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ABSTRACT. By a Ramsey-type game is meant a game in which two players
(the constructor and the destroyer) alternately pick previously unpicked edges
of the complete graph on n vertices, and the constructor wins if and only if
he has selected all edges of a prescribed k-vertex graph . We prove that the
constructor wins if G is an n-vertex path (n > 5) or a cycle (n > 15), or if G
is an n-vertex tree having some special properties.

1. INTRODUCTION

The Ramsey game on pairs is a 2-player game where the players alternately pick
previously unpicked edges of the complete graph on n vertices, and the first player
wins if he has selected all edges of some complete subgraph on k vertices, see [2].
Let N*(k) be the least integer n so that the first player has a winning strategy,
that is, the first player can always select all edges of some complete graph on k
vertices. As proved by Erdés and Selfridge in [2] (the lower bound) and Beck in
[1] (the upper bound), we have:

k

2% < N*(k) < (24 ¢)F.

Generalizing the Ramsey game on pairs, Hahn and Sirafi studied the following
Ramsey-type game for graphs: Let G be a k-vertex graph, and let there be two
players, the constructor and the destroyer. The players alternately pick previously
unpicked edges of the complete graph on n vertices, and the constructor wins
whenever he has selected all edges of some G, otherwise the destroyer is the winner,
see [3].

Let G be a k-vertex star and let N be the least number of vertices on which
the constructor has a winning strategy, that is, the constructor can always select
all edges of some k-vertex star. In [3] it is proved:

1.2936k < N& < 2k —logy k.
In this paper we consider Ramsey-type games for spanning subgraphs of the

complete graph on n vertices. We show that if n > 5 the constructor can always
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construct a path on n vertices, and if n > 15 he can even construct a cycle on
n vertices. (We suppose that the destroyer begins.) This can be interpreted as
follows: If n satisfies the conditions mentioned above, the constructor can construct
a Hamiltonian path (or a Hamiltonian cycle) in a complete graph on n vertices.
Moreover, the constructor can construct a path or a cycle even if the destroyer has
picked some, but at most (n — 5)/2 or (n — 15)/2 edges, respectively, before the
game starts. Actually, our proofs will yield a certain class of trees on n vertices
that can be constructed by the constructor.

2. PATHS

In this section we consider a Ramsey-type game played on n vertices, where the
constructor wins if and only if he has selected all edges of some path on n vertices.
Let us denote this game by P¢ (P?) if the constructor (the destroyer) begins. We
remark that the moves of the constructor will always be denoted by ¢y, cs, . ..
while for the moves of the destroyer we use dy,ds,. ...

It is easy to see that the constructor wins the games P§ and P¢, while in P§ the
destroyer is 2 winner (choosing d; nonadjacent to ¢y, and dy nonadjacent to ¢).
We prove here that in P n > 5, the constructor is the winner, i.e., the destroyer
loses even if he starts.

For the sake of convenience, if X and ¥ are two disjoint subsets of vertices,
by (X) and (Y') we denote the set of edges having both endvertices in X and Y,
respectively, and by XY we denote the set of edges having one endpoint in X and
the other in ¥". If no confusion is likely, an edge is often identified with the set of
its endvertices.

?

Lemma 1. The constructor wins both P& and Pg.

Proof. We utilize the fact that the constructor wins the games P§ and Py,

Let ¢; be adjacent to dy, and let dy be an arbitrary (previously unpicked) edge.
It is easy to see that the vertex set can be partitioned into two sets, say X and
Y, both of size at most 3, such that dy,d, € XY, and ¢y € (X). Let us choose
¢y € {Y) such that ¢g is adjacent to d;.

For the moment consider the game FPf. We may assume that |X| = 2 and
[V'| = 3. In what follows if d; € (Y), i > 3, then we choose ¢; € (Y), while if
d; € XY we pick ¢; € XY. Moreover, in the later case we choose ¢; such that
;NY € {ud; . dj € XY, j <i}NY (observe that such a choice is always possible).
As di.d; € XY and c¢r,c0 ¢ XY, this choice requires that, when the game is
finished. the constructor has joined all but one vertex from Y to X. Since he has
paths on both X and Y, he has constructed a path on five vertices.

Now consider P¢. As |X| = |Y| = 3, we may assume that dy ¢ (Y). Let us
choose ¢3 € (X)) such that (if possible) ¢; is adjacent to d; (if d3 € XY then c3 can
surely be adjacent to dy). Since the constructor has a path on X, in what follows
only its endpoints are important. Let us denote the endpoints by X’. Now, in {Y)
there is only one edge picked by the constructor, and in X'Y there are at most two
edges picked by the destroyer. (In the case d3 € XY we have dy ¢ X'Y as all ¢1,
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¢y and ¢y are adjacent to dy.) Hence, the constructor can proceed on X' and YV
analogously as in the case of P2,

When the game is finished the constructor has paths on both X and Y, and
all but one vertex from Y he joined to X'. Hence, he constructed a path on six
vertices. [J

In the preceding proof, if the destroyer has picked d; adjacent to the vertex from
X — X' (or made any useless move), then the constructor can make an arbitrary
move. For this reason, in what follows we do not consider useless moves of the
destroyer.

Theorem 2. The constructor wins the game P2 ifn > 5.

Proof. By Lemma 1, we may assume n > 6.

Let us choose ¢; adjacent to dy, and denote by X the vertices of ¢; and by V
the remaining n — 2 vertices. By induction, the constructor has a winning strategy
in PY_,. Thus, if d; € (Y) then choose ¢; € (V) according to this strategy, while
if d, € XY then pick ¢; € XY such that d; and ¢; have a common vertex in ¥
whenever possible.

When the game is finished the constructor has a path on ¥, and all but one vertex
from ¥ he joined to X, i.e., he constructed a path on n vertices, as required. [

One can see that the constructor’s strategy is not as tight in the case n > 6 as
in the case b < n < 6. Namely, he can pause in the first occurrence of d; in XY,
i > 2. His first choice of ¢; € XV is necessary when the destroyer has three edges
in XY . Moreover, the constructor can avoid getting stuck at some disadvantageous
vertices during the game analogously as in PE.

Consider the following generalization of P%: On an n-vertex set there is a subset
B of k prescribed vertices, and the destroyer had picked I edges before the game
started. In the game, the players alternately pick previously unpicked edges, the
destroyer beging, and the constructor wins whenever he has selected all edges of
some n-vertex path that does not have endpoints in B. Let us denote this game

by Pd(k,1).
Lemma 3. Ifn > 5+ 3k then the constructor wins the game P2(k,0).

Proof. I k = 0 then the constructor has a winning strategy in P2(0,0) asn > 5, by
Theorem 2. Suppose that k > 1 and let b € B. We may assume that the destroyer
had picked all edges from (B ) before the game started.

Let us choose ¢; and ¢y both incident with b, and moreover, we choose ¢; adjacent
to dy and, if dy is not adjacent to ¢1, choose ¢y adjacent to do. (Observe that this
is always possible.) Now let X be the set of endvertices of ¢; and ¢p, and let ¥ be
the set of remaining n — 3 vertices (i.e., ¥ contains k — 1 vertices from B). The
constructor has a path on X, di,dy € XY, and there are no picked edges in YV
(except those in (B—{b})). Denote X' = X — {b}.

Clearly, 7 1 ~3 > 5+ 3(k—1). By induction, the constructor has a winning
strategy in P 3(k —1,0) on Y. Thus, if d; € (Y) then choose ¢; € (Y') according
to this Wmmng strategy, while if d; € X Y then choose ¢; € X'Y such that ¢;NY €
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{Ud; : dj € XY, j <i}NY whenever possible. The final condition requires that,
when the game is finished, the constructor has constructed an n-vertex path that
does not have endpoints in B. O

Theorem 4. Ifn > 5+ 3k + 2 then the constructor wins the game Pa(k,1).

Proof. By Lemma 3, we may assume [ > 1. We consider five cases 1. - 5., and
in each of them we reduce the game PZ(k,l) to PZ(k’,l') such that n' < n and
n' <5+ 3k"+2l'. More precisely, after the first j — 1 moves of both players we split
the n vertices into two sets X and Y, | X| = jand |Y| = n—j = n/. The constructor
will have a path on X (its endpoints we denote by X'), and the destroyer will have at
most two edges in X'Y. In Y there will remain k' vertices from B and I destroyer’s
edges, and the numbers n’, k' and I’ will satisfy the inequality mentioned above.
By induction, the constructor has a winning strategy in P4 (k’,1') on Y, and hence,
next we pick ¢; € (Y') according to this strategy if d; € (Y'), while if d; € X'Y we
pick ¢, € X'V such that ¢; NY € {Ud; : dj € XY, j < i} NY whenever possible.
This will result in the required n-vertex path.

Let D be the graph consisting of d; and the destroyer’s [ edges. Since n >
5+ 3k + 21, there is a set F' = {f1, fs,...} of at least 3 + 2k vertices that are
neither in B nor in D.

1. Suppose that there are two vertices of degree one in D, say v and v, such that
uv is not in D.

Choose ¢; = uv. ffu,v ¢ Bthen X = X' = {u,v},n' =n—2, k' =k, I' = [ -1,
and n — 22> 54+ 3k +2(1 — 1).

If u,v € B then choose ¢; = fiu, cs = vfy. (It is not important if dy = fiu as
the set F is large enough, so that the constructor can choose another of its vertices.
In what follows this fact will not be specifically mentioned.) Put X = {f;,u, v, fa}
and X' = {f1, fo}. Clearly, the destroyer has at most two edges in X'Y", n/ = n—4
B =k-21<l4+1,andn—4>5+3(k—2)+2(+1).

Finally, if w € B and v ¢ B choose ¢; = fiu, and put X = {fi,u,v}, X' =
{fi,v}. (The case u ¢ B and v € B can be proved similarly.) We have n’ = n — 3,
k'=k—-1,1'<l,andn—32>5+3(k—1)+2L
2. Suppose that there is a vertex, say u, of degree two in D.

Choose ¢; = uf;. fu ¢ B then X = {u,fi} and n —2 > 5+ 3k + 2(l-1).
u € B choose ¢ = fou, X = {fa,u, f1},and n —3 > 5+ 3(k — 1) + 21.

3. Suppose that there is a vertex, say u, of degree one in D. Since there are at
least two edges in D, we may assume that there is a vertex, say v, of degree at
least three in D such that uv is not in D, by 1. and 2.

Let ¢; = wv and ¢ = vfi. If u ¢ B we choose X = {u,v, f;} and X' = {uf,}.
The destroyer has at most two edges in X'Y, and n — 3 > 5 + 3k + 2(1 — 2). If
u € B choose c3 = fou, X = {fo,u,v, fi}, andn—4 > 5+ 3(k — 1) + 2(/ — 1).

In the next cases we may assume that the degrees of the vertices in D are at
least 3.

4. Suppose that u and v are vertices in D, each of degree at least three, and uv
is not in D.
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Choose ¢; = uv, ¢y = fiu, ¢z = vfa, and put X = {fi,u,v, fo} and X' =
{f2, fi}. The destroyer has at most two edges in X'Y and n—4 > 5+ 3k + 2(1-3).
5. Suppose that D is a complete graph on at least four vertices.

Let u be a vertex of degree at least three in D. Choose ¢; = ufy, and ¢z = vu
such that v is not in D and dy is adjacent to ¢y or ¢y. (This is possible as D is a
complete graph.) I v ¢ B then X = {v,u, fi}, X' = {v, fi }, the destroyer has at
most one edge in X'V, and n—3 > 543k +2(l - 2). fv € B choose ¢z = frv,
X = {fo,v,u, i}, andn—4>5+4+3k—1)+2(1-1). O

3. CYCLES

In this section we consider a Ramsey-type game played on n vertices, where the
constructor wins if and only if he has selected all edges of some cycle on 7 vertices.
We denote this game by RS (R%) if the constructor (the destroyer) begins.

The constructor loses in RS if n < 4, since the cycle has too many edges.
Moreover, he loses in RE (choose di nonadjacent to ¢, dz adjacent to d;, and ds
such that {dy,dz,ds} is either a 3-cycle or contains a vertex of degree three), and
in RS (choose dy nonadjacent to ¢;; the constructor likes to pick at least two edges
incident with each vertex, and utilizing this fact in the first five moves the destroyer
can pick K4—e, i.e., a complete graph on four vertices without one edge). However,
for n > 15 we have:

Theorem 5. The constructor wins the game R% if n > 15.

Proof. In the first five moves the constructor picks a 4-cycle, and then a path on
remaining n — 4 vertices. Since the endvertices of the path will be joined to the
4-cycle in a good way, this will result to a cycle on n vertices.

Let us choose ¢; = yz adjacent to dy (assume that dy is incident with y).
Moreover, choose ¢g = yz adjacent to dy. (If di, dy and ¢ form a triangle, choose
any ¢, = yz.) Then ¢; and ¢; form a path on three vertices. Asn > 7+ 2 we may
choose ¢; nonadjacent to any of the previously picked edges. Let ¢z = uv. It is
easy to see that no matter how the destroyer moves, we may choose ¢y € {y}{u,v},
say cs = yu, and then ¢s € {v}{z. 2}, say cs = vz, to obtain a 4-cycle (in this case
(zyuv)). We remark that if ds ¢ {v}{x, z}, then there are two possibilities for ¢s,
namely ve and vz, and we prefer that one for which dy and ¢5 are adjacent.

Let Xy = {z,u}, X2 = {y,v}, X = X,UX,, and let Y be the set of the remaining
n—4 vertices. In XY there are at least two destroyer’s edges (either dy and dy or, if
ds € {v}{z,z}, dy and ds). Split XY into pairs of edges {X;i{a}, Xz2{a}: a € Y}.
Denote by A’ those pairs in which the destroyer has picked an edge in the first
five moves. In what follows we define a set A = {X, {a1}, Xip{a2},. .., X, {am }},
By im € 41,2}, If there is X;{a} € A, 1 < j < 2, with both edges picked by
the destroyer, then let both edges X; {a1} and no edge of X;,{as} are picked by
the destroyer and in this case we set 4 = A'U{X;,{as}}. Otherwise A = A’. Note
that in either case there are exactly two destroyer’s edges in X; {a;} and X;,{as},
2 < m < 5, and there are at most five destroyer’s edges in X; {a;}, 1 < j <m.

From the sixth move on we will use the following strategy:
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Ifd; € (Y), choose ¢; € X; {a;},3 <j<m.
Ifdi € Xj{a}, 1 <j <2, such that X;{a} ¢ A, then choose ¢; € X;{a}.
Ifd; € Xi{a;}, 1 <j <2, then choose ¢; € Xi{ap}h, 1<y <2
Ifd; € Xi;{a;}, 3 < j < m, then choose ¢; € Xi; {aj } such that 3 < j" <m
whenever possible.
We will proceed using this strategy until both edges are picked (by any of the
players) in all X; {a;}, 3 < j < m. (This will happen as the game is finite.)
Thus, we may assume that there are no unpicked edges in Xi{a;},3<j<m.
Let B consist of those a;, 3 < j < m, for which the destroyer has picked both
edges of X; {a;}, |B| = k, and let I be the number of the destroyer’s edges in (V).
In what follows, the constructor will play P¢_,(k,l) on Y. There are three cases
possible:

AW

1. B is empty. In this case | <3 (as two from the destroyer’s first five edges are
in X; {a:} and X,,{as}). By Theorem 4 if n —4 > 5 + 3 -2 the constructor wins
the game PZ_,(0,1).

2. |B| = 1. Then! < 1 and the constructor wins P?_,(1,1)if n—4 > 5+1-34+1.2,
by Theorem 4. (If d; € Xy;{a;}, 3 < j < m, was the final edge chosen by the
destroyer and it was not possible to choose ¢; € XiAaj}, 3 <4 < m, then we
can choose ¢; € (V) according to the winning strategy for PZ_,(1,1), I < 1, where
the destroyer has already picked its first edge.)

3. |B| = 2. In this case ! = 0, and the constructor wins P?_,(2,0) if n—4 > 5+2.3,
by Theorem 4.

Since n > 15, in all three cases the constructor wins P?¢_,(k,l), i.e., he can
construct an (n—4)-vertex path on Y whose endvertices are not in B.

Now proceed in our game: If d; € (Y} choose ¢; € (V') according to the winning
strategy for PZ_,(k, 1), while if d; € X,;{a}, 1< j < 2, choose ¢; € Xji{a}. (In the
case d; € X; {a;}, 1< j <2, choose ¢; € Xi{aj}, 1<y <2)

When the game is finished, there is a 4-cycle on X and an (n—4)-vertex path P
on Y that does not have endvertices in B. Let e¢; and ey be the endvertices of P.
Our strategy requires that at most one from Xi{e1}, Xo{e1}, X1{e2}, Xo{e} has
both edges picked by the destroyer, say X1{e;} (in this case ¢; = a; or e; = ay).
Thus, there are constructor’s edges in both X,{e;} and X;{e;}, and these edges
together with three edges of the 4-cycle (zyuv) and the edges of P form an n-vertex
cycle, i.e., the constructor has won. 0O

We remark that n > 15 is our best estimate even for R, since the destroyer
.can choose d; = wz and dy = wz in the preceding proof and three edges from
dl,. .. ,d4 will be in <Y>

Let RE(I) be a Ramsey-type game where the constructor wins if and only if he
has selected all edges of some n-vertex cycle, however, the destroyer (who begins)
had picked [ edges before the game started. We have:

Theorem 6. Ifn > 15+ 21 then the constructor wins the game R2(1).

The proof is similar to that of Theorem 5. The only difference is that there will
be [ more edges in (Y') and applying Theorem 4 we obtain the result.
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4. TREES

Let T be a prescribed n-vertex tree. By T? we denote a Ramsey-type game
played on n vertices, where the destroyer begins and the constructor wins if and
only if he has selected all edges of some T

Let T be a tree. Suppose that the edge set of T' can be decomposed into a
subtree Tg (h'wmg [ edges) and a nonempty collection of paths, say Pr,..., P
that may pairwise intersect only in the vertices of To. If each of the paths contains
at least 15 + 2[ L] vertices, we write T € 7.

In this section we show that if 7€ 7 then the constructor is a winner in T},

Lemma 7. Let G be a graph on k(m—1) + k' vertices with | edges, 1 < k' < k.
Let X = {x1,...,x } be some vertices of G, and let Y be the set of the remauung
k(m—1) vertices. Moreover, let ky + -+ + ki = kandk; > 1,1 <i{<k'. Then
there are vertex sets X4, ..., X each of size m, such that |[X; N X| =1, X; — X,
Xy — X, ..., Xp — X is a partition of Y, z; is in k; of the X;’s, and each (Xj;)
contains at most {%] edges, 1 < j <k and 1 <1<k

Proof. Let X* X* ..., X™ be a partition of ¥, |[X?| = --- = |[X™| = k, such
that there is m®, 1 < m® < m, f01 which if 2/ € X7, 2 < j < m® then X{z'}
is nonempty, while if 2/ € X7, m°® < j < m, then X{z'} is empty (moreover, if

m® > 1, we may assume that X X™ is not empty). Let X{ = X3 = .. =X, =
{:1:1}, ( kk' 1= X,’W = {zp}. We Construct X2 ...X™ such that
|X]| =7, uk (XJ - ijl) X7, and if (UF_ (X! — X)) contains I; edges, then

uk_ ]U(] — Y) will have at most % edges, 1 < j < m.
By induction, %uppose that this is true for all j/, 2 < j° < j. Let I’ be the
number of edges in (Uf (X! = X))XJ*1. We construct XJJrl from X7 such that
k(XTI X]) X’"H Clearly, there are k! possibilities for constructing X"H ’

in thl% way. Let e be an edgein (X7 Y)X“L“ In (k—1)! cases we have e 6 <XiHl>_
l(k 0t

Thus, the average number of new edges in Uk (X - X)) s . Hence,
the required sets XJ"H 1 < i < k, exist such that US_ (X7+! — X) contains at
most I: edges. Thus, there are at most ~m edges in each (X — X).

However, there are still I’ edges in XY, 1" > k(m® — 2), and in each {X) we
have at most m® — 1 from these 1" edges. As m® — 1 < % + 1, there are at most
[£] edges in each (X[*), 1 <1 <k. U

Theorem 8. The constructor wins the game T2 if T € T

Proof. As T € T, it consists of a subtree Ty and k paths P,..., P. In the first
moves the constructor will construct Tp. (Recall that [ is the number of edges of
Ty.) This can be done step by step by joining a new vertex (that is not incident
with the destroyer’s edges) to the subtree of Ty just constructed. When Tp is
constructed, there are [ edges picked by the destroyer.

Let X = {2y,...,2x } be the vertices of both Ty and Uk P, each z; lying
on k; paths from Py,..., Pk, and let Y’ be the set of vertices that are not in

205



To (Y] = n —1—1). Moreover, let ¥ be a subset of Y”, Y] = 2k[£], such
that there are no picked edges incident with vertices in ¥/ — V. (Observe that
21 < Zk(ﬂ <n—I0—1.) Let X;,..., Xy be the sets whose existence is guaranteed
by Lemma 7 (UX., X, = X UY'). Then there are at most [1] edges in each X,
1< <k.

Now extend every X; to X7 by adding some of those vertices from Y’ — Y that
are not in X7, j < 4, and do this so that X will have as many vertices as P;. Since
X > 15+ 2(%1 and there are at most Hc—] destroyer’s edges in (X*), 1 < ¢ <k,
by Theorem 6 the constructor has a winning strategy in fo-?l([ﬂ) on X}. Thus,
if j > land d; € (XF),1 <1 <k, choose ¢; € (X}) according to this winning
strategy to obtain T'. OO

Let T consist of a star Ty and a path Py such that Ty has [ = ["Elsj edges, P,
has n — I vertices (n — 1 > 15 + 20), and P; crosses Ty in the central vertex. Then
T €7 and the maximum degree in T equals [ + 2 = [252]. Thus, the constructor

can win in T} even if T' contains a vertex of degree [22].
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