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Abstract

Let G be a &-connected graph. It is proved that if
for each pair of nonadjacen£ vertices u and v of G, |NCud
U NCvd | 2 w=6+1, then G is vertex-pancyclic, which implies
a conjecture of R. J. Faudree, R. J. Gould, M. S. Jacobson

and L. Lesniak.
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S AN OGNCLIOR and terminology

All graphs considered are finite, undirected and
simple.

A graph G is said to be vertex-pancyclic if for each

vertex v in G, v is contained in a cycle of length m in G
for each m such that 3 € m < (ED.

We define NCCGD = min <|NCxD U NCyd | | X,y € V(GE), x
# y and xy & EC(G)>. And we write NC for NCC(GE) when no con-—
fusion arises. Let C be a cycle of G. Let u be a vertex in
VCCD. We give C an orientation. Then u+ denctes the succe-
ssor of u on € in the orientation and u  denotes the prede-
cessor of u on € in the orientation. Let § < VCd). Then S+
= L x+l x € £ and § = < x_f x € S > Let v be a vertex
in VCEIN\VCCD. NCCVD denotes NCvD N VOC). Suppose NCCVJ =
. An A-structure on NCCVD is a pair of vertices x and v

such that x,y e NCCVD and x = y.‘A suc~J-structure on

-+
is an edge x+y+ such that x,y € 8, x # v and y+ # o3, A

pre~J-structure on S is an edge x"y_ such that %,y e S,

x # y and y~ # x. Because of the obvious similarity
between suc-J-structures and premJ—Structures,.for ease of
notation and presentation, we frequently give proofs only
using suc—-J-structures Cor pre-J-structures). We denote by
C+[u,v] the path on C from u toe v in the orientation and
by C lu,v] the path on C from u to v in the reverse orien-

tation. The end vertices u and v are included.
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Let G and H be two graphs such that ECGY mn ECH) = @.
We use G+H to denote the graph with vertex set VCGY U
VCHY and edge set EC(GY U ECHD.

For terminology and notation not defined in this
paper, the reader is referred to [(21.

In {31, Faudree, Gould, Jacobson and Lesniak conjec-—
tured that if & has order v, connectivity t and satisfies
NC 2z v-t with & =2 t+1, then G is vertex-pancyclic. Song
[8] reformulated their conjecture on the Chinese Sympo-
sium on Cycle Problems in Graph Theory in the form that
if G is Z2-connected and NC 2 »-6+1, then G is vertex—-pan-—
cyclic. Obviously, Song’s conjecture implies the conject-
ure by Faudree et al. In this paper, we prove Song’s
conjecture. The main idea of the proof is similar to that

inm [17.
2. The main result

Lemma 1 Let G be a 2-connected graph. If NC = »-&+1, then
every vertex of G lies on a triangle. Furthermore, if » 2
4 then every vertex of G lies an a 4-cycle.

Proof Let u be a vertex of G. If there are two distinct
vertices %,y in NCud such that xy € ECG), then uxyu is a
triangle containing u. Otherwise |N(xD U NCyD>| £ v -

[NCud | £ v-& for any two vértiées x,y € NCud, contradict-

ing NC 2 wp—&+1.
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NMUW aossllidiee o L % SFal S, we Liadil O . O, Ean S 54 AL L
< 2 for a vertex x in G. As v(G 2 4, there is a vertex y
such that xy & ECG). But x,y & N(xD> U NCy¥D>, which contrad-
icts the hypothesis that [NCxD U NCyd | = v-&+1 2 v-2+1 =
v-l.

Assume that T = uvwu is a triangle containing u.
Suppose there is no 4-cycle containing u. Since & =z 3,
there is a vertex t in NCuw~{v,w*. Then tv, tw & ECG),
otherwise there is a 4-cycle containing u. Mow CNCLIN{ul>
N CNCWINCWD = @ and C(NCVINCUDD n CNCwOINLurd = @, other-~
wise there is a 4-cycle containing u. So CNCwD U NCtID n
CNCwOIN{u,v>) = @, But v,t & NCvD U NCtD). Hence |[NCwvD U
NCtD | € v = [NCwI{u,v>| ~ [<t,v¥| = pv-dlwd < »-&+1,

contradicting the hypothesis. [w}

Lemma 2 Let G be a 2-connected graph with cycle C and let

u € VCEIN\VCC). Suppose NG 2 v-&+1. If [NCCU){YZ 2 and the-

, ) , + + + ~ -
re exist two distinct vertices u, s U, & NCCUD Cor Uy Uy €
— ) o+ -+ N - -
Nc(u)) such that there is no edge from {ui,ua} L(ul,ua}D

to NCud\VCCD, then there is a cycle C° of length |VIC)|+1
such that VCC’D = VOO v {ur.

Proof We give C an orientation. If there is an A-struct-
ure on NCCUD such that x,y NCCu) and x+ = w. Then &° =
C+£y,x] + xuy is the desired cycle. So suppose there is no
A-structure on NCCU)‘ And then U: = Ugy and u; (e u, -

Suppose there is a suc—J-structure x+y+ on NCCuD.

Then G = C Iy .x] + xuy + € ly,x 1 + x'y' is the desired
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cycle. Otherwise, there is no suc~-J-structure on NCCUD. By

the hypothesis, C(NCud~\VCCID n CNCu:) U NCu;)) = & So
lNCu;D U NCU:,;); < v - [NéCu)l ~ [NCUDNVCCY | = w—dCud <
v-6+1, contradicting NC 2 v-&+1. o

Theorem 3 Let G be a Z-connected graph. If NC 2 »-&+1,
then G is vertex—pancyclic.

Prooff By Lemma 1, when » = 3,4, Theorem 2 holds. Thus we
may assume v 2z B,

Suppose G is not vertex—pancyclic. Let v be a vertex
of G which does not lie on any cycle of length r for some
r (3 2£r £ v)., By Lemma 1, we will assume that m is the
minimum number such that 3 € m £ v-2 and there is a cycle
C of leggth m in G containing v but there is no cycle of
length m+2 in G containing v. We give C an orientation.
Claim 1 For each u € V(G \V((C), there is no edge from

NECU) U NCCU) to NCud™\VCC), for otherwise a cycle of
length m+2 containing v results.

Since G is 2-connected and m £ v-2, there are two
distinct vertices x,y e V(EGI\VI(CD such that NCCXD = & and
NCCy) # . Now we consider the following two cases.

Case 1 There are two distinct vertices x,y € V(GI\VICD

such that ]NCbei = 2 and iNCCyDI z 2.

Subcase (1.120 There are two distinct vertices Xl’ xa

Yoy € NCCyD such that

15
NCCXD and two distinct vertices Yy

](xi,xa} N {yi,ya}é < 1.
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SUDCase LWL, Lo 4 J inere 1S an A-sSiructilire on NCLX.) Lor on

NCCyDD.

If so, then there is a cycle C’ of length |V(CD|+1
such that V(C’) = VCC) U {x>. We give C’ an orientation.
By the assumption of Case (1.1), either |N LCyd o CN CyD V]
N;Cy)DQ z2 2 or |N;;Cy) ~ CNgCy) u Né(y))] > 2. By Claim 1
and the argument of Lemma 2 on C’, we have a cycle C" of
length m+2 such that VCC") = V(C’) U {y», a contradiction.
Subcase (1.1.20 There is neither an A-structure on N’be,

<

nor an A-structure on NCCyD‘
Without loss of generality, assume lNCCxQ} < }NCCybi.
By Claim 1 and Lemma 2 Cand the proof of Lemma 2), there

o+
is a suc—J-structure xix; on NNCxD and there is a cycle

’ o + i
o= C {xa,x ] o+ xlxx2 + ¢ [xa xi] + xle such that V(C’D

= VCC) U {x¥. We give C’ an orientation such that C’ and

C have the same orientation on C+[x;,x1L

If [NCydINx vl x ,x;}I > 1, then either |NL,Cy> n

1751 %
EN - - EN —
b - > £
CNWCYD U NLYID | 2 2 or [NL,Cy) N CNCYD U NLCYID| 2 2. By

Claim 1 and the argument of Lemma 2 on C’, we have a cycle
C" of length m+2 such that VCC") = VCC’D U {y?», a contrad-
iction.

So N . (yd> & {x x » X Since there is no A-struct-

c 1’ 2%

. . -+ .
ure on NCCy), NCCy) = {yi,ya}, where Yy, € <x1,x1} and Yy €
< =
{x8 xa} But INCCXDI < {NcCyDI, SO NCCxJ xxl,xa}. There
are now two subcases.
+ +
Subcase C1.1.2.15 x, f Yy and Xy = Yo Cor Xy T Yy and x;

=»y13.
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By Claim 1 and Lemma 2, there is a suc—J-structure
+ + + o+ - +
= +
Y Y5 on NCCy) and C (o Eya,yll Y ¥¥s + C [ya,yi) +
yZy; is a cycle of length m+l containing v. We give C’ an

orientation such that C” and C have the same orientation

+
C

Claim 1 and Lemma 2, there is a cycle C" of length m+2

on C+[y;,y1]. Then [NL,C30 N CNZGO U NLCOD | = 2. By

containing v, a contradiction.

+ +
Subcase (1.1.2.23 X =Yy and Xy = Vg
Clearly, it follows that C" = C+[ya,x1] + xlxx2 +

C_[xa,yll + Y YY gy is a cycle of length m+2 containing v,
a contradiction.

Subcase (1.2 NCCxD = NCCyD = L % D).

Subcase C(1.2.1) xy e ECGD.

+ +
If %, = %, or ., = X

L3 i ) i .
1 5 > x then it contradicts Claim 1

So there is no A-structure on N (x). By Claim 1 and Lemma

C
2, there is a suc—-J-structure xe; on NCCXD. Then C" =
cixtx, 1 o+ + Tt N IRV le of lengt
XE’ 1 xlxyxa xe.xl ><.1x2 is a cycle o© ength

m+2 containing v, a contradiction.

Subcase (1.2.8) xy & ECGD.

+  +
Let w e {xi,xa}\{x,,xa}u Then by Claim 1, CNCxD U

NCyDD N CNCW)\{xi,xa}) = @, Also %,y & NOxD U NCyd. So
INCxD U NCy2 | £ » - dCwd < v=8+1, a contradiction.

Case 2 There is at most one vertex x € V(GI\V(CI such

that [N.CxO |

v

2.
Since m £ »-2 and G is 2-connected, there is a vertex
y & VCGINVCC) such that chﬁyD} = 1. Let NCCyD = {YC}'

Claim 2 yéyg e ECGD.
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Viherrwise, DY lailm 1L, NO |Ncyc) U Ncyt)l = v -
1NCyD\{yc}] - |<y5,y€}| £ v-&, a contradiction.
Claim 3 y::w+ €. ECGY if y(—:w e ECGD for each w a VCOD.
Suppose ygw € ECG). If there is an edge from w+ to
NCyI\VCCD, then there is a cycle C" of length m+2 contain-

ing v, a contradiction. Now suppose y;w+ & ECG) and NCw+)

M CNCyDINVCCDDY = @, Then NC X ]NCy;) u N(w+){ < » — [NCyd~
. -+ )

{YC}‘ - i(yc,w Y| £ v-6, a contradiction, then Claim 3
follows.

Now by Claims 2 and 3, yé is adjacent to all vertices
on C.

Claim 4 For any two distinct vertices u,w & VCCD\(yC}, uw
« ECGD.

By Claim 3, if either u or w is y; then the claim
follows., So u # y; and w # y;. Since yéum, yéwm e ECG) and
there is no cycle of length m+2 containing v, it must be
the case that neither u nor w is adjacent to any wvertex in
NCy)\CyC}. Hence NC £ [NCu) U NCw | = » ~ {NCyD\{yc}l -
[€u,wr| £ v—& unless uw e ECGD.

Consequently the graph induced by VCC)\{yC} is compl-
ete.

Let D be the component of G-V(() containing y. Let P

= Yy Ya Yy be a shortest path in D with Yy = y and Y

v

adjacent to a vertex in VCC)\{yc}. Since [NCCyD( =1, k

2.

[

If ¥k =2, a cycle C" of length m+2 such that VCI"D

Voo U {yl,yé} results, a contradiction.
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If k = 3 and if either vy, € ECG) or Vyg € ECG), then
it follows that v lies on a cycle of length m+2 which con-
tains {yi,ya,ya} and all vertices but a vertex of C, a

contradiction.

Otherwise VY VYg & BECG).

If INCCle U NCCyQD[ > 3, then |NCCy3)\{yc}| =2 2, and
v lies dn a cycle of length m+2 which contains (yi,ya,yg}
and misses a vertex in NCCygj.

Hence we may suppose ]NCCy13 u NCCy33| < 2. If |Vl |
z 4, v e {yz,y;} and NCCYSD\{yC} =4 (yé,yé}, then v lies on
a cycle of length m+2 which contains {yi,ya,yg} and misses
exactly one vertex in V(C), a contradiction. So suppose
this is not the case. Then N(v) N CNCy13\V(C3) = @, for
otherwise the case that k = Z results. Additionally, NCvD
s} CNCy3D\VCC)} = @, otherwise, by a similar argument as
in the case that k = 2, v lies on a cycle of length m+2.
Hence NC = lNCy1) U NCy33| < v =~ |NCvONCN Cyib U N

Cy |

< o

{{yl,y3}| < p-dCvd) £ v-8, a contradiction.

Suppose k 2 4. Let u € VCDONCNCyD U {y,x>). Since
]NCCUD[ £ 1, we can find a vertex Q = VCCD\(yC} such that
uw & ECGD and NCwd n CNCy)\{yC}) = & If NCud n CNCydN\
<y.?> = @, then NC < INCW U NCWI | € v - [NCYINCy Y | -
[€u,wr| < »-&, a contradiction. Hence NCud N CNCy)\{yC}D
# @ for all u e VIDDNCNCyD U Ky,x¥), So k = 4 and x =
Yy And x is adjacent to all vertices i; VCC)\{yC}, other—

wise we take a vertex w in V() such that xw & E(G), then
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NC = [NCxO U NCwd | =2 v ~ ]NCyD\(yC}| - |{x,wr| < v=&, a
contradiction.

We now have a path P = Y YeYsYy in D, where y = ¥y
and x = Y4- By the assumption on P, NCCyQD\{yb} = @. Let u
e VCed \<yc> )

Suppose NCy3) M CNCuD\{yt,y4}3 = @, Obviously, NCle
0 CNCu)\{yC}D = @. Thus NC < iNCylb U NCysbi < v = |NCw
\{yc,y4}[ - ]{yi,yg}l £ w—-dCud < v=-6+1, a contradiction.

Finally, suppose w NCyg) N CNCu)\{yc,y4}3. Then
either w e NCy)\{yc} or NCwd N CNCyD\{yC}) = @, So we
have a shorter path than P in D, contradicting the assump-

tion on P. The proof of this theorem is complete. n]

Remark 1 Km m shows that the bound on NC in Theorem 3

3

is the best possible.

Remark 2 Recently the authors learned that Lin and Song [4]

have obtained an analogous result for edge pancyclicity.
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