Isomorphisms of P_4 -graphs^{*}

Xueliang LI

Department of Applied Mathematics, Northwestern Polytechnical University. Xi'an, Shaanxi 710072, P. R. China

Biao ZHAO

Department of Mathematics, Xinjiang University. Urumchi, Xinjiang 830046, P. R. China

Abstract

For graphs G and G' with minimum degree $\delta = 3$ and satisfying one of two other conditions, we prove that any isomorphism from the P_4 -graph $P_4(G)$ to $P_4(G')$ can be induced by a vertex-isomorphism of G onto G'. We also prove that a connected graph G is isomorphic to its P_4 -graph $P_4(G)$ if and only if G is a cycle of length at least 4.

1. Introduction.

Broersma and Hoede [1] generalized the concept of line graphs and introduced the concept of path graphs. We follow their terminology and give the following definition. Denote by $\Pi_k(G)$ the set of all paths of G on k vertices $(k \ge 1)$. The path graph $P_k(G)$ of a graph G has vertex set $\Pi_k(G)$ and edge set $\mathcal{E}_k(G)$ with the property that for any $H, K \in \Pi_k(G)$ with $H = x_1 x_2 \cdots x_k$ and $K = y_1 y_2 \cdots y_k$ there is an edge $HK \in \mathcal{E}_k(G)$ if and only if $x_i = y_{i+1}$ or $y_i = x_{i+1}$ for $1 \le i \le k - 1$. The way of describing a line graph stresses the adjacency concept, whereas the way of describing a path graph stresses the concept of path generation by consecutive paths.

For a graph transformation, there are two general problems [2]. We state them here for the P_4 -transformation.

Characterization Problem: Characterize those graphs that are the P_4 -graph of some graph.

^{*} Partially supported by NSFC, the Third World Academy of Sciences and the Institute of Mathematics, National Autonomous University of Mexico .

Determination Problem: Determine which graphs have a given graph as their P_4 -graph.

For P_2 -graphs, i.e., line graphs, there is a well-known result concerning the Determination Problem: If G and G' are connected and have isomorphic line graphs, then G and G' are isomorphic unless one is $K_{1,3}$ and the other is K_3 . This result is due to Whitney [3]. For the Determination Problem of P_3 -graphs, Broersma and Hoede found two pairs and two classes of nonisomorphic connected graphs with isomorphic connected P_3 -graphs, see [1]. These examples suggest that to obtain a similar counterpart with respect to P_3 -graphs for Whitney's result on line graphs seems to be very difficult. In [4] we proved that the P_3 -transformation is one-to-one on all graphs with $\delta \geq 4$. Later in [7] we obtained the same result for all graphs with $\delta \geq 3$. Recently, we proved [8] that for $k \geq 4$ the P_k -transformation is one-toone on all graphs with minimum degree $\delta \geq k$. Moreover, we proved that for such graphs any P_k -isomorphism can be induced by a vertex-isomorphism.

In this paper, we shall focus our attention on P_4 -isomorphisms. We shall ask the question whether for $\delta = 3$ every P_4 -isomorphism can be induced by a vertexisomorphism. We find that it turns out to be untrue. At the end of Section 3, we shall show that there is a P_4 -isomorphism from $P_4(K_4)$ to itself that cannot be induced by any vertex-isomorphism of K_4 onto itself, where K_4 is the complete graph with 4 vertices. Unfortunately, the P_4 -graph of K_4 is $3C_4$, where $3C_4$ is the graph obtained by taking three disjoint copies of C_4 together, which is not connected. However, at the moment we do not know if there are any connected graphs with minimum degree $\delta = 3$ for which the P_4 -graphs are connected and we can find a P_4 -isomorphism that cannot be induced by any vertex-isomorphism. It would be very interesting to find such graphs. In Section 3, we shall prove that for many graphs with minimum degree $\delta = 3$, every P_4 -isomorphism can be induced by a vertex-isomorphism.

Finally, in Section 4, we shall consider the question of which graphs G have $P_4(G) \cong G$. We prove that G must be a cycle of length at least 4, a result similar to that for P_3 -transformations (see Theorem 3.1 of [1]). But, our proof is a little bit more complicated. It seems not to be easy to extend the same proof-technique to show that $P_k(G) \cong G$ implies that G is a cycle of length at least k for general $k \geq 5$.

2. Preliminaries.

In what follows, all graphs are connected and simple with at least 5 vertices. As usual, d(u) denotes the degree of a vertex u and N(u) denotes the neighborhood of u. For a nonnegative integer d, we denote by \mathcal{G}_d the class of all connected graphs with minimum degree at least d. An edge is called an *endedge* if it is incident with an endvertex.

We will follow the treatment of [4] for P_3 -graphs, which in turn reflects Jung's ideas in [5] and Beineke-Hemminger's treatment in [6]. We introduce the following notation and obtain the corresponding results.

A vertex-isomorphism from G to G' is a bijection $f: V(G) \to V(G')$ such that two vertices are adjacent in G if and only if their images are adjacent in G'. We let $\Gamma(G, G')$ denote the set of all vertex-isomorphisms of G to G'.

An edge-isomorphism from G to G' is a bijection $f: E(G) \to E(G')$ such that two edges are adjacent in G if and only if their images are adjacent in G'. Obviously, an edge-isomorphism of two graphs is exactly a vertex-isomorphism of their line graphs. We let $\Gamma_e(G, G')$ denote the set of all edge-isomorphisms of G to G'.

We shorten $\Gamma(P_4(G), P_4(G'))$ to $\Gamma_4(G, G')$ and call the members P_4 - isomorphisms from G to G'.

For $f \in \Gamma_e(G, G')$, define a mapping f^* by $f^*(tuvw) = f(tu)f(uv)f(vw)$ for a P_4 -path tuvw in G, and call f^* the mapping induced by f. We let $\Gamma^*(G, G') = \{f^*|G \in \Gamma_e(G, G')\}$.

Note that f^* is not defined for a connected graph in general unless it has at least one P_4 -path. Also note that the two edge-isomorphisms of the graph P_4 induce the same *-function.

Theorem 1. If $G, G' \in \mathcal{G}_3$, then

(1) $\Gamma^*(G, G') \subseteq \Gamma_4(G, G').$

(2) the mapping $T: \Gamma_e(G, G') \to \Gamma^*(G, G')$ given by $T(f) = f^*$ is one to one.

Proof. (1) Let tuvw be a P_4 -path in G and $f \in \Gamma_e(G, G')$. Then f(tu), f(uv), $f(vw) \in E(G')$. Since f preserves adjacency and non-adjacency, we have that f(tu)f(uv)f(vw) is a P_4 -path in G', i.e., f^* is a mapping from $\Pi_4(G)$ to $\Pi_4(G')$. Obviously, f^* is a bijection. Since f is an edge-isomorphism, we know that $f^* \in \Gamma_4(G, G')$, i.e., $\Gamma^*(G, G') \subseteq \Gamma_4(G, G')$.

To prove (2), let $f_1, f_2 \in \Gamma_e(G, G')$ and $f_1 \neq f_2$. Then there exists an edge uv such that $f_1(uv) \neq f_2(uv)$. Since $G \in \mathcal{G}_3$, we can find a P_4 -path tuvw such that $f_1^*(tuvw) \neq f_2^*(tuvw)$. Thus, the mapping T is one to one.

If $P_4 = tuvw$, then the edge uv is called the *middle edge* of the P_4 and tuvw = wvut. We let S(uv) denote the set of all P_4 -paths with a common middle edge uv. Any subset of S(uv) is called a *double star* at the edge uv. A mapping $f: \Pi_4(G) \to \Pi_4(G')$ is called *double star-preserving* if the set f(S(uv)) is a double star in G' for every edge uv of G. Let f be a double star-preserving P_4 -isomorphism from G to G'. Then, if two P_4 -paths form a P_5 -path, their images under f do the same.

Theorem 2. Let $G, G' \in \mathcal{G}_3$ and let $f : \Pi_4(G) \to \Pi_4(G')$ be a bijective mapping. Then f is induced by an edge-isomorphism from G to G' if and only if f and f^{-1} are double star-preserving P_4 -isomorphisms.

Proof. The condition is clearly necessary. For the sufficiency, suppose that f and f^{-1} are double star-preserving P_4 -isomorphisms. Thus, for each edge uv in G, there exists an edge u'v' in G' such that $f(S(uv)) \subseteq S(u'v')$. Moreover, u'v' is uniquely determined by uv. Otherwise, let $f(S(uv)) \subseteq S(u'v')$ and $f(S(uv)) \subseteq S(u'v')$ and $f(S(uv)) \subseteq S(u'v')$. If $u'v' \neq u''v''$, then $f(Suv) \subseteq S(u'v') \cap S(u''v'') = \emptyset$. Since $G \in \mathcal{G}_3$, then $f(S(uv)) \neq \emptyset$. This is a contradiction. Since $f(S(uv)) \subseteq S(u'v')$ and $G' \in \mathcal{G}_3$, we must have $f^{-1}(S(u'v')) \subseteq S(uv)$. Therefore, f(S(uv)) = S(u'v') and

 $f^{-1}(S(u'v')) = S(uv)$. We conclude that the function f determines a well-defined function $\tilde{f}: E(G) \to E(G')$ for which $f(S(uv)) = S(\tilde{f}(uv))$. It is not difficult to see that \tilde{f} is a bijection. Now we prove that \tilde{f} preserves adjacency and nonadjacency. In fact, if tuv is a P_3 -path in G, then there is a P_4 -path in S(tu) adjacent to some P_4 -path in S(uv). Since f is a P_4 -isomorphism and $f(S(tu)) = S(\tilde{f}(tu))$ as well as $f(S(uv)) = S(\tilde{f}(uv))$, there exists a P_4 -path in $S(\tilde{f}(tu))$ adjacent to some P_4 path in $S(\tilde{f}(uv))$. This implies that $\tilde{f}(tu)$ is adjacent to $\tilde{f}(uv)$ in G'. Since f^{-1} enjoys the same properties as f, \tilde{f} also preserves nonadjacency. Finally, we prove that f is induced by \tilde{f} . Let tuvw be a P_4 -path and let $xtuv \in S(tu)$. Since f is double star-preserving, we have that $f(xtuv) \in f(S(tu)) = S(\tilde{f}(tu))$ and f(xtuv)is adjacent to $f(tuvw) \in S(\tilde{f}(uv))$. Thus, $\tilde{f}(tu)\tilde{f}(uv)$ is the common P_3 -path of f(xtuv) and f(tuvw). By symmetry, $\tilde{f}(uv)\tilde{f}(vw)$ is the other P_3 -path of f(tuvw)and hence $f(tuvw) = \tilde{f}(tu)\tilde{f}(uv)\tilde{f}(vw)$. The proof is complete.

Lemma 3. Let $G, G' \in \mathcal{G}_3$ and let f be a P_4 -isomorphism from G to G'. Assume G and G' satisfy one of the following conditions:

(1) if u is a vertex of some triangle in G, then $d(u) \ge 4$,

(2) G and G' do not contain any C_4 as asubgraph.

Then f is double star-preserving if and only if for every P_3 -path tuv of G, $f(x_1tuv), \dots, f(x_rtuv)$ have a common middle edge and $f(tuvy_1), \dots, f(tuvy_s)$ have a common middle edge, where $x_i \in N(t) \setminus \{u, v\}$ for $1 \leq i \leq r, y_j \in N(v) \setminus \{u, v\}$ for $1 \leq j \leq s$.

Proof. The condition is obviously necessary. Let uv be any edge of G and let tuvw, t'uvw' be two P_4 -paths in S(uv). We will distinguish the following four possible cases. See Figure 1.

Case 1. The four vertices t, t', w and w' are pairwise different.

From the condition we know that f(tuvw) and f(tuvw') have a common middle edge, and f(tuvw') and f(t'uvw') have a common middle edge. Thus, f(tuvw) and f(t'uvw') have a common middle edge.

Case 2. t = t' or w = w'.

By the condition, we know that f(tuvw) and f(t'uvw') have a common middle edge.

Case 3. t = w' but $t' \neq w$, or t' = w but $t \neq w'$.

By a proof similar to that of Case 1, we can show that f(tuvw) and f(t'uvw') have a common middle edge.

Case 4. t = w' and t' = w.

If G and G' satisfy condition (1), then there exists a vertex $x \in N(u) \setminus \{t, v, t'\}$. By the condition, we know that f(tuvw) and f(xuvw) have a common middle edge, f(xuvw) and f(xuvw') have a common middle edge, and f(xuvw') and f(t'uvw')have a common middle edge. Thus, f(tuvw) and f(t'uvw') have a common middle edge. If G and G' satisfy condition (2), then this case cannot occur.

To sum up the above cases, we know that f(S(uv)) is a double star of G', i.e., f is double star-preserving. The proof is complete.

Note that condition (1) can be weakened as follows: if uv is an edge of a triangle of G, then one of d(u) and d(v) is at least 4.

3. Main Results.

From [8], we have the following two results.

Lemma 4. Let $f \in \Gamma_4(G, G')$ and let $x_1 tuv$, $x_2 tuv$, $tuvy_1$ and $tuvy_2$ be four P_4 -paths of G. Then $f(x_1 tuv)$ and $f(x_2 tuv)$ have a common middle edge if and only if $f(tuvy_1)$ and $f(tuvy_2)$ have a common middle edge.

Lemma 5. Let $f \in \Gamma_4(G, G')$ and let $x_1 tuv$, $x_2 tuv$, $tuvy_1$ and $tuvy_2$ be four P_4 paths of G. If $f(x_1 tuv)$ and $f(x_2 tuv)$ have no common middle edge then $f(x_1 tuv)$, $f(x_2 tuv)$, $f(tuvy_1)$ and $f(tuvy_2)$ form a C_4 in G'.

Theorem 6. Let $G, G' \in \mathcal{G}_3$. Assume G and G' satisfy one of the following two conditions:

(1) if u is a vertex of some triangle in G, then $d(u) \ge 4$,

(2) G and G' do not contain any C_4 as a subgraph.

Then $f \in \Gamma_4(G, G')$ if and only if f is induced by an edge-isomorphism from G to G', i.e., $P_4(G)$ is isomorphic to $P_4(G')$ if and only if the line graph L(G) is isomorphic to L(G').

Proof. From Theorem 4, we only need prove that both f and f' are double starpreserving. Since G has the same property as G', we only need to show that f is double star-preserving.

The "if" part is obvious. In the following we will prove the "only if" part. We only need to show that f satisfies the condition of Lemma 3. Let tuv be a P_3 -path in

 $G, x_1 tuv, \dots, x_m tuv$ and $tuvy_1, \dots, tuvy_n$ be P_4 -paths of G, where $x_i \in N(t) \setminus \{u, v\}$ for $1 \le i \le m, y_j \in N(v) \setminus \{u, t\}$ for $1 \le j \le n$.

If G and G' satisfy condition (1), then $m \ge 2$ and $n \ge 2$. Without loss of generality, we consider $f(x_1tuv)$, $f(x_2tuv)$, $f(tuvy_1)$ and $f(tuvy_2)$. Suppose that $f(x_1 tuv)$ and $f(x_2 tuv)$ do not have a common middle edge. By Lemma 5, $f(x_1 tuv)$, $f(x_2tuv)$, $f(tuvy_1)$ and $f(tuvy_2)$ form a C_4 in G' (denoted by C'=abcda), say $f(x_1tuv) = abcd$, $f(x_2tuv) = cdab$, $f(tuvy_1) = bcda$ and $f(tuvy_2) = dabc$. Since G and G' satisfy condition (1), there are two vertices $p, q \in N(x_1)$ and a vertex $z \in$ $N(u) \setminus \{v\}$ such that px_1tu , qx_1tu and x_1tuz are P_4 -paths in G. If $f(x_1tuv)$ and $f(x_1tuz)$ have a common middle edge, and both $f(x_1tuz)$ and $f(x_1tuz)$ are adjacent to $f(px_1tu)$, we have that $f(x_1tuv)$ and $f(x_1tuz)$ have a common P_3 -path, say abc, and $f(x_1tuz) = abcd'$. So $f(x_1tuz)$ is adjacent to $f(tuvy_2)$, but x_1tuz is not adjacent to $tuvy_2$ in G, a contradiction to the fact that $f \in \Gamma_4(G, G')$. If $f(x_1tuv)$ and $f(x_1tuz)$ have no common middle edge, by Lemma 5, $f(x_1tuz)$, $f(x_1tuz)$, $f(px_1tu)$ and $f(qx_1tu)$ form a C_4 in G' (denoted by C''). Obviously, C'=C'', so we have $f(x_1tuz)=f(x_2tuv)$, a contradiction. Then $f(x_1tuv)$ and $f(x_2tuv)$ have a common middle edge. From Lemma 4, we have that $f(tuvy_1)$ and $f(tuvy_2)$ have a common middle edge.

If G and G' satisfy condition (2), we distinguish the following three cases.

Case 1. $m \ge 2$ and $n \ge 2$.

Without loss of generality, we consider $f(x_1tuv)$, $f(x_2tuv)$, $f(tuvy_1)$ and $f(tuvy_2)$. Suppose that $f(x_1tuv)$ and $f(x_2tuv)$ do not have a common middle edge. By Lemma 5, $f(x_1tuv)$, $f(x_2tuv)$, $f(tuvy_1)$ and $f(tuvy_2)$ form a C_4 in G', a contradiction. Then $f(x_1tuv)$ and $f(x_2tuv)$ have a common middle edge, and $f(tuvy_1)$ and $f(tuvy_2)$ have a common middle edge.

Case 2. m = 1 and $n \ge 2$ (or n = 1 and $m \ge 2$).

If m = 1, the edge tv must belong to E(G). Since G does not contain any C_4 as a subgraph, there are two vertices $p, q \in N(x_1)$ and a vertex $z \in N(u) \setminus \{t, v\}$ such that px_1tu , qx_1tu and x_1tuz are P_4 -paths in G. A proof similar to that of Case 1 shows that $f(x_1tuv)$ and $f(x_1tuz)$ have a common middle edge, and that $f(px_1tu)$ and $f(qx_1tu)$ have a common middle edge. Let $f(x_1tuv)=abcd$, then $f(px_1tu)=habc$, $f(qx_1tu)=kabc$ and $f(x_1tuz)=abce$. Since both $f(tuvy_1)$ and $f(tuvy_2)$ are adjacent to $f(x_1tuv)$ but not to $f(x_1tuz)$, then $f(tuvy_1)=bcdw$ and $f(tuvy_2)=bcdw'$, i.e., $f(tuvy_1)$ and $f(tuvy_2)$ have a common middle edge.

Case 3. m = 1 and n = 1.

This case is trival.

To sum up the above cases, we have proved that f is double star-preserving, which completes the proof.

From Theorem 3.2 of [6] and our Theorems 1 and 6, the following results are immediate.

Theorem 7. Let $G, G' \in \mathcal{G}_3$. Assume G and G' satisfy one of the following two conditions:

(1) if u is a vertex of some triangle in G, then $d(u) \ge 4$,

(2) G and G' do not contain any C_4 as a subgraph.

Then $f \in \Gamma_4(G, G')$ if and only if f is induced by an isomorphism of G to G', i.e., $P_4(G)$ is isomorphic to $P_4(G')$ if and only if G is isomorphic to G'.

Corollary 8. Let $G, G' \in \mathcal{G}_3$. Assume G and G' satisfy one of the following two conditions:

(1) if u is a vertex of some triangle in G, then $d(u) \ge 4$,

(2) G and G' do not contain any C_4 as a subgraph.

Then the P_4 -transformation is one to one.

Now we show that there is a P_4 -isomorphism from $P_4(K_4)$ to itself that cannot be induced by any vertex-isomorphism of K_4 onto itself. The graph K_4 and its P_4 -graph $3C_4$ are shown in Figure 2.

Figure 2

We define a mapping $f: \Pi_4(K_4) \to \Pi_4(K_4)$ by f(abcd) = cdab, f(cdab) = abcdand for the other P_4 -paths of $\Pi_4(K_4)$, the image of each under f is itself. Obviously, $f \in \Gamma_4(K_4, K_4)$. There are only two automorphisms of K_4 , say f_1 and f_2 , such that $f_i^*(abcd) = cdab$, $f_i^*(cdab) = abcd$, i = 1, 2, i.e., $f_1(a) = c$, $f_1(b) = d$, $f_1(c) = a$, $f_1(d) = b$, and $f_2(a) = b$, $f_2(b) = a$, $f_2(c) = d$, $f_2(d) = c$. It is easy to find a P_4 -path in $\Pi_4(K_4)$ such that its image under the induced P_4 -isomorphism f_i^* (i = 1, 2) is not itself. Then the P_4 -isomorphism f from $P_4(K_4)$ to itself cannot be induced by any vertex-isomorphism of K_4 onto itself.

4. Fixed Point of a P_4 -transformation.

From the definition of P_4 -graphs, we have

Lemma 9. P_4 -graphs do not contain triangles.

Theorem 10. A connected graph G is isomorphic to its path graph $P_4(G)$ if and only if G is a cycle of length at least four.

Proof. It is easy to see that the ''if'' part holds.

Let G have n vertices. Then $P_4(G)$ must have n vertices too. So G must have exactly n subgraphs P_4 .

Since G is connected, it has a spanning tree T. Let a longest path in T be $x_1x_2\cdots x_{r-1}x_r$ $(r \ge 4)$. If $d(x_{r-1}) = m \ge 3$, let $N(x_{r-1}) \setminus \{x_{r-2}, x_r\} =$

 $\{x_{r+1}, x_{r+2}, \dots, x_{r+m-2}\}$. If T is transformed into a tree T^* by removing the end-edges $x_{r-1}x_i$ from x_{r-1} , and adding it to the end-vertex x_{i-1} , $i = r + 1, \dots, r + m - 2$, then the number of P_4 's in T^* is lower than that in T by $(d(x_{r-1}) - 2)(d(x_{r-2}) - 2)$, which is non-negative. If $d(x_{r-1}) = 2$, let T_s be a subtree pendant of x_j , $3 \le j \le r-2$, and let x be a neighbor of x_j in T_s . If T is transformed into a tree T^* by removing the subtree pendant T_s from x_j and adding it to the end-vertex x_r of the resulting tree, then the number of P_4 's in T^* is lower than that in T by $(d(x) - 1)(d(x_j) - 2) + d(x_{j-1}) + d(x_{j+1}) - 3$, which is positive.

By repetition of the above two transformations, every tree T can be transformed into P_n , which has n-3 subgraphs P_4 . If T is to have no more than n subgraphs P_4 , it cannot therefore have a vertex x_i of degree 6 or more in a longest path $x_1x_2\cdots x_{r-1}x_r$ $(r \ge 4)$, for $3 \le i \le r-2$, as the above transformations can make T into a P_n with a change of at least 4 in the number of P'_4s and T, and thus Gwould have at least (n-1) + 4 = n + 1 subgraphs P_4 . Similarly, T cannot have two or more vertices x_i of degree 4 or 5, or four or more vertices of degree 3 in its longest path $x_1x_2\cdots x_{r-1}x_r$ $(r \ge 4)$, for $3 \le i \le r-2$. And let u be a neighbor of x_i , $3 \le i \le r-2$, then $d(u) \le 3$. If d(u) = 3, then there is only one vertex of degree 3 in $\{x_i | 3 \le i \le r-2\}$. The remaining possible structures of the spanning tree of G are

In case (a), the number of subgraphs P_4 is equal to the number of vertices. $P_4(G)$ contains isolated vertices if two adjacent vertices of an edge are incident with two end edges, respectively. By the constitution of P_4 -graphs, it can be checked that G cannot be any of these trees.

In cases (b) and (c), an edge has to be added to obtain a graph with at least n paths of length 3. However, by Lemma 9, then at least three subgraphs P_4 are added to the n-1 or n-2 present in the spanning tree T and $P_4(G)$ would have at least n+1 vertices.

In case (d), addition of an edge leads to a unicyclic graph G, since otherwise it belongs to case (b) or (c). When $\alpha \geq 2$ or $\beta \geq 2$, then at least four subgraphs P_4 are added to the n-3 present in the spanning tree T and $P_4(G)$ would have at least n+1 vertices. When $\alpha = 1$ and $\beta = 1$, if the number of vertices of degree 3 is two, G contains n+3 subgraphs P_4 , and if this number is one, then G contains n+1 subgraphs P_4 . The only possibility left is that the added edge is adjacent to two endvertices of T, and G is a cycle of length at least 4. The proof is complete.

References

- H. J. Broersma and C. Hoede, Path graphs, J. Graph Theory 13(2) (1989), 427-444.
- [2]. B. Grünbaum, Incidence patterns of graphs and complexes, Lecture Notes in Mathematics (ed. G. Chartrand and S. F. Kapoor) 110 (1969), 115–128, Springer-Verlag, Berlin. MR:4152.
- [3]. H. Whitney, Congruent graphs and connectivity of graphs, Amer. J. Math. 54 (1932), 150–168.
- [4]. X. Li, Isomorphisms of P₃-graphs, J. Graph Theory 21(1) (1996), 81-85.
- [5]. H. A. Jung, Zu einem isomorphiesatz von H. Whitney für graphen, Math. Ann. 164 (1966), 270-271.
- [6]. R. L. Hemminger and L. W. Beineke, *Line graphs and line digraphs*, in: Selected Topics in Graph Theory (Eds. L. W. Beineke and R. J. Wilson) (1978), 271–305, Academic press, London.
- [7]. X. Li, On the determination problem for P_3 -transformation of graphs, accepted for publication in Ars Combinatoria.
- [8]. X. Li and B. Zhao, Isomorphisms of P_k -graphs for $k \geq 4$, submitted.

(Received 29/4/96)

