On Isomorphisms of Cayley Digraphs on Dihedral Groups

Haipeng Qu^*

Department of Mathematics Peking University Beijing 100871 People's Republic of China

Jinsong Yu

Department of Mathematics Washington University St. Louis, MO 63130 U.S.A E-mail: yujs@math.wustl.edu

Abstract

In this paper, we investigate *m*-DCI and *m*-CI properties of dihedral groups. We show that for any $m \in \{1, 2, 3\}$, the dihedral group D_{2k} is *m*-DCI if and only if D_{2k} is *m*-CI if and only if $2 \nmid k$.

§1. Preliminaries

Let G be a finite group and S a subset of G with $1 \notin S$. We use $\Gamma = \operatorname{Cay}(G; S)$ to denote the *Cayley digraph of* G with respect to S, defined to be the directed graph with vertex set and edge set given by

$$V(\Gamma) = G, \ E(\Gamma) = \{(g, sg) \mid g \in G, \ s \in S\}.$$

When a digraph contains both undirected edges and directed edges, we refer to directed edges as *arcs* and undirected edges as *edges*.

Let D_{2k} be the dihedral group, $D_{2k} = \langle \alpha, \beta \mid \alpha^k = \beta^2 = 1, \ \beta \alpha \beta = \alpha^{-1} \rangle$. Whenever we refer to α and β in this paper, we mean the generators of the dihedral group D_{2k} .

Australasian Journal of Combinatorics 15(1997), pp.213-220

^{*}The work for this paper was supported by the National Natural Science Foundation of China and the Doctorial Program Foundation of Institutions of Higher Education (P. R. China).

We use $\operatorname{ord}(g)$ to denote the order of an element g in a group, use |S| to denote the cardinal number of a set S, and use $\operatorname{gcd}(i,j)$ to denote the greatest common divisor of two integers i and j.

Let $\operatorname{Cay}(G; S)$ be the Cayley digraph of G with respect to S. Take $\pi \in \operatorname{Aut}(G)$ and set $S^{\pi} = T$. Obviously we have $\operatorname{Cay}(G; S) \cong \operatorname{Cay}(G; T)$. This kind of isomorphism between two Cayley digraphs is called a *Cayley isomorphism*.

DEFINITION 1.1 Given a subset S of G, we call S a CI-subset of G, if for any subset T of G with $\operatorname{Cay}(G; S) \cong \operatorname{Cay}(G; T)$, there exists $\pi \in \operatorname{Aut}(G)$ such that $S^{\pi} = T$.

DEFINITION 1.2 A finite group G is called an m-DCI-group if any subset S of G with $1 \notin S$ and $|S| \leq m$ is a CI-subset. The group G is called an m-CI-group if any subset S of G with $1 \notin S$, $S^{-1} = S$ and $|S| \leq m$ is a CI-subset, where $S^{-1} = \{s^{-1} \mid s \in S\}$.

A number of authors have investigated the *m*-DCI properties of abelian groups for $m \leq 3$, and *m*-CI properties of abelian groups for $m \leq 5$ (see [1–6]).

THEOREM 1.3 ([7, Theorem 2.5], or see [1-6])

1. The finite cyclic group Z_k is m-DCI if $2 \nmid k$, m = 1, 2, 3.

2. Any finite cyclic group Z_k is 4-CI.

DEFINITION 1.4 A finite group G is called homogeneous if whenever H and K are two isomorphic subgroups and σ is an isomorphism $\sigma : H \to K$, then σ can be extended to an automorphism of G.

The following lemmas are very easy to prove.

LEMMA 1.5 If $\operatorname{Cay}(G; S) \cong \operatorname{Cay}(G; T)$, then $|\langle S \rangle| = |\langle T \rangle|$.

Lemma 1.6

1. Any finite cyclic group Z_k is homogeneous.

2. For any finite cyclic group Z_k and for any $a, b \in Z_k$ with $\operatorname{ord}(a) = \operatorname{ord}(b)$, there exists an $\pi \in \operatorname{Aut}(Z_k)$ such that $a^{\pi} = b$.

LEMMA 1.7 For any $i \in Z$ set $\gamma = \alpha^i \beta$. Then $D_{2k} = \langle \alpha, \gamma \mid \alpha^k = \gamma^2 = 1, \ \gamma \alpha \gamma = \alpha^{-1} \rangle$.

LEMMA 1.8 Given $\pi \in \operatorname{Aut}(Z_k)$ and $x \in Z_k$. Define a mapping $\overline{\pi} : D_{2k} \to D_{2k}$ by

$$\left(\alpha^{i}\beta^{j}\right)^{\bar{\pi}} = \alpha^{i^{\pi}} \left(\alpha^{x}\beta\right)^{j}, \quad \forall i, j \in \mathbb{Z}.$$

Then $\bar{\pi} \in \operatorname{Aut}(D_{2k})$.

LEMMA 1.9 The dihedral group D_{2k} is homogeneous if $2 \nmid k$.

§2. On the 1-DCI and 2-DCI Properties of Dihedral Groups

THEOREM 2.1 D_{2k} is 1-DCI if and only if $2 \nmid k$. PROOF. Assume 2|k. Then $\operatorname{ord}(\alpha^{\frac{k}{2}}) = 2$. Thus

 $\operatorname{Cay}(D_{2k}; \alpha^{\frac{k}{2}}) \cong \operatorname{Cay}(D_{2k}; \beta).$

Obviously this is not a Cayley isomorphism, so D_{2k} is not 1-DCI.

Conversely, assume $2 \nmid k$. Take $a, b \in D_{2k}$ such that $\operatorname{Cay}(D_{2k}; a) \cong \operatorname{Cay}(D_{2k}; b)$. By Lemma 1.5, we have $\operatorname{ord}(a) = \operatorname{ord}(b)$, thus $\langle a \rangle \cong \langle b \rangle$. By Lemma 1.9, there exists a Cayley isomorphism between $\operatorname{Cay}(D_{2k}; a)$ and $\operatorname{Cay}(D_{2k}; b)$. Hence D_{2k} is 1-DCI.

COROLLARY 2.2 D_{2k} is 1-CI if and only if $2 \nmid k$.

THEOREM 2.3 D_{2k} is 2-DCI if and only if $2 \nmid k$.

PROOF. If D_{2k} is 2-DCI, then it follows from Theorem 2.1 that $2 \nmid k$.

Assume that $2 \nmid k$. Take $S, T \subseteq D_{2k}$ such that |S| = |T| = 2 and $\operatorname{Cay}(D_{2k}; S) \cong \operatorname{Cay}(D_{2k}; T)$. We consider three cases.

Case 1. $S \subseteq \langle \alpha \rangle$. So $|\langle T \rangle| = |\langle S \rangle|$ is odd, and hence $T \subseteq \langle \alpha \rangle$. By Theorem 1.3, there exists an isomorphism $\sigma : \langle S \rangle \to \langle T \rangle$ such that $S^{\sigma} = T$. By Lemma 1.9, σ can be extended to an automorphism of D_{2k} .

Case 2. $|S \cap \langle \alpha \rangle| = 1$. So there are just one edge and one arc starting from each vertex of $\operatorname{Cay}(D_{2k}; S)$. Hence $|T \cap \langle \alpha \rangle| = 1$. By Lemma 1.7, we can assume that $S = \{\alpha^i, \beta\}$ and $T = \{\alpha^u, \beta\}$. Since $|\langle S \rangle| = |\langle T \rangle|$ we have $\operatorname{ord}(\alpha^i) = \operatorname{ord}(\alpha^u)$. The conclusion follows from Lemma 1.6 and Lemma 1.8.

Case 3. $S \subseteq \langle \alpha \rangle \beta$. From the analysis above, we immediately get $T \subseteq \langle \alpha \rangle \beta$. Assume that $S = \{\alpha^i \beta, \beta\}$ and $T = \{\alpha^u \beta, \beta\}$. Since $|\langle S \rangle| = |\langle T \rangle|$ we have that gcd(k, i) = gcd(k, u). By Lemma 1.6, there exists $\pi \in Aut(Z_k)$ such that $i^{\pi} = u$. So

$$\bar{\pi}: \alpha^m \beta^n \mapsto \alpha^{m^\pi} \beta^n, \ \forall m, n \in \mathbb{Z}$$

is an automorphism of D_{2k} , and $S^{\bar{\pi}} = T$.

COROLLARY 2.4 D_{2k} is 2-CI if and only if $2 \nmid k$.

§3. On the 3-DCI Property of Dihedral Groups

LEMMA 3.1 Let k be an odd positive integer. Let S and T be subsets of Z_k of the form $S = \{\pm i, \pm j, \pm (i - j)\}, T = \{\pm u, \pm v, \pm (u - v)\}$ where |S| = |T| = 6. If $\operatorname{Cay}(Z_k; S) \cong \operatorname{Cay}(Z_k; T)$, then there is an automorphism $\pi \in \operatorname{Aut}(Z_k)$ such that $S^{\pi} = T$.

PROOF. All graphs we use here are undirected. So in this proof we will use (x, y) to denote an undirected edge rather than a directed arc in a graph. Put $X = \text{Cay}(Z_k; S)$

and $X' = \operatorname{Cay}(Z_k; T)$. For a vertex x of X, we use $X_1(x)$ to denote the induced subdigraph of the neighborhood of x in X, so

$$V(X_1(x)) = \{y \in V(X) \mid (x,y) \in E(X)\},$$

 $E(X_1(x)) = \{(y,z) \mid y, z \in V(X_1(x)), \ (y,z) \in E(X)\}$

The same definition applies to X'. By Lemma 1.5, we have $|\langle S \rangle| = |\langle T \rangle|$. It suffices to show that the statement is true for the case $\langle S \rangle = \langle T \rangle = Z_k$. (If $\langle S \rangle \neq Z_k$, we still have $\operatorname{Cay}(\langle S \rangle; S) \cong \operatorname{Cay}(\langle T \rangle; T)$. Using the proof below, we can get an isomorphism $\pi_1 : \langle S \rangle \to \langle T \rangle$ with $S^{\pi_1} = T$. Then Lemma 1.6 applies and π_1 can be extended to an automorphism of Z_k .)

Write

$$E_1 = \{(i, i - j), (-i, -i + j), (j, -i + j), (-j, i - j), (i, j), (-i, -j)\}.$$

Then $E_1 \subseteq E(X_1(0))$, and therefore $|E(X_1(0))| \ge 6$. We consider three cases. Case 1. $|E(X_1(0))| \ge 8$. Write

$$E_{2} = \{(i, -i+j), (-i, i-j), (j, i-j), (-j, -i+j), (i, -j), (-i, j)\},\$$

and

$$E_3 = \{(i, -i), (j, -j), (i - j, -i + j)\}.$$

If $E_2 \cap E(X_1(0)) = \emptyset$, then $|E_3 \cap E(X_1(0))| \ge 2$. Without loss of generality, we can assume that $(i, -i), (j, -j) \in E(X_1(0))$, and thus $2i, 2j \in S$. We deduce that 2i = -i, since 3i = 0 from $i, j, i - j \ne 0$ and $E_2 \cap E(X_1(0)) = \emptyset$. Similarly we have 3j = 0. Hence $i = \pm j$. This contradicts the fact that |S| = 6. Hence it follows that $E_2 \cap E(X_1(0)) \ne \emptyset$, and without loss of generality we can assume that $(i, -j) \in E(X_1(0))$, and thus $-i - j \in S$. Hence $-i - j \in \{i, j\}$ since $i, j \ne 0$. So we have -j = 2i or -i = 2j. Therefore, $S = \{\pm s, \pm 2s, \pm 3s\}$ where s is some integer. Similarly, it follows that $T = \{\pm t, \pm 2t, \pm 3t\}$ for some integer t because $|E(X_1'(0))| = |E(X_1(0))| \ge 8$. Since $\langle s \rangle = \langle t \rangle = Z_k$, the mapping $\pi : s \mapsto t$ can be extended to an automorphism of Z_k .

Case 2. $|E(X_1(0))| = 6$. Assume $\sigma : X \to X'$ is a graph isomorphism. We can assume that $0^{\sigma} = 0$ since X' is vertex-transitive. Therefore $S^{\sigma} = T$. By the symmetry of S and T, we can also assume that $i^{\sigma} = u$. It is easy to see that $X_1(0)$ is a cycle, and *i* is adjacent to i-j and *j*. Similarly, $X'_1(0)$ is also a cycle and *u* is adjacent to u-v and *v*. Hence $\{i-j,j\}^{\sigma} = \{u-v,v\}$. Again we can assume that $j^{\sigma} = v$, and therefore $(i-j)^{\sigma} = u-v, (-j)^{\sigma} = -v, (-i)^{\sigma} = -u, (-i+j)^{\sigma} = -u+v$. It is easy to show that $V(X_1(i)) \cap V(X_1(j)) = \{0, j, i \pm j, 2i, 2i-j\} \cap \{0, i, \pm i+j, 2j, 2j-i\} = \{0, i+j\}$ and $V(X'_1(u)) \cap V(X'_1(v)) = \{0, u+v\}$. Since $X_1(i)^{\sigma} = X'_1(u)$ and $X_1(j)^{\sigma} = X'_1(v)$, we have that $(i+j)^{\sigma} = u+v$. Similarly we can show that $(2i-j)^{\sigma} = -u-v, (-i-j)^{\sigma} = -u-v, (-2i+j)^{\sigma} = -2u+v, (i-2j)^{\sigma} = u-2v, (-i+2j)^{\sigma} = -u+2v$. Now consider $X_1(i)$ again. Since $X_1(i)^{\sigma} = X'_1(u)$ and $\{0, j, i \pm j, 2i - j\}^{\sigma} = \{0, v, u \pm v, 2u - v\}$, we have $(2i)^{\sigma} = 2u$. Similarly, $(-2i)^{\sigma} = -2u, (2j)^{\sigma} = 2v, (-2j)^{\sigma} = -2v$. So we have that $(mi+nj)^{\sigma} = mu+nv$,

where m, n are integers and $|m| + |n| \leq 2$. By the transitivity of X, it follows that if $x, y \in D_{2k}$ are such that $x^{\sigma} = y, (x+i)^{\sigma} = y + u, (x+j)^{\sigma} = y + v$, then $(x+mi+nj)^{\sigma} = y + mu + nv$ where $|m| + |n| \leq 2$. By induction on |m| + |n|, it follows that $(mi+nj)^{\sigma} = mu + nv, \forall m, n \in Z$. Thus $\sigma : Z_k \to Z_k$ is a group isomorphism.

Case 3. $|E(X_1(0))| = 7$. Then $|E(X_1(0)) \setminus E_1| = 1$. It is easy to show that $E(X_1(0)) \setminus E_1 \subseteq \{(i, -i), (j, -j), (i - j, j - i)\}$ (otherwise $|E(X_1(0))| > 7$). We can assume that $(i, -i) \in E(X_1(0))$. By the analysis in case 1, we have 3i = 0. We can also assume that $(u, -u) \in E(X'_1(0))$. So $\pm i, \pm u$ are the only vertices of valency 3 in $X_1(0)$ and $X'_1(0)$. Assume the graph isomorphism $\sigma : X \to X'$ is such that $0^{\sigma} = 0$. Then $\{\pm i\}^{\sigma} = \{\pm u\}$. By the same argument as in case 2, we can complete the proof.

DEFINITION 3.2 Given a digraph Γ , we define the Step-2-digraph of Γ , denoted by $X = ST(\Gamma)$, by $V(X) = V(\Gamma)$, $E(X) = \{(x,y) \mid x, y \in V(\Gamma), x \neq y, \exists z \in V(\Gamma) \text{ such that } (x,z), (z,y) \in E(\Gamma)\}.$

Thus $x, y \in V(\Gamma)$ are adjacent in $ST(\Gamma)$ if and only if there is a path of length 2 connecting them in Γ .

LEMMA 3.3 Let $\operatorname{Cay}(G; S)$ be the Cayley digraph of G with respect to S. Then $ST(\operatorname{Cay}(G; S)) = \operatorname{Cay}(G; S^2 \setminus \{1\})$ where $S^2 = \{s_1s_2 \mid s_1, s_2 \in S\}$.

LEMMA 3.4 Let Γ_1 and Γ_2 be digraphs and let $\sigma : \Gamma_1 \to \Gamma_2$ be an isomorphism. Then

 $\overline{\sigma}: ST(\Gamma_1) \to ST(\Gamma_2), \quad x \mapsto x^{\sigma}, \quad \forall x \in V(ST(\Gamma_1)) = V(\Gamma_1)$

is an isomorphism.

THEOREM 3.5 D_{2k} is 3-DCI if and only if $2 \nmid k$.

PROOF If D_{2k} is 3-DCI, then $2 \nmid k$ by Theorem 2.1.

Suppose $2 \nmid k$. It is sufficient to show that any subset S of D_{2k} with |S| = 3 is a CI-subset. Take $S, T \subseteq D_{2k}$ such that |S| = |T| = 3 and $Cay(D_{2k}; S) \cong Cay(D_{2k}; T)$. We consider five cases.

Case 1. $S \subseteq \langle \alpha \rangle$. The proof is the same as the first case in Theorem 2.3.

Case 2. $|S \cap \langle \alpha \rangle| = 2$ and $\operatorname{Cay}(D_{2k}; S)$ is an undirected graph. So we can assume that $S = \{\alpha^{\pm i}, \beta\}$. It is easy to see that $|T \cap \langle \alpha \rangle| = 2$ or $T \subseteq \langle \alpha \rangle \beta$. If $T \subseteq \langle \alpha \rangle \beta$ then $\operatorname{Cay}(D_{2k}; T)$ must be a bipartite graph. But $\operatorname{Cay}(D_{2k}; S)$ is not bipartite since it contains a circuit of odd length. So we can assert that $|T \cap \langle \alpha \rangle| = 2$. Assume that $T = \{\alpha^{\pm u}, \beta\}$. We have $\operatorname{ord}(\alpha^i) = \operatorname{ord}(\alpha^u)$ from $|\langle S \rangle| = |\langle T \rangle|$. By Lemma 1.6, there exists $\pi \in \operatorname{Aut}(Z_k)$ such that $i^{\pi} = u$. By Lemma 1.8, we know that π can be extended to an automorphism $\overline{\pi}$ of D_{2k} with $S^{\overline{\pi}} = T$.

Case 3. $|S \cap \langle \alpha \rangle| = 2$ and $\operatorname{Cay}(D_{2k}; S)$ is not an undirected graph. So we can assume that $S = \{\alpha^i, \alpha^j, \beta\}$ where $i + j \neq 0 \pmod{k}$. There are just one edge and two arcs starting from each vertex of $\operatorname{Cay}(D_{2k}; S)$. So we can assert that $|T \cap \langle \alpha \rangle| = 2$. Assume that $T = \{\alpha^u, \alpha^v, \beta\}$. If we delete all edges from $\operatorname{Cay}(D_{2k}; S)$ and $\operatorname{Cay}(D_{2k}; T)$, the two digraphs we get are again isomorphic, namely, $\operatorname{Cay}(D_{2k}; \alpha^i, \alpha^j) \cong \operatorname{Cay}(D_{2k}; \alpha^u, \alpha^v)$. Hence $\operatorname{Cay}(\langle \alpha \rangle; \alpha^i, \alpha^j) \cong \operatorname{Cay}(\langle \alpha \rangle; \alpha^u, \alpha^v)$. By

Theorem 1.3 and Lemma 1.8, it follows that there is an automorphism $\bar{\pi} \in \operatorname{Aut}(D_{2k})$ such that $S^{\bar{\pi}} = T$.

Case 4. $|S \cap \langle \alpha \rangle| = 1$. So there are exactly two edges and one arc starting from each vertex of $\operatorname{Cay}(D_{2k}; S)$. Hence $|T \cap \langle \alpha \rangle| = 1$. By Lemma 1.5, we have $|\langle S \rangle| = |\langle T \rangle|$. It suffices to show that the statement is true for the case $\langle S \rangle = \langle T \rangle = D_{2k}$. (If $\langle S \rangle \neq D_{2k}$, we still have $\operatorname{Cay}(\langle S \rangle; S) \cong \operatorname{Cay}(\langle T \rangle; T)$. Using the proof below, we can get an isomorphism $\pi_1 : \langle S \rangle \to \langle T \rangle$ with $S^{\pi_1} = T$. Then Lemma 1.9 applies and π_1 can be extended to an automorphism of D_{2k} .)

Suppose that σ : $\operatorname{Cay}(D_{2k}; S) \to \operatorname{Cay}(D_{2k}; T)$ is an isomorphism. Since Cayley digraphs are vertex-transitive, we can assume $1^{\sigma} = 1$. In $\operatorname{Cay}(D_{2k}; S)$ we have that $\{x \in D_{2k} \mid \text{any path from 1 to } x \text{ contains even number of edges } \} = \langle \alpha \rangle$. And $\operatorname{Cay}(D_{2k}; T)$ has the same property. Hence $\langle \alpha \rangle^{\sigma} = \langle \alpha \rangle$. By Lemma 3.4, we know that σ induces an isomorphism $\overline{\sigma} : ST(\operatorname{Cay}(D_{2k}; S)) \to ST(\operatorname{Cay}(D_{2k}; T))$. Assume $S = \{\beta, \alpha^{j}\beta, \alpha^{i}\}$ and $T = \{\beta, \alpha^{\nu}\beta, \alpha^{u}\}$. By Lemma 3.3, we have

$$ST(Cay(D_{2k};S)) = Cay(D_{2k};\alpha^{2i},\alpha^{\pm j},\alpha^{\pm i}\beta,\alpha^{j\pm i}\beta),$$

and

$$ST(Cay(D_{2k};T)) = Cay\left(D_{2k};\alpha^{2u},\alpha^{\pm v},\alpha^{\pm u}\beta,\alpha^{v\pm u}\beta\right)$$

Because $\langle \alpha \rangle^{\sigma} = \langle \alpha \rangle$ and the subdigraph of $ST(\operatorname{Cay}(D_{2k}; S))$ spanned by $\langle \alpha \rangle$ is Cay $(\langle \alpha \rangle; \alpha^{2i}, \alpha^{\pm j})$, we have that Cay $(\langle \alpha \rangle; \alpha^{2i}, \alpha^{\pm j}) \cong \operatorname{Cay}(\langle \alpha \rangle; \alpha^{2u}, \alpha^{\pm v})$. By Theorem 1.3, there is an automorphism $\pi \in \operatorname{Aut}(Z_k)$ such that $\{2i, \pm j\}^{\pi} = \{2u, \pm v\}$. Hence $\{\pm j\}^{\pi} = \{\pm v\}$ and $\{2i\}^{\pi} = \{2u\}$. Since $2 \nmid k$, we have $i^{\pi} = u$. Now if $j^{\pi} = v$, by Lemma 1.8, there exists $\bar{\pi} \in \operatorname{Aut}(D_{2k})$ such that

$$\beta^{\bar{\pi}} = \beta, \; (\alpha^m)^{\bar{\pi}} = \alpha^{m^{\pi}}, \; \forall m \in \mathbb{Z}.$$

So $S^{\bar{\pi}} = T$. If $j^{\pi} = -v$, by Lemma 1.7, consider $\gamma = \alpha^{\nu}\beta$. Since $\beta = \alpha^{-\nu}\gamma$, it is the same as when $j^{\pi} = v$.

Case 5. $S \subseteq \langle \alpha \rangle \beta$. By the analysis above, we immediately get $T \subseteq \langle \alpha \rangle \beta$. Assume $S = \{\beta, \alpha^i \beta, \alpha^j \beta\}$ and $T = \{\beta, \alpha^u \beta, \alpha^v \beta\}$. Write

$$S_2 = \left\{ \alpha^{\pm i}, \alpha^{\pm j}, \alpha^{\pm (i-j)} \right\}, \ T_2 = \left\{ \alpha^{\pm u}, \alpha^{\pm v}, \alpha^{\pm (u-v)} \right\}.$$

By Lemma 3.3, we have

$$ST(\operatorname{Cay}(D_{2k};S)) = \operatorname{Cay}(D_{2k};S_2),$$

and

$$ST(\operatorname{Cay}(D_{2k};T)) = \operatorname{Cay}(D_{2k};T_2).$$

By Lemma 3.4, we have

$$\operatorname{Cay}(D_{2k}; S_2) \cong \operatorname{Cay}(D_{2k}; T_2).$$

Hence

 $\operatorname{Cay}(\langle \alpha \rangle; S_2) \cong \operatorname{Cay}(\langle \alpha \rangle; T_2).$

Notice that $|S_2| = |T_2| = 2, 4$ or 6. If $|S_2| = |T_2| = 2$ or 4, by Theorem 1.3, $\langle \alpha \rangle$ is 2-CI and 4-CI, and thus there exists $\pi \in \operatorname{Aut}(\langle \alpha \rangle)$ such that $S_2^{\pi} = T_2$. So the conclusion is immediate. Now let us consider the case for $|S_2| = |T_2| = 6$. By Lemma 3.1, there exists $\pi \in \operatorname{Aut}(Z_k)$ such that $\{\pm i, \pm j, \pm (i-j)\}^{\pi} = \{\pm u, \pm v, \pm (u-v)\}$. Without loss of generality, we can assume that $i^{\pi} = u$, and hence $(-i)^{\pi} = -u$.

If $j^{\pi} = -v$, then $u + v = (i - j)^{\pi} \in \{\pm (u - v)\}$, and therefore u = 0 or v = 0. This contradicts the fact that |T| = 3.

If $j^{\pi} = -(u - v)$ we can get the same contradiction as above. If $j^{\pi} = v$ then $(i + j)^{\pi} = u + v$. By Lemma 1.8, there exists $\bar{\pi} \in \operatorname{Aut}(D_{2k})$ such that

$$\beta^{\bar{\pi}} = \beta, \ (\alpha^m)^{\bar{\pi}} = \alpha^{m^{\pi}}, \ \forall m \in Z.$$

So $S^{\bar{\pi}} = T$. If $j^{\pi} = (u - v)$, then $(i - j)^{\pi} = v$. By Lemma 1.8, there exists $\bar{\pi} \in \operatorname{Aut}(D_{2k})$ such that

 $\beta^{\bar{\pi}} = \alpha^u \beta, \ (\alpha^m)^{\bar{\pi}} = \alpha^{-(m^{\pi})}, \ \forall m \in Z.$

So $S^{\bar{\pi}} = T$.

The proof is completed by the analysis above.

COROLLARY 3.7 D_{2k} is 3-CI if and only if $2 \nmid k$.

Acknowledgment

Professor Ming-Yao Xu introduced us to this field. We are grateful for his encouragement and help. We thank the referee and the editor for very helpful suggestions.

References

- Xin-Gui Fang, A characterization of finite abelian 2-DCI-groups (Chinese), J. of Math. (Wuhan) 8 (1988), 315-317.
- [2] Xin-Gui Fang, Abelian 3-DCI-groups of even order, Ars Combinatoria 32 (1991), 263-267.
- [3] Xin-Gui Fang and Min Wang, Isomorphisms of Cayley graphs of valency $m(\leq 5)$ for a finite commutative group (Chinese), Chinese Ann. Math. Ser.A 13 (1992), suppl.7-14.
- [4] Xin-Gui Fang and Ming-Yao Xu, Abelian 3-DCI-groups of odd order, Ars Combinatoria 28 (1989), 247-251.
- [5] Xin-Gui Fang and Ming-Yao Xu, On isomorphisms of Cayley graphs of small valency, Algebra Colloq. 1 (1994), 67-76.
- [6] Cai Heng Li, Finite Abelian groups with the *m*-DCI property, Ars Combinatoria (summitted for publication.)

[7] Mingyao Xu, Some work on vertex-transitive graphs by Chinese mathematicians, in *Group Theory in China*, Science Press/Kluwer Academic Publishers, Beijing/New York, 1996; pp.224-254.

(Received 24/6/96)