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Abstract 

In this paper, we investigate m-DCI and m-CI properties of dihedral 
groups. We show that for any m E {I, 2, 3}, the dihedral group D2k is 
m-DCI if and only if D2k is m-CI if and only if 2 f k. 

§ 1. Preliminaries 

Let G be a finite group and 5 a subset of G with 1 1:. 5. We use r = Cay( G; 5) to 
denote the Cayley digraph of G with respect to 5, defined to be the directed graph 
with vertex set and edge set given by 

v(r) = G, E(r) = {(g,8g) 1 9 E G, 8 E 5}. 

When a digraph contains both undirected edges and directed edges, we refer to 
directed edges as arcs and undirected edges as edges. 

Let D2k be the dihedral group, D2k = (0;,,131 o;k = 1, (3a{3 = 0;-1). Whenever 
we refer to 0; and {3 in this paper, we mean the generators of the dihedral group D2k . 
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We use ord(g) to denote the order of an element 9 in a group, use 151 to denote the 
cardinal number of a set 5, and use gcd(i,j) to denote the greatest common divisor 
of two integers i and j. 

Let Cay( G; 5) be the Cayley digraph of G with respect to 5. Take 7r E Aut( G) and 
set S7r T. Obviously we have Cay( G; 5) ~ Cay( G; T). This kind of isomorphism 
between two Cayley digraphs is called a Cayley isomorphism. 

DEFINITION 1.1 Given a subset 5 of G, we call 5 a CI-subset of G, if for any subset 
T of G with Cay( G; 5) ~ Cay( G; T), there exists 7r E Aut( G) such that 57r = T. 

DEFINITION 1.2 A finite group G is called an m-DCI-group if any subset 5 ofG with 
1 t/:. 5 and 151 ::; m is a CI-subset. The group G is called an m-CI-group if any subset 
5 ofG with 1 t/:. 5,5-1 = 5 and 151 ::; m is a CI-subset, where 5- 1 = {S-l Is E 5}. 

A number of authors have investigated the m-DCI properties of abelian groups for 
m ::; 3, and m-CI properties of abelian groups for m ::; 5 (see [1-6]). 

THEOREM 1.3 ([7, Theorem 2.5], or see [1-6]) 
1. The finite cyclic group Zk is m-DCI if2 t k, m = 1,2,3. 
2. Any finite cyclic group Zk is 4-C1. 

DEFINITION 1.4 A finite group G is called homogeneous if whenever Hand f{ are 
two isomorphic subgroups and (J is an isomorphism (J : H -+ K, then (J can be 
extended to an automorphism of G. 

The following lemmas are very easy to prove. 

LEMMA 1.5 IfCay(G;5) ~ Cay(G;T), then 1(5)1 = I(T)I. 

LEMMA 1.6 
1. Any finite cyclic group Zk is homogeneous. 
2. For any finite cyclic group Zk and for any a, b E Zk with ord( a) = ord(b), there 
exists an 7r E Aut(Zk) such that a7r = b. 

LEMMA 1.7 For any i E Z set, = cif3. Then D2k (cx" I cxk = ,2 = 1, ,cx, = 
-1) cx . 

LEMMA 1.8 Given 7r E Aut(Zk) and x E Zk. Define a mapping 7r : D2k --+ D2k by 

Then 7r E Aut(D2k ). 

LEMMA 1.9 The dihedral group D2k is homogeneous if 2 t k. 
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§2. On the 1-DCI and 2-DCI Properties of 
Dihedral Groups 

THEOREM 2.1 D2k is I-DCI if and only if2 t k. 

PROOF. Assume 21k. Then ord( a~) = 2. Thus 

Cay(D2k; a~) ~ Cay(D2k; (3). 

Obviously this is not a Cayley isomorphism, so D2k is not I-DCI. 

Conversely, assume 2 t k. Take a, bE D2k such that Cay(D2k; a) ~ Cay(D2k; b). By 
Lemma 1.5, we have ord(a) = ord(b), thus (a) ~ (b). By Lemma 1.9, there exists a 
Cayley isomorphism between Cay(D2k; a) and Cay(D2k; b). Hence D2k is I-DCI. 

COROLLARY 2.2 D2k is I-CI if and only if2 t k. 

THEOREM 2.3 D2k is 2-DCI if and only if2 t k. 

PROOF. If D2k is 2-DCI, then it follows from Theorem 2.1 that 2 t k. 

Assume that 2 t k. Take S, T ~ D2k such that lSI = ITI = 2 and Cay(D2k; S) ~ 
Cay(D2k; T). We consider three cases. 
Case 1. S ~ (a). SO I(T)I = 1(5)1 is odd, and hence T ~ (ex). By Theorem 1.3, 
there exists an isomorphism (J" : (5) -+ (T) such that 5eY = T. By Lemma 1.9, (J" can 
be extended to an automorphism of D2k . 
Case 2. 15 n (a)1 = 1. So there are just one edge and one arc starting from each 
vertex of Cay(D2k; S). Hence IT n (a)1 = 1. By Lemma 1.7, we can a~sume that 
S = {a i ,{3} and T = {au ,{3}. Since I(S)I = I(T)I we have ord(ai

) = ord(aU
). The 

conclusion follows from Lemma 1.6 and Lemma 1.8. 
Case 3. S ~ (a){3. From the analysis above, we immediately get T ~ (a){3. 
Assume that S = {a i {3,{3} and T = {au {3,{3}. Since 1(5)1 = I(T)I we have that 
gcd(k, i) =gcd(k, u). By Lemma 1.6, there exists 7f E Aut(Zk) such that i 7r = U. So 

is an automorphism of D 2k , and 5 ft = T. 

COROLLARY 2.4 D2k is 2-CI if and only if2 t k. 

§3. On the 3-DCI Property of Dihedral Groups 

LEMMA 3.1 Let k be an odd positive integer. Let Sand T be subsets of Zk of the 
form S = {±i, ±j, ±(i - j)}, T = {±u, ±v, ±(u - v)} where lSI = ITI = 6. If 
Cay(Zk; 5) ~ Cay(Zk; T), then there is an automorphism 7f E Aut(Zk) such that 
5 7r = T. 

PROOF. All graphs we use here are undirected. So in this proof we will use (x, y) to 
denote an undirected edge rather than a directed arc in a graph. Put X = Cay(Zk; 5) 
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and X' = Cay(Zk;T). For a vertex x of X, we use Xl(X) to denote the induced 
sub digraph of the neighborhood of x in X, so 

V(Xl(X)) = {y E V(X) 1 (x,y) E E(X)}, 

E(Xl(X)) = ((y,z) 1 y,z E V(X1(x)), (y,z) E E(Xn. 

The same definition applies to X'. By Lemma 1.5, we have I(S)I = I(T)I. It suffices 
to show that the statement is true for the case (S) = (T) = Zk. (If (S) =I- Zk, we still 
have Cay( (S); S) ~ Cay( (T); T). Using the proof below, we can get an isomorphism 
1fl : (S) -+ (T) with S7rl = T. Then Lemma 1.6 applies and 1fl can be extended to 
an automorphism of Zk') 
Write 

El = {(i, i - j), (-i, -i + j), (j, -i + j), (-j, i - j), (i,j), (-i, -jn. 

Then El ~ E(X1(0)), and therefore IE(Xl(O))1 ~ 6. We consider three cases. 

Case 1. IE(X1(0))1 ~ 8. Write 

E2 = {( i, - i + j), ( - i, i j), (j, i - j), ( - j, - i + j), ( i, - j), ( - i, j n , 
and 

E3 = {(i, -i), (j, -j), (i j, -i + jn. 

If E2 n E(Xl(O)) = 0, then IE3 n E(X1(0))1 ~ 2. Without loss of generality, we 
can assume that (i, -i), (j, - j) E E(XI (0)), and thus 2i,2j E S. We deduce that 
2i = -i, since 3i = 0 from i, j, i - j =I- 0 and E2 n E(XI (0)) = O. Similarly we 
have 3j = O. Hence i = ±j. This contradicts the fact that lSI = 6. Hence it 
follows that E2 n E(Xl(O)) =I- 0, and without loss of generality we can assume that 
(i, - j) E E(XI (0)), and thus -i - j E S. Hence -i - j E {i, j} since i,j =I- O. 
So we have -j = 2i or -i = 2j. Therefore, S = {±s,±2s,±3s} where 8 is some 
integer. Similarly, it follows that T = {±t, ±2t, ±3t} for some integer t because 
IE(X~(O))I = IE(Xl(O))1 ~ 8. Since (8) = (t) = Zk, the mapping 1f : 8 H- t can be 
extended to an automorphism of Zk. 
Case 2. IE(Xl(O))1 = 6. Assume (J" : X -+ X' is a graph isomorphism. We 
can assume that 00" = 0 since X' is vertex-transitive. Therefore SO" = T. By the 
symmetry of Sand T, we can also assume that iO" = u. It is easy to see that X 1(0) is a 
cycle, and i is adjacent to i- j and j. Similarly, X~ (0) is also a cycle and u is adjacent 
to u - v and v. Hence {i - j,jY = {u - v,v}. Again we can assume that f = v, 
and therefore (i - jt = u - v, (-jt = -v, (-it = -u, (-i + jt = -u + v. It is 
easy to show that V(Xl(i)) n V(X1(j)) = {O,j, i ±j, 2i, 2i - j} n {O, i, ±i + j, 2j, 2j
i} '= {O,i + j} and V(X~(u)) n V(X~(v)) = {O,u + v}. Since X1(it = X~(u) 
and X1(jt = X~(v), we have that (i + jt = u + v. Similarly we can show that 
(2i - jt = 2u - v, (-i - jt = -u - v, (-2i + jt = -2u + v, (i - 2jt = 
u - 2v, (-i + 2jt = -u + 2v. Now consider Xl(i) again. Since Xl(it = XUu) 
and {O, j, i ± j,2i - j}O" = {O, v, u ± v, 2u - v}, we have (2it = 2u. Similarly, 
(-2iY = -2u, (2j)0" = 2v, (-2jt = -2v. So we have that (mi + nj)a = mu + nv, 
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where m, n are integers and Iml + Inl ~ 2. By the transitivity of X, it follows 
that if x, y E D2k are such that xo' = y, (x + i)O' = y + u, (x + jY' = y + v, then 
(x + mi + nj)O' = y + mu + nv where Iml + Inl ~ 2. By induction on Iml + Inl, 
it follows that (mi + nj)O' = mu + nv, \,fm, n E Z. Thus (J" : Zk -+ Zk is a group 
isomorphism. 
Case 3. IE(X1 (0)) I = 7. Then IE(X1 (0)) \ Ell = 1. It is easy to show that 
E(Xl(O)) \ El <;;;; {(i, -i), (j, -j), (i - j,j - in (otherwise IE(Xl(O))1 > 7). We can 
assume that (i, -i) E E(X1(O)). By the analysis in case 1, we have 3i = O. We can 
also assume that (u, -u) E E(Xf (0)). So ±i, ±u are the only vertices of valency 3 in 
X 1(0) and X~(O). Assume the graph isomorphism (J" : X -t X' is such that 00' = O. 
Then {±i}O' = {±u}. By the same argument as in case 2, we can complete the proof. 

DEFINITION 3.2 Given a digraph f, we define the Step-2-digraph of f, denoted 
by X = ST(f), by VeX) = V(r), E(X) = {(x, y) I x, Y E V(f), x I- y,3z E 
V(f) such that (x, z), (z, y) E E(fn. 
Thus x, y E vcr) are adjacent in ST(f) if and only if there is a path of length 2 
connecting them in f. 

LEMMA 3.3 Let Cay(G; S) be the Cayley digraph of G with respect to S. Then 
ST(Cay( G; S)) = Cay( G; S2 \ {I}) where S2 = {3132 I 31,32 E S}. 

LEMMA 3.4 Let f 1 and f 2 be digraphs and let (J" : f 1 -+ f 2 be an isomorphism. Then 

is an isomorphism. 

THEOREM 3.5 D2k is 3-DCI if and only if2 t k. 

PROOF If D2k is 3-DCI, then 2 t k by Theorem 2.1. 
Suppose 2 t k. It is sufficient to show that any subset S of D2k with lSI = 3 is a 
CI-subset. Take S, T <;;;; D2k such that lSI = ITI = 3 and Cay(D2k; S) ~ Cay(D2k; T). 
We consider five cases. 

Case 1. S <;;;; (a). The proof is the same as the first case in Theorem 2.3. 
Case 2. IS n (0:)1 = 2 and Cay(D2k; S) is an undirected graph. So we can assume 
that S = {oo±i,,8}. It is easy to see that ITn (a)1 2 or T <;;;; (00),8. IfT <;;;; (a)(3 
then Cay(D2k; T) must be a bipartite graph. But Cay(D2k; S) is not bipartite since 
it contains a circuit of odd length. So we can assert that IT n (a) I = 2. Assume 
that T {a±u,,8}. We have ord(ai

) = ord(aU
) from I(S)I = I(T)I. By Lemma 1.6, 

there exists 7r E Aut(Zk) such that i1r = U. By Lemma 1.8, we know that 7r can be 
extended to an automorphism 7r of D2k with Sir = T. 
Case 3. IS n (a)1 = 2 and Cay(D2k; S) is not an undirected graph. So we 
can assume that S = {ai, a j

, (3} where i + j =1= 0 (mod k). There are just one 
edge and two arcs starting from each vertex of Cay(D2k; S). So we can assert 
that IT n (a)1 = 2. Assume that T = {aU ,av ,(3}. If we delete all edges from 
Cay(D2k; S) and Cay(D2k; T), the two digraphs we get are again isomorphic, namely, 
Cay(D2k ;ai ,aj ) ~ Cay(D2k;aU ,aV

). Hence Cay((a);ai,aj
) ~ Cay((a);aU,aV

). By 
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Theorem 1.3 and Lemma 1.8, it follows that there is an automorphism 7r E Aut(D2k ) 
such that Sit = T. 
Case 4. IS n (a) I = 1. So there are exactly two edges and one arc starting from each 
vertex of Cay(D2k; S). Hence IT n (a)1 = 1. By Lemma 1.5, we have I(S)I = I(T)I. 
It suffices to show that the statement is true for the case (S) = (T) = D2k . (If 
(S) =I- D2k , we still have Cay( (S); S) ~ Cay( (T); T). Using the proof below, we can 
get an isomorphism 71"1 : (S) -+ (T) with S11"1 = T. Then Lemma 1.9 applies and 71"1 

can be extended to an automorphism of D2k') 
Suppose that a : Cay(D2k; S) -+ Cay(D2k; T) is an isomorphism. Since Cayley 
digraphs are vertex-transitive, we can assume 10" 1. In Cay(D2k; S) we have that 
{x E D2k I any path from 1 to x contains even number of edges} = (a). And 
Cay(D2k ;T) has the same property. Hence (a)O" = (a). By Lemma 3.4, we know 
that a induces an isomorphism (j : ST(Cay(D2k; S)) -+ ST(Cay(D2k; T)). Assume 
S = {,B,aj,B,ai} and T = {,B, aV,B, aU}. By Lemma 3.3, we have 

ST(Cay(D2k; S)) = Cay (D2k ; a2i , a±j, a±i (3, aj±i,B) , 

and 
ST( Cay( D2k ; T)) = Cay ( D2k ; a2u , a±v, a±u,B, aV±u (3) . 

Because (a)O" (a) and the sub digraph of ST(Cay(D2k; S)) spanned by (a) is 
Cay ((a); a2i , a±j), we have that Cay ((a); a2i , a±j) ~ Cay ((a); a2u , a±V). By The
orem 1.3, there is an automorphism 71" E Aut(Zk) such that {2i, ±jV = {2u, ±v}. 
Hence {±jV = {±v} and {2iV = {2u}. Since 2 t k, we have i11" = U. Now if j11" = V, 

by Lemma 1.8, there exists 7r E Aut(D2k ) such that 

,Bit ,B (m)it m1T" V Z = ,a =a, mE . 

So Sit T. If j11" -v, by Lemma 1.7, consider, aV,B. Since,B = a-v" it is the 
same as when i r = v. 
Case 5. S ~ (a),B. By the analysis above, we immediately get T ~ (a),B. Assume 
S = {,B, ai,B, aj,B} and T = {,B, aU(3, aV,B}. Write 

By Lemma 3.3, we have 

and 

By Lemma 3.4, we have 

Hence 
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Notice that 1521 = IT21 = 2,4 or 6. If 1521 = IT21 = 20r 4, by Theorem 1.3, (a) is 2-CI 
and 4-CI, and thus there exists IT E Aut((a)) such that 52

1r = T2 • So the conclusion 
is immediate. Now let us consider the case for 1521 = IT21 = 6. By Lemma 3.1, there 
exists 7r E Aut(Zk) such that {±i, ±j, ±(i - j)V = {±u, ±v, ±(u - v)}. Without 
loss of generality, we can assume that i1r = u, and hence (_i)1r = -u. 
If j1r = -v, then u + v = (i - jY E {±(u - v)}, and therefore u = 0 or v = O. This 
contradicts the fact that ITI = 3. 
If j1r = - (u - v) we can get the same contradiction as above. 
If j1r = v then (i + j)1r = U + v. By Lemma 1.8, there exists if E Aut(D2k ) such that 

(3ft = (3, (amt = am"', Vm E Z. 

So Sft = T. 
If j1r = (u - v), then (i - j)1r = v. By Lemma 1.8, there exists if E Aut(D2k ) such 
that 

So Sft = T. 
The proof is completed by the analysis above. 

COROLLARY 3.7 D2k is 3-CI if and only if2 t k. 
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