Isomorphisms of P_{4}-graphs*

Xueliang LI
Department of Applied Mathematics, Northwestern Polytechnical University.
Xi'an, Shaanxi 710072, P. R. China
Biao ZHAO
Department of Mathematics, Xinjiang University.
Urumchi, Xinjiang 830046, P. R. China

Abstract

For graphs G and G^{\prime} with minimum degree $\delta=3$ and satisfying one of two other conditions, we prove that any isomorphism from the P_{4}-graph $P_{4}(G)$ to $P_{4}\left(G^{\prime}\right)$ can be induced by a vertex-isomorphism of G onto G^{\prime}. We also prove that a connected graph G is isomorphic to its P_{4}-graph $P_{4}(G)$ if and only if G is a cycle of length at least 4.

1. Introduction.

Broersma and Hoede [1] generalized the concept of line graphs and introduced the concept of path graphs. We follow their terminology and give the following definition. Denote by $\Pi_{k}(G)$ the set of all paths of G on k vertices $(k \geq 1)$. The path graph $P_{k}(G)$ of a graph G has vertex set $\Pi_{k}(G)$ and edge set $\mathcal{E}_{k}(G)$ with the property that for any $H, K \in \Pi_{k}(G)$ with $H=x_{1} x_{2} \cdots x_{k}$ and $K=y_{1} y_{2} \cdots y_{k}$ there is an edge $H K \in \mathcal{E}_{k}(G)$ if and only if $x_{i}=y_{i+1}$ or $y_{i}=x_{i+1}$ for $1 \leq i \leq k-1$. The way of describing a line graph stresses the adjacency concept, whereas the way of describing a path graph stresses the concept of path generation by consecutive paths.

For a graph transformation, there are two general problems [2]. We state them here for the P_{4}-transformation.

Characterization Problem: Characterize those graphs that are the P_{4}-graph of some graph.

[^0]Determination Problem: Determine which graphs have a given graph as their P_{4}-graph.

For P_{2}-graphs, i.e., line graphs, there is a well-known result concerning the Determination Problem: If G and G^{\prime} are connected and have isomorphic line graphs, then G and G^{\prime} are isomorphic unless one is $K_{1,3}$ and the other is K_{3}. This result is due to Whitney [3]. For the Determination Problem of P_{3}-graphs, Broersma and Hoede found two pairs and two classes of nonisomorphic connected graphs with isomorphic connected P_{3}-graphs, see [1]. These examples suggest that to obtain a similar counterpart with respect to P_{3}-graphs for Whitney's result on line graphs seems to be very difficult. In [4] we proved that the P_{3}-transformation is one-to-one on all graphs with $\delta \geq 4$. Later in [7] we obtained the same result for all graphs with $\delta \geq 3$. Recently, we proved [8] that for $k \geq 4$ the P_{k}-transformation is one-toone on all graphs with minimum degree $\delta \geq k$. Moreover, we proved that for such graphs any P_{k}-isomorphism can be induced by a vertex-isomorphism.

In this paper, we shall focus our attention on P_{4}-isomorphisms. We shall ask the question whether for $\delta=3$ every P_{4}-isomorphism can be induced by a vertexisomorphism. We find that it turns out to be untrue. At the end of Section 3, we shall show that there is a P_{4}-isomorphism from $P_{4}\left(K_{4}\right)$ to itself that cannot be induced by any vertex-isomorphism of K_{4} onto itself, where K_{4} is the complete graph with 4 vertices. Unfortunately, the P_{4}-graph of K_{4} is $3 C_{4}$, where $3 C_{4}$ is the graph obtained by taking three disjoint copies of C_{4} together, which is not connected. However, at the moment we do not know if there are any connected graphs with minimum degree $\delta=3$ for which the P_{4}-graphs are connected and we can find a P_{4}-isomorphism that cannot be induced by any vertex-isomorphism. It would be very interesting to find such graphs. In Section 3, we shall prove that for many graphs with minimum degree $\delta=3$, every P_{4}-isomorphism can be induced by a vertex-isomorphism.

Finally, in Section 4, we shall consider the question of which graphs G have $P_{4}(G) \cong G$. We prove that G must be a cycle of length at least 4 , a result similar to that for P_{3}-transformations (see Theorem 3.1 of [1]). But, our proof is a little bit more complicated. It seems not to be easy to extend the same proof-technique to show that $P_{k}(G) \cong G$ implies that G is a cycle of length at least k for general $k \geq 5$.

2. Preliminaries.

In what follows, all graphs are connected and simple with at least 5 vertices. As usual, $d(u)$ denotes the degree of a vertex u and $N(u)$ denotes the neighborhood of u. For a nonnegative integer d, we denote by \mathcal{G}_{d} the class of all connected graphs with minimum degree at least d. An edge is called an endedge if it is incident with an endvertex.

We will follow the treatment of [4] for P_{3}-graphs, which in turn reflects Jung's ideas in [5] and Beineke-Hemminger's treatment in [6]. We introduce the following notation and obtain the corresponding results.

A vertex-isomorphism from G to G^{\prime} is a bijection $f: V(G) \rightarrow V\left(G^{\prime}\right)$ such that two vertices are adjacent in G if and only if their images are adjacent in G^{\prime}. We let $\Gamma\left(G, G^{\prime}\right)$ denote the set of all vertex-isomorphisms of G to G^{\prime}.

An edge-isomorphism from G to G^{\prime} is a bijection $f: E(G) \rightarrow E\left(G^{\prime}\right)$ such that two edges are adjacent in G if and only if their images are adjacent in G^{\prime}. Obviously, an edge-isomorphism of two graphs is exactly a vertex-isomorphism of their line graphs. We let $\Gamma_{e}\left(G, G^{\prime}\right)$ denote the set of all edge-isomorphisms of G to G^{\prime}.

We shorten $\Gamma\left(P_{4}(G), P_{4}\left(G^{\prime}\right)\right)$ to $\Gamma_{4}\left(G, G^{\prime}\right)$ and call the members P_{4} - isomorphisms from G to G^{\prime}.

For $f \in \Gamma_{e}\left(G, G^{\prime}\right)$, define a mapping f^{*} by $f^{*}(t u v w)=f(t u) f(u v) f(v w)$ for a P_{4}-path tuvw in G, and call f^{*} the mapping induced by f. We let $\Gamma^{*}\left(G, G^{\prime}\right)=$ $\left\{f^{*} \mid G \in \Gamma_{e}\left(G, G^{\prime}\right)\right\}$.

Note that f^{*} is not defined for a connected graph in general unless it has at least one P_{4}-path. Also note that the two edge-isomorphisms of the graph P_{4} induce the same $*$-function.
Theorem 1. If $G, G^{\prime} \in \mathcal{G}_{3}$, then
(1) $\Gamma^{*}\left(G, G^{\prime}\right) \subseteq \Gamma_{4}\left(G, G^{\prime}\right)$.
(2) the mapping $T: \Gamma_{e}\left(G, G^{\prime}\right) \rightarrow \Gamma^{*}\left(G, G^{\prime}\right)$ given by $T(f)=f^{*}$ is one to one.

Proof. (1) Let tuvw be a P_{4}-path in G and $f \in \Gamma_{e}\left(G, G^{\prime}\right)$. Then $f(t u), f(u v)$, $f(v w) \in E\left(G^{\prime}\right)$. Since f preserves adjacency and non-adjacency, we have that $f(t u) f(u v) f(v w)$ is a P_{4}-path in G^{\prime}, i.e., f^{*} is a mapping from $\Pi_{4}(G)$ to $\Pi_{4}\left(G^{\prime}\right)$. Obviously, f^{*} is a bijection. Since f is an edge-isomorphism, we know that $f^{*} \in$ $\Gamma_{4}\left(G, G^{\prime}\right)$, i.e., $\Gamma^{*}\left(G, G^{\prime}\right) \subseteq \Gamma_{4}\left(G, G^{\prime}\right)$.

To prove (2), let $f_{1}, f_{2} \in \Gamma_{e}\left(G, G^{\prime}\right)$ and $f_{1} \neq f_{2}$. Then there exists an edge $u v$ such that $f_{1}(u v) \neq f_{2}(u v)$. Since $G \in \mathcal{G}_{3}$, we can find a P_{4}-path tuvw such that $f_{1}{ }^{*}(t u v w) \neq f_{2}{ }^{*}(t u v w)$. Thus, the mapping T is one to one.

If $P_{4}=t u v w$, then the edge $u v$ is called the middle edge of the P_{4} and tuvw $=$ wvut. We let $S(u v)$ denote the set of all P_{4}-paths with a common middle edge $u v$. Any subset of $S(u v)$ is called a double star at the edge $u v$. A mapping $f: \Pi_{4}(G) \rightarrow \Pi_{4}\left(G^{\prime}\right)$ is called double star-preserving if the set $f(S(u v))$ is a double star in G^{\prime} for every edge $u v$ of G. Let f be a double star-preserving P_{4}-isomorphism from G to G^{\prime}. Then, if two P_{4}-paths form a P_{5}-path, their images under f do the same.
Theorem 2. Let $G, G^{\prime} \in \mathcal{G}_{3}$ and let $f: \Pi_{4}(G) \rightarrow \Pi_{4}\left(G^{\prime}\right)$ be a bijective mapping. Then f is induced by an edge-isomorphism from G to G^{\prime} if and only if f and f^{-1} are double star-preserving P_{4}-isomorphisms.
Proof. The condition is clearly necessary. For the sufficiency, suppose that f and f^{-1} are double star-preserving P_{4}-isomorphisms. Thus, for each edge $u v$ in G, there exists an edge $u^{\prime} v^{\prime}$ in G^{\prime} such that $f(S(u v)) \subseteq S\left(u^{\prime} v^{\prime}\right)$. Moreover, $u^{\prime} v^{\prime}$ is uniquely determined by $u v$. Otherwise, let $f(S(u v)) \subseteq S\left(u^{\prime} v^{\prime}\right)$ and $f(S(u v)) \subseteq$ $S\left(u^{\prime \prime} v^{\prime \prime}\right)$. If $u^{\prime} v^{\prime} \neq u^{\prime \prime} v^{\prime \prime}$, then $\left.f(S u v)\right) \subseteq S\left(u^{\prime} v^{\prime}\right) \cap S\left(u^{\prime \prime} v^{\prime \prime}\right)=\emptyset$. Since $G \in$ \mathcal{G}_{3}, then $f(S(u v)) \neq \emptyset$. This is a contradiction. Since $f(S(u v)) \subseteq S\left(u^{\prime} v^{\prime}\right)$ and $G^{\prime} \in \mathcal{G}_{3}$, we must have $f^{-1}\left(S\left(u^{\prime} v^{\prime}\right)\right) \subseteq S(u v)$. Therefore, $f(S(u v))=S\left(u^{\prime} v^{\prime}\right)$ and
$f^{-1}\left(S\left(u^{\prime} v^{\prime}\right)\right)=S(u v)$. We conclude that the function f determines a well-defined function $\tilde{f}: E(G) \rightarrow E\left(G^{\prime}\right)$ for which $f(S(u v))=S(\tilde{f}(u v))$. It is not difficult to see that \tilde{f} is a bijection. Now we prove that \widetilde{f} preserves adjacency and nonadjacency. In fact, if tuv is a P_{3}-path in G, then there is a P_{4}-path in $S(t u)$ adjacent to some P_{4}-path in $S(u v)$. Since f is a P_{4}-isomorphism and $f(S(t u))=S(\widetilde{f}(t u))$ as well as $f(S(u v))=S(\tilde{f}(u v))$, there exists a P_{4}-path in $S(\widetilde{f}(t u))$ adjacent to some P_{4} path in $S(\widetilde{f}(u v))$. This implies that $\widetilde{f}(t u)$ is adjacent to $\widetilde{f}(u v)$ in G^{\prime}. Since f^{-1} enjoys the same properties as f, \widetilde{f} also preserves nonadjacency. Finally, we prove that f is induced by \tilde{f}. Let tuvw be a P_{4}-path and let xtuv $\in S(t u)$. Since f is double star-preserving, we have that $f(x t u v) \in f(S(t u))=S(\widetilde{f}(t u))$ and $f(x t u v)$ is adjacent to $f(t u v w) \in S(\widetilde{f}(u v))$. Thus, $\widetilde{f}(t u) \widetilde{f}(u v)$ is the common P_{3}-path of $f(x t u v)$ and $f(t u v w)$. By symmetry, $\widetilde{f}(u v) \widetilde{f}(v w)$ is the other P_{3}-path of $f(t u v w)$ and hence $f(t u v w)=\widetilde{f}(t u) \widetilde{f}(u v) \tilde{f}(v w)$. The proof is complete.
Lemma 3. Let $G, G^{\prime} \in \mathcal{G}_{3}$ and let f be a P_{4}-isomorphism from G to G^{\prime}. Assume G and G^{\prime} satisfy one of the following conditions:
(1) if u is a vertex of some triangle in G, then $d(u) \geq 4$,
(2) G and G^{\prime} do not contain any C_{4} as asubgraph.

Then f is double star-preserving if and only if for every P_{3}-path tuv of G, $f\left(x_{1} t u v\right), \cdots, f\left(x_{r} t u v\right)$ have a common middle edge and $f\left(t u v y_{1}\right), \cdots, f\left(t u v y_{s}\right)$ have a common middle edge, where $x_{i} \in N(t) \backslash\{u, v\}$ for $1 \leq i \leq r, y_{j} \in N(v) \backslash\{u, v\}$ for $1 \leq j \leq s$.
Proof. The condition is obviously necessary. Let $u v$ be any edge of G and let tuvw, $t^{\prime} u v w^{\prime}$ be two P_{4}-paths in $S(u v)$. We will distinguish the following four possible cases. See Figure 1.

Case 1

Case 3

Case 2

Case 4

Figure 1

Case 1. The four vertices t, t^{\prime}, w and w^{\prime} are pairwise different.
From the condition we know that $f(t u v w)$ and $f\left(t u v w^{\prime}\right)$ have a common middle edge, and $f\left(t u v w^{\prime}\right)$ and $f\left(t^{\prime} u v w^{\prime}\right)$ have a common middle edge. Thus, $f(t u v w)$ and $f\left(t^{\prime} u v w^{\prime}\right)$ have a common middle edge.

Case 2. $t=t^{\prime}$ or $w=w^{\prime}$.
By the condition, we know that $f(t u v w)$ and $f\left(t^{\prime} u v w^{\prime}\right)$ have a common middle edge.

Case 3. $t=w^{\prime}$ but $t^{\prime} \neq w$, or $t^{\prime}=w$ but $t \neq w^{\prime}$.
By a proof similar to that of Case 1 , we can show that $f(t u v w)$ and $f\left(t^{\prime} u v w^{\prime}\right)$ have a common middle edge.

Case 4. $t=w^{\prime}$ and $t^{\prime}=w$.
If G and G^{\prime} satisfy condition (1), then there exsits a vertex $x \in N(u) \backslash\left\{t, v, t^{\prime}\right\}$. By the condition, we know that $f(t u v w)$ and $f(x u v w)$ have a common middle edge, $f(x u v w)$ and $f\left(x u v w^{\prime}\right)$ have a common middle edge, and $f\left(x u v w^{\prime}\right)$ and $f\left(t^{\prime} u v w^{\prime}\right)$ have a common middle edge. Thus, $f(t u v w)$ and $f\left(t^{\prime} u v w^{\prime}\right)$ have a common middle edge. If G and G^{\prime} satisfy condition (2), then this case cannot occur.

To sum up the above cases, we know that $f(S(u v))$ is a double star of G^{\prime}, i.e., f is double star-preserving. The proof is complete.

Note that condition (1) can be weakened as follows: if $u v$ is an edge of a triangle of G, then one of $d(u)$ and $d(v)$ is at least 4.

3. Main Results.

From [8], we have the following two results.
Lemma 4. Let $f \in \Gamma_{4}\left(G, G^{\prime}\right)$ and let $x_{1} t u v, x_{2} t u v$, tuvy y_{1} and tuvy y_{2} be four $P_{4^{-}}$ paths of G. Then $f\left(x_{1}\right.$ tuv $)$ and $f\left(x_{2} t u v\right)$ have a common middle edge if and only if $f\left(t u v y_{1}\right)$ and $f\left(t u v y_{2}\right)$ have a common middle edge.
Lemma 5. Let $f \in \Gamma_{4}\left(G, G^{\prime}\right)$ and let $x_{1} t u v, x_{2} t u v, t u v y_{1}$ and tuvy be four P_{4} paths of G. If $f\left(x_{1}\right.$ tuv $)$ and $f\left(x_{2}\right.$ tuv) have no common middle edge then $f\left(x_{1} t u v\right)$, $f\left(x_{2} t u v\right), f\left(t u v y_{1}\right)$ and $f\left(t u v y_{2}\right)$ form a C_{4} in G^{\prime}.
Theorem 6. Let $G, G^{\prime} \in \mathcal{G}_{3}$. Assume G and G^{\prime} satisfy one of the following two conditions:
(1) if u is a vertex of some triangle in G, then $d(u) \geq 4$,
(2) G and G^{\prime} do not contain any C_{4} as a subgraph.

Then $f \in \Gamma_{4}\left(G, G^{\prime}\right)$ if and only if f is induced by an edge-isomorphism from G to G^{\prime}, i.e., $P_{4}(G)$ is isomorphic to $P_{4}\left(G^{\prime}\right)$ if and only if the line graph $L(G)$ is isomorphic to $L\left(G^{\prime}\right)$.
Proof. From Theorem 4, we only need prove that both f and f^{\prime} are double starpreserving. Since G has the same property as G^{\prime}, we only need to show that f is double star-preserving.

The "if" part is obvious. In the following we will prove the "only if" part. We only need to show that f satisfies the condition of Lemma 3 . Let tuv be a P_{3}-path in
$G, x_{1} t u v, \cdots, x_{m}$ tuv and tuvy $y_{1}, \cdots, t u v y_{n}$ be P_{4}-paths of G, where $x_{i} \in N(t) \backslash\{u, v\}$ for $1 \leq i \leq m, y_{j} \in N(v) \backslash\{u, t\}$ for $1 \leq j \leq n$.

If G and G^{\prime} satisfy condition (1), then $m \geq 2$ and $n \geq 2$. Without loss of generality, we consider $f\left(x_{1} t u v\right), f\left(x_{2} t u v\right), f\left(t u v y_{1}\right)$ and $f\left(t u v y_{2}\right)$. Suppose that $f\left(x_{1} t u v\right)$ and $f\left(x_{2} t u v\right)$ do not have a common middle edge. By Lemma $5, f\left(x_{1} t u v\right)$, $f\left(x_{2} t u v\right), f\left(t u v y_{1}\right)$ and $f\left(t u v y_{2}\right)$ form a C_{4} in G^{\prime} (denoted by $\left.C^{\prime}=a b c d a\right)$, say $f\left(x_{1} t u v\right)=a b c d, f\left(x_{2} t u v\right)=c d a b, f\left(t u v y_{1}\right)=b c d a$ and $f\left(t u v y_{2}\right)=d a b c$. Since G and G^{\prime} satisfy condition (1), there are two vertices $p, q \in N\left(x_{1}\right)$ and a vertex $z \in$ $N(u) \backslash\{v\}$ such that $p x_{1} t u, q x_{1} t u$ and $x_{1} t u z$ are P_{4}-paths in G. If $f\left(x_{1} t u v\right)$ and $f\left(x_{1} t u z\right)$ have a common middle edge, and both $f\left(x_{1} t u v\right)$ and $f\left(x_{1} t u z\right)$ are adjacent to $f\left(p x_{1} t u\right)$, we have that $f\left(x_{1} t u v\right)$ and $f\left(x_{1} t u z\right)$ have a common P_{3}-path, say $a b c$, and $f\left(x_{1} t u z\right)=a b c d^{\prime}$. So $f\left(x_{1} t u z\right)$ is adjacent to $f\left(t u v y_{2}\right)$, but $x_{1} t u z$ is not adjacent to $t u v y_{2}$ in G, a contradiction to the fact that $f \in \Gamma_{4}\left(G, G^{\prime}\right)$. If $f\left(x_{1} t u v\right)$ and $f\left(x_{1} t u z\right)$ have no common middle edge, by Lemma $5, f\left(x_{1} t u v\right), f\left(x_{1} t u z\right)$, $f\left(p x_{1} t u\right)$ and $f\left(q x_{1} t u\right)$ form a C_{4} in G^{\prime} (denoted by $\left.C^{\prime \prime}\right)$. Obviously, $C^{\prime}=C^{\prime \prime}$, so we have $f\left(x_{1} t u z\right)=f\left(x_{2} t u v\right)$, a contradiction. Then $f\left(x_{1} t u v\right)$ and $f\left(x_{2} t u v\right)$ have a common middle edge. From Lemma 4 , we have that $f\left(t u v y_{1}\right)$ and $f\left(t u v y_{2}\right)$ have a common middle edge.

If G and G^{\prime} satisfy condition (2), we distinguish the following three cases.
Case 1. $m \geq 2$ and $n \geq 2$.
Without loss of generality, we consider $f\left(x_{1} t u v\right), f\left(x_{2} t u v\right), f\left(t u v y_{1}\right)$ and $f\left(t u v y_{2}\right)$. Suppose that $f\left(x_{1} t u v\right)$ and $f\left(x_{2} t u v\right)$ do not have a common middle edge. By Lemma $5, f\left(x_{1} t u v\right), f\left(x_{2} t u v\right), f\left(t u v y_{1}\right)$ and $f\left(t u v y_{2}\right)$ form a C_{4} in G^{\prime}, a contradiction. Then $f\left(x_{1} t u v\right)$ and $f\left(x_{2} t u v\right)$ have a common middle edge, and $f\left(t u v y_{1}\right)$ and $f\left(t u v y_{2}\right)$ have a common middle edge.

Case 2. $m=1$ and $n \geq 2$ (or $n=1$ and $m \geq 2$).
If $m=1$, the edge $t v$ must belong to $E(G)$. Since G does not contain any C_{4} as a subgraph, there are two vertices $p, q \in N\left(x_{1}\right)$ and a vertex $z \in N(u) \backslash\{t, v\}$ such that $p x_{1} t u, q x_{1} t u$ and $x_{1} t u z$ are P_{4}-paths in G. A proof similar to that of Case 1 shows that $f\left(x_{1} t u v\right)$ and $f\left(x_{1} t u z\right)$ have a common middle edge, and that $f\left(p x_{1} t u\right)$ and $f\left(q x_{1} t u\right)$ have a common middle edge. Let $f\left(x_{1} t u v\right)=a b c d$, then $f\left(p x_{1} t u\right)=h a b c, f\left(q x_{1} t u\right)=k a b c$ and $f\left(x_{1} t u z\right)=a b c e$. Since both $f\left(t u v y_{1}\right)$ and $f\left(t u v y_{2}\right)$ are adjacent to $f\left(x_{1} t u v\right)$ but not to $f\left(x_{1} t u z\right)$, then $f\left(t u v y_{1}\right)=b c d w$ and $f\left(t u v y_{2}\right)=b c d w^{\prime}$, i.e., $f\left(t u v y_{1}\right)$ and $f\left(t u v y_{2}\right)$ have a common middle edge.

Case 3. $m=1$ and $n=1$.
This case is trival.
To sum up the above cases, we have proved that f is double star-preserving, which completes the proof.

From Theorem 3.2 of [6] and our Theorems 1 and 6, the following results are immediate.

Theorem 7. Let $G, G^{\prime} \in \mathcal{G}_{3}$. Assume G and G^{\prime} satisfy one of the following two conditions:
(1) if u is a vertex of some triangle in G, then $d(u) \geq 4$,
(2) G and G^{\prime} do not contain any C_{4} as a subgraph.

Then $f \in \Gamma_{4}\left(G, G^{\prime}\right)$ if and only if f is induced by an isomorphism of G to G^{\prime}, i.e., $P_{4}(G)$ is isomorphic to $P_{4}\left(G^{\prime}\right)$ if and only if G is isomorphic to G^{\prime}.
Corollary 8. Let $G, G^{\prime} \in \mathcal{G}_{3}$. Assume G and G^{\prime} satisfy one of the following two conditions:
(1) if u is a vertex of some triangle in G, then $d(u) \geq 4$,
(2) G and G^{\prime} do not contain any C_{4} as a subgraph.

Then the P_{4}-transformation is one to one.
Now we show that there is a P_{4}-isomorphism from $P_{4}\left(K_{4}\right)$ to itself that cannot be induced by any vertex-isomorphism of K_{4} onto itself. The graph K_{4} and its P_{4}-graph $3 C_{4}$ are shown in Figure 2.

Figure 2
We define a mapping $f: \Pi_{4}\left(K_{4}\right) \rightarrow \Pi_{4}\left(K_{4}\right)$ by $f(a b c d)=c d a b, f(c d a b)=a b c d$ and for the other P_{4}-paths of $\Pi_{4}\left(K_{4}\right)$, the image of each under f is itself. Obviously, $f \in \Gamma_{4}\left(K_{4}, K_{4}\right)$. There are only two automorphisms of K_{4}, say f_{1} and f_{2}, such that $f_{i}^{*}(a b c d)=c d a b, f_{i}^{*}(c d a b)=a b c d, i=1,2$, i.e., $f_{1}(a)=c, f_{1}(b)=d, f_{1}(c)=a$, $f_{1}(d)=b$, and $f_{2}(a)=b, f_{2}(b)=a, f_{2}(c)=d, f_{2}(d)=c$. It is easy to find a P_{4}-path in $\Pi_{4}\left(K_{4}\right)$ such that its image under the induced P_{4}-isomorphism f_{i}^{*} $(i=1,2)$ is not itself. Then the P_{4}-isomorphism f from $P_{4}\left(K_{4}\right)$ to itself cannot be induced by any vertex-isomorphism of K_{4} onto itself.

4. Fixed Point of a P_{4}-transformation.

From the definition of P_{4}-graphs, we have
Lemma 9. P_{4}-graphs do not contain triangles.
Theorem 10. A connected graph G is isomorphic to its path graph $P_{4}(G)$ if and only if G is a cycle of length at least four.
Proof. It is easy to see that the " $i f$ " part holds.
Let G have n vertices. Then $P_{4}(G)$ must have n vertices too. So G must have exactly n subgraphs P_{4}.

Since G is connected, it has a spanning tree T. Let a longest path in T be $x_{1} x_{2} \cdots x_{r-1} x_{r}(r \geq 4)$. If $d\left(x_{r-1}\right)=m \geq 3$, let $N\left(x_{r-1}\right) \backslash\left\{x_{r-2}, x_{r}\right\}=$
$\left\{x_{r+1}, x_{r+2}, \cdots x_{r+m-2}\right\}$. If T is transformed into a tree T^{*} by removing the end-edges $x_{r-1} x_{i}$ from x_{r-1}, and adding it to the end-vertex $x_{i-1}, i=r+$ $1, \cdots, r+m-2$, then the number of P_{4} 's in T^{*} is lower than that in T by $\left(d\left(x_{r-1}\right)-2\right)\left(d\left(x_{r-2}\right)-2\right)$, which is non-negative. If $d\left(x_{r-1}\right)=2$, let T_{s} be a subtree pendant of $x_{j}, 3 \leq j \leq r-2$, and let x be a neighbor of x_{j} in T_{s}. If T is transformed into a tree T^{*} by removing the subtree pendant T_{s} from x_{j} and adding it to the end-vertex x_{r} of the resulting tree, then the number of P_{4} 's in T^{*} is lower than that in T by $(d(x)-1)\left(d\left(x_{j}\right)-2\right)+d\left(x_{j-1}\right)+d\left(x_{j+1}\right)-3$, which is positive.

By repetition of the above two transformations, every tree T can be transformed into P_{n}, which has $n-3$ subgraphs P_{4}. If T is to have no more than n subgraphs P_{4}, it cannot therefore have a vertex x_{i} of degree 6 or more in a longest path $x_{1} x_{2} \cdots x_{r-1} x_{r}(r \geq 4)$, for $3 \leq i \leq r-2$, as the above transformations can make T into a P_{n} with a change of at least 4 in the number of $P_{4}^{\prime} s$ and T, and thus G would have at least $(n-1)+4=n+1$ subgraphs P_{4}. Similarly, T cannot have two or more vertices x_{i} of degree 4 or 5 , or four or more vertices of degree 3 in its longest path $x_{1} x_{2} \cdots x_{r-1} x_{r}(r \geq 4)$, for $3 \leq i \leq r-2$. And let u be a neighbor of $x_{i}, 3 \leq i \leq r-2$, then $d(u) \leq 3$. If $d(u)=3$, then there is only one vertex of degree 3 in $\left\{x_{i} \mid 3 \leq i \leq r-2\right\}$. The remaining possible structures of the spanning tree of G are

In case (a), the number of subgraphs P_{4} is equal to the number of vertices. $P_{4}(G)$ contains isolated vertices if two adjacent vertices of an edge are incident with two end edges, respectively. By the constitution of P_{4}-graphs, it can be checked that G cannot be any of these trees.

In cases (b) and (c), an edge has to be added to obtain a graph with at least n paths of length 3 . However, by Lemma 9 , then at least three subgraphs P_{4} are added to the $n-1$ or $n-2$ present in the spanning tree T and $P_{4}(G)$ would have at least $n+1$ vertices.

In case (d), addition of an edge leads to a unicyclic graph G, since otherwise it belongs to case (b) or (c). When $\alpha \geq 2$ or $\beta \geq 2$, then at least four subgraphs P_{4} are added to the $n-3$ present in the spanning tree T and $P_{4}(G)$ would have at least $n+1$ vertices. When $\alpha=1$ and $\beta=1$, if the number of vertices of degree 3 is two, G contains $n+3$ subgraphs P_{4}, and if this number is one, then G contains $n+1$ subgraphs P_{4}. The only possibility left is that the added edge is adjacent to two endvertices of T, and G is a cycle of length at least 4 . The proof is complete.

References

[1]. H. J. Broersma and C. Hoede, Path graphs, J. Graph Theory $13(2)$ (1989), 427-444.
[2]. B. Grünbaum, Incidence patterns of graphs and complexes, Lecture Notes in Mathematics (ed. G. Chartrand and S. F. Kapoor) 110 (1969), 115-128, Springer-Verlag, Berlin. MR:4152.
[3]. H. Whitney, Congruent graphs and connectivity of graphs, Amer. J. Math. 54 (1932), 150-168.
[4]. X. Li, Isomorphisms of P_{3}-graphs, J. Graph Theory 21 (1) (1996), 81-85.
[5]. H. A. Jung, $Z u$ einem isomorphiesatz von H. Whitney für graphen, Math. Ann. 164 (1966), 270-271.
[6]. R. L. Hemminger and L. W. Beineke, Line graphs and line digraphs, in: Selected Topics in Graph Theory (Eds. L. W. Beineke and R. J. Wilson) (1978), 271-305, Academic press, London.
[7]. X. Li, On the determination problem for P_{3}-transformation of graphs, accepted for publication in Ars Combinatoria.
[8]. X. Li and B. Zhao, Isomorphisms of P_{k}-graphs for $k \geq 4$, submitted.

[^0]: * Partially supported by NSFC, the Third World Academy of Sciences and the Institute of Mathematics, National Autonomous University of Mexico .

