Ly} 18 equal to the number of (/U
{z})-rooted spanning forests in G; also, det Lyus is the number of (I U J}-rooted
spanning forests. The sum 3, ¢, [1;es dj-(5) 18 clearly the number of J-cycles in G.
Hence we have proved that

det Ly = d} - spanfo(JU{z})— > #J-cycles-spanfy(/ U J) = spanf; ()
z€JCV\I
[Jiz2

by the lemma. The theorem follows by induction. [
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