# On Isomorphisms of Cayley Digraphs on Dihedral Groups 

Haipeng Qu*<br>Department of Mathematics<br>Peking University<br>Beijing 100871<br>People's Republic of China<br>Jinsong Yu<br>Department of Mathematics<br>Washington University<br>St. Louis, MO 63130<br>U.S.A<br>E-mail: yujs@math.wustl.edu


#### Abstract

In this paper, we investigate $m$-DCI and $m$-CI properties of dihedral groups. We show that for any $m \in\{1,2,3\}$, the dihedral group $D_{2 k}$ is $m$-DCI if and only if $D_{2 k}$ is $m$-CI if and only if $2 \nmid k$.


## §1. Preliminaries

Let $G$ be a finite group and $S$ a subset of $G$ with $1 \notin S$. We use $\Gamma=\operatorname{Cay}(G ; S)$ to denote the Cayley digraph of $G$ with respect to $S$, defined to be the directed graph with vertex set and edge set given by

$$
V(\Gamma)=G, \quad E(\Gamma)=\{(g, s g) \mid g \in G, s \in S\} .
$$

When a digraph contains both undirected edges and directed edges, we refer to directed edges as arcs and undirected edges as edges.
Let $D_{2 k}$ be the dihedral group, $D_{2 k}=\left\langle\alpha, \beta \mid \alpha^{k}=\beta^{2}=1, \beta \alpha \beta=\alpha^{-1}\right\rangle$. Whenever we refer to $\alpha$ and $\beta$ in this paper, we mean the generators of the dihedral group $D_{2 k}$.

[^0]We use $\operatorname{ord}(g)$ to denote the order of an element $g$ in a group, use $|S|$ to denote the cardinal number of a set $S$, and use $\operatorname{gcd}(i, j)$ to denote the greatest common divisor of two integers $i$ and $j$.
Let $\operatorname{Cay}(G ; S)$ be the Cayley digraph of $G$ with respect to $S$. Take $\pi \in \operatorname{Aut}(G)$ and set $S^{\pi}=T$. Obviously we have $\operatorname{Cay}(G ; S) \cong \operatorname{Cay}(G ; T)$. This kind of isomorphism between two Cayley digraphs is called a Cayley isomorphism.
Definition 1.1 Given a subset $S$ of $G$, we call $S$ a $C I$-subset of $G$, if for any subset $T$ of $G$ with $\operatorname{Cay}(G ; S) \cong \operatorname{Cay}(G ; T)$, there exists $\pi \in \operatorname{Aut}(G)$ such that $S^{\pi}=T$.

Definition 1.2 A finite group $G$ is called an $m$-DCI-group if any subset $S$ of $G$ with $1 \notin S$ and $|S| \leq m$ is a CI-subset. The group $G$ is called an $m$-CI-group if any subset $S$ of $G$ with $1 \notin S, S^{-1}=S$ and $|S| \leq m$ is a CI-subset, where $S^{-1}=\left\{s^{-1} \mid s \in S\right\}$. A number of authors have investigated the $m$-DCI properties of abelian groups for $m \leq 3$, and $m$-CI properties of abelian groups for $m \leq 5$ (see [1-6]).
Theorem 1.3 ([7, Theorem 2.5], or see [1-6])

1. The finite cyclic group $Z_{k}$ is $m$-DCI if $2 \nmid k, m=1,2,3$.
2. Any finite cyclic group $Z_{k}$ is 4-CI.

Definition 1.4 A finite group $G$ is called homogeneous if whenever $H$ and $K$ are two isomorphic subgroups and $\sigma$ is an isomorphism $\sigma: H \rightarrow K$, then $\sigma$ can be extended to an automorphism of $G$.

The following lemmas are very easy to prove.
Lemma 1.5 If $\operatorname{Cay}(G ; S) \cong \operatorname{Cay}(G ; T)$, then $|\langle S\rangle|=|\langle T\rangle|$.
Lemma 1.6

1. Any finite cyclic group $Z_{k}$ is homogeneous.
2. For any finite cyclic group $Z_{k}$ and for any $a, b \in Z_{k}$ with $\operatorname{ord}(a)=\operatorname{ord}(b)$, there exists an $\pi \in \operatorname{Aut}\left(Z_{k}\right)$ such that $a^{\pi}=b$.

Lemma 1.7 For any $i \in Z$ set $\gamma=\alpha^{i} \beta$. Then $D_{2 k}=\langle\alpha, \gamma| \alpha^{k}=\gamma^{2}=1, \gamma \alpha \gamma=$ $\left.\alpha^{-1}\right\rangle$.

Lemma 1.8 Given $\pi \in \operatorname{Aut}\left(Z_{k}\right)$ and $x \in Z_{k}$. Define a mapping $\bar{\pi}: D_{2 k} \rightarrow D_{2 k}$ by

$$
\left(\alpha^{i} \beta^{j}\right)^{\bar{\pi}}=\alpha^{i^{i \pi}}\left(\alpha^{x} \beta\right)^{j}, \quad \forall i, j \in Z
$$

Then $\bar{\pi} \in \operatorname{Aut}\left(D_{2 k}\right)$.
Lemma 1.9 The dihedral group $D_{2 k}$ is homogeneous if $2 \nmid k$.

## §2. On the 1-DCI and 2-DCI Properties of Dihedral Groups

Theorem $2.1 D_{2 k}$ is 1-DCI if and only if $2 \nmid k$.
Proof. Assume $2 \mid k$. Then $\operatorname{ord}\left(\alpha^{\frac{k}{2}}\right)=2$. Thus

$$
\operatorname{Cay}\left(D_{2 k} ; \alpha^{\frac{k}{2}}\right) \cong \operatorname{Cay}\left(D_{2 k} ; \beta\right)
$$

Obviously this is not a Cayley isomorphism, so $D_{2 k}$ is not 1-DCI.
Conversely, assume $2 \nmid k$. Take $a, b \in D_{2 k}$ such that $\operatorname{Cay}\left(D_{2 k} ; a\right) \cong \operatorname{Cay}\left(D_{2 k} ; b\right)$. By Lemma 1.5, we have $\operatorname{ord}(a)=\operatorname{ord}(b)$, thus $\langle a\rangle \cong\langle b\rangle$. By Lemma 1.9, there exists a Cayley isomorphism between $\operatorname{Cay}\left(D_{2 k} ; a\right)$ and $\operatorname{Cay}\left(D_{2 k} ; b\right)$. Hence $D_{2 k}$ is 1-DCI.
Corollary $2.2 D_{2 k}$ is 1 -CI if and only if $2 \nmid k$.
Theorem $2.3 D_{2 k}$ is 2-DCI if and only if $2 \nmid k$.
Proof. If $D_{2 k}$ is 2-DCI, then it follows from Theorem 2.1 that $2 \nmid k$.
Assume that $2 \nmid k$. Take $S, T \subseteq D_{2 k}$ such that $|S|=|T|=2$ and $\operatorname{Cay}\left(D_{2 k} ; S\right) \cong$ $\operatorname{Cay}\left(D_{2 k} ; T\right)$. We consider three cases.
Case 1. $S \subseteq\langle\alpha\rangle$. So $|\langle T\rangle|=|\langle S\rangle|$ is odd, and hence $T \subseteq\langle\alpha\rangle$. By Theorem 1.3, there exists an isomorphism $\sigma:\langle S\rangle \rightarrow\langle T\rangle$ such that $S^{\sigma}=T$. By Lemma 1.9, $\sigma$ can be extended to an automorphism of $D_{2 k}$.
Case 2. $|S \cap\langle\alpha\rangle|=1$. So there are just one edge and one arc starting from each vertex of $\operatorname{Cay}\left(D_{2 k} ; S\right)$. Hence $|T \cap\langle\alpha\rangle|=1$. By Lemma 1.7, we can assume that $S=\left\{\alpha^{i}, \beta\right\}$ and $T=\left\{\alpha^{u}, \beta\right\}$. Since $|\langle S\rangle|=|\langle T\rangle|$ we have $\operatorname{ord}\left(\alpha^{i}\right)=\operatorname{ord}\left(\alpha^{u}\right)$. The conclusion follows from Lemma 1.6 and Lemma 1.8.
Case 3. $S \subseteq\langle\alpha\rangle \beta$. From the analysis above, we immediately get $T \subseteq\langle\alpha\rangle \beta$. Assume that $S=\left\{\alpha^{i} \beta, \beta\right\}$ and $T=\left\{\alpha^{u} \beta, \beta\right\}$. Since $|\langle S\rangle|=|\langle T\rangle|$ we have that $\operatorname{gcd}(k, i)=\operatorname{gcd}(k, u)$. By Lemma 1.6, there exists $\pi \in \operatorname{Aut}\left(Z_{k}\right)$ such that $i^{\pi}=u$. So

$$
\bar{\pi}: \alpha^{m} \beta^{n} \mapsto \alpha^{m^{\pi}} \beta^{n}, \forall m, n \in Z
$$

is an automorphism of $D_{2 k}$, and $S^{\bar{\pi}}=T$.
Corollary $2.4 D_{2 k}$ is 2 -CI if and only if $2 \nmid k$.

## §3. On the 3-DCI Property of Dihedral Groups

Lemma 3.1 Let $k$ be an odd positive integer. Let $S$ and $T$ be subsets of $Z_{k}$ of the form $S=\{ \pm i, \pm j, \pm(i-j)\}, T=\{ \pm u, \pm v, \pm(u-v)\}$ where $|S|=|T|=6$. If $\operatorname{Cay}\left(Z_{k} ; S\right) \cong \operatorname{Cay}\left(Z_{k} ; T\right)$, then there is an automorphism $\pi \in \operatorname{Aut}\left(Z_{k}\right)$ such that $S^{\pi}=T$.
Proof. All graphs we use here are undirected. So in this proof we will use $(x, y)$ to denote an undirected edge rather than a directed arc in a graph. Put $X=\operatorname{Cay}\left(Z_{k} ; S\right)$
and $X^{\prime}=\operatorname{Cay}\left(Z_{k} ; T\right)$. For a vertex $x$ of $X$, we use $X_{1}(x)$ to denote the induced subdigraph of the neighborhood of $x$ in $X$, so

$$
\begin{gathered}
V\left(X_{1}(x)\right)=\{y \in V(X) \mid(x, y) \in E(X)\}, \\
E\left(X_{1}(x)\right)=\left\{(y, z) \mid y, z \in V\left(X_{1}(x)\right),(y, z) \in E(X)\right\} .
\end{gathered}
$$

The same definition applies to $X^{\prime}$. By Lemma 1.5, we have $|\langle S\rangle|=|\langle T\rangle|$. It suffices to show that the statement is true for the case $\langle S\rangle=\langle T\rangle=Z_{k}$. (If $\langle S\rangle \neq Z_{k}$, we still have $\operatorname{Cay}(\langle S\rangle ; S) \cong \operatorname{Cay}(\langle T\rangle ; T)$. Using the proof below, we can get an isomorphism $\pi_{1}:\langle S\rangle \rightarrow\langle T\rangle$ with $S^{\pi_{1}}=T$. Then Lemma 1.6 applies and $\pi_{1}$ can be extended to an automorphism of $Z_{k}$.)
Write

$$
E_{1}=\{(i, i-j),(-i,-i+j),(j,-i+j),(-j, i-j),(i, j),(-i,-j)\}
$$

Then $E_{1} \subseteq E\left(X_{1}(0)\right)$, and therefore $\left|E\left(X_{1}(0)\right)\right| \geq 6$. We consider three cases.
Case 1. $\left|E\left(X_{1}(0)\right)\right| \geq 8$. Write

$$
E_{2}=\{(i,-i+j),(-i, i-j),(j, i-j),(-j,-i+j),(i,-j),(-i, j)\},
$$

and

$$
E_{3}=\{(i,-i),(j,-j),(i-j,-i+j)\} .
$$

If $E_{2} \cap E\left(X_{1}(0)\right)=\emptyset$, then $\left|E_{3} \cap E\left(X_{1}(0)\right)\right| \geq 2$. Without loss of generality, we can assume that $(i,-i),(j,-j) \in E\left(X_{1}(0)\right)$, and thus $2 i, 2 j \in S$. We deduce that $2 i=-i$, since $3 i=0$ from $i, j, i-j \neq 0$ and $E_{2} \cap E\left(X_{1}(0)\right)=\emptyset$. Similarly we have $3 j=0$. Hence $i= \pm j$. This contradicts the fact that $|S|=6$. Hence it follows that $E_{2} \cap E\left(X_{1}(0)\right) \neq \emptyset$, and without loss of generality we can assume that $(i,-j) \in E\left(X_{1}(0)\right)$, and thus $-i-j \in S$. Hence $-i-j \in\{i, j\}$ since $i, j \neq 0$. So we have $-j=2 i$ or $-i=2 j$. Therefore, $S=\{ \pm s, \pm 2 s, \pm 3 s\}$ where $s$ is some integer. Similarly, it follows that $T=\{ \pm t, \pm 2 t, \pm 3 t\}$ for some integer $t$ because $\left|E\left(X_{1}^{\prime}(0)\right)\right|=\left|E\left(X_{1}(0)\right)\right| \geq 8$. Since $\langle s\rangle=\langle t\rangle=Z_{k}$, the mapping $\pi: s \mapsto t$ can be extended to an automorphism of $Z_{k}$.
Case 2. $\left|E\left(X_{1}(0)\right)\right|=6$. Assume $\sigma: X \rightarrow X^{\prime}$ is a graph isomorphism. We can assume that $0^{\sigma}=0$ since $X^{\prime}$ is vertex-transitive. Therefore $S^{\sigma}=T$. By the symmetry of $S$ and $T$, we can also assume that $i^{\sigma}=u$. It is easy to see that $X_{1}(0)$ is a cycle, and $i$ is adjacent to $i-j$ and $j$. Similarly, $X_{1}^{\prime}(0)$ is also a cycle and $u$ is adjacent to $u-v$ and $v$. Hence $\{i-j, j\}^{\sigma}=\{u-v, v\}$. Again we can assume that $j^{\sigma}=v$, and therefore $(i-j)^{\sigma}=u-v,(-j)^{\sigma}=-v,(-i)^{\sigma}=-u,(-i+j)^{\sigma}=-u+v$. It is easy to show that $V\left(X_{1}(i)\right) \cap V\left(X_{1}(j)\right)=\{0, j, i \pm j, 2 i, 2 i-j\} \cap\{0, i, \pm i+j, 2 j, 2 j-$ $i\}=\{0, i+j\}$ and $V\left(X_{1}^{\prime}(u)\right) \cap V\left(X_{1}^{\prime}(v)\right)=\{0, u+v\}$. Since $X_{1}(i)^{\sigma}=X_{1}^{\prime}(u)$ and $X_{1}(j)^{\sigma}=X_{1}^{\prime}(v)$, we have that $(i+j)^{\sigma}=u+v$. Similarly we can show that $(2 i-j)^{\sigma}=2 u-v,(-i-j)^{\sigma}=-u-v,(-2 i+j)^{\sigma}=-2 u+v,(i-2 j)^{\sigma}=$ $u-2 v,(-i+2 j)^{\sigma}=-u+2 v$. Now consider $X_{1}(i)$ again. Since $X_{1}(i)^{\sigma}=X_{1}^{\prime}(u)$ and $\{0, j, i \pm j, 2 i-j\}^{\sigma}=\{0, v, u \pm v, 2 u-v\}$, we have $(2 i)^{\sigma}=2 u$. Similarly, $(-2 i)^{\sigma}=-2 u,(2 j)^{\sigma}=2 v,(-2 j)^{\sigma}=-2 v$. So we have that $(m i+n j)^{\sigma}=m u+n v$,
where $m, n$ are integers and $|m|+|n| \leq 2$. By the transitivity of $X$, it follows that if $x, y \in D_{2 k}$ are such that $x^{\sigma}=y,(x+i)^{\sigma}=y+u,(x+j)^{\sigma}=y+v$, then $(x+m i+n j)^{\sigma}=y+m u+n v$ where $|m|+|n| \leq 2$. By induction on $|m|+|n|$, it follows that $(m i+n j)^{\sigma}=m u+n v, \forall m, n \in Z$. Thus $\sigma: Z_{k} \rightarrow Z_{k}$ is a group isomorphism.
Case 3. $\left|E\left(X_{1}(0)\right)\right|=7$. Then $\left|E\left(X_{1}(0)\right) \backslash E_{1}\right|=1$. It is easy to show that $E\left(X_{1}(0)\right) \backslash E_{1} \subseteq\{(i,-i),(j,-j),(i-j, j-i)\}$ (otherwise $\left.\left|E\left(X_{1}(0)\right)\right|>7\right)$. We can assume that $(i,-i) \in E\left(X_{1}(0)\right)$. By the analysis in case 1 , we have $3 i=0$. We can also assume that $(u,-u) \in E\left(X_{1}^{\prime}(0)\right)$. So $\pm i, \pm u$ are the only vertices of valency 3 in $X_{1}(0)$ and $X_{1}^{\prime}(0)$. Assume the graph isomorphism $\sigma: X \rightarrow X^{\prime}$ is such that $0^{\sigma}=0$. Then $\{ \pm i\}^{\sigma}=\{ \pm u\}$. By the same argument as in case 2 , we can complete the proof.
Definition 3.2 Given a digraph $\Gamma$, we define the Step-2-digraph of $\Gamma$, denoted by $X=S T(\Gamma)$, by $V(X)=V(\Gamma), E(X)=\{(x, y) \mid x, y \in V(\Gamma), x \neq y, \exists z \in$ $V(\Gamma)$ such that $(x, z),(z, y) \in E(\Gamma)\}$.
Thus $x, y \in V(\Gamma)$ are adjacent in $S T(\Gamma)$ if and only if there is a path of length 2 connecting them in $\Gamma$.

Lemma 3.3 Let $\operatorname{Cay}(G ; S)$ be the Cayley digraph of $G$ with respect to $S$. Then $S T(\operatorname{Cay}(G ; S))=\operatorname{Cay}\left(G ; S^{2} \backslash\{1\}\right)$ where $S^{2}=\left\{s_{1} s_{2} \mid s_{1}, s_{2} \in S\right\}$.

Lemma 3.4 Let $\Gamma_{1}$ and $\Gamma_{2}$ be digraphs and let $\sigma: \Gamma_{1} \rightarrow \Gamma_{2}$ be an isomorphism. Then

$$
\bar{\sigma}: S T\left(\Gamma_{1}\right) \rightarrow S T\left(\Gamma_{2}\right), \quad x \mapsto x^{\sigma}, \quad \forall x \in V\left(S T\left(\Gamma_{1}\right)\right)=V\left(\Gamma_{1}\right)
$$

is an isomorphism.
Theorem $3.5 D_{2 k}$ is 3 -DCI if and only if $2 \nmid k$.
Proof If $D_{2 k}$ is 3-DCI, then $2 \nmid k$ by Theorem 2.1.
Suppose $2 \nmid k$. It is sufficient to show that any subset $S$ of $D_{2 k}$ with $|S|=3$ is a CI-subset. Take $S, T \subseteq D_{2 k}$ such that $|S|=|T|=3$ and $\operatorname{Cay}\left(D_{2 k} ; S\right) \cong \operatorname{Cay}\left(D_{2 k} ; T\right)$. We consider five cases.
Case 1. $S \subseteq\langle\alpha\rangle$. The proof is the same as the first case in Theorem 2.3.
Case 2. $|S \cap\langle\alpha\rangle|=2$ and $\operatorname{Cay}\left(D_{2 k} ; S\right)$ is an undirected graph. So we can assume that $S=\left\{\alpha^{ \pm i}, \beta\right\}$. It is easy to see that $|T \cap\langle\alpha\rangle|=2$ or $T \subseteq\langle\alpha\rangle \beta$. If $T \subseteq\langle\alpha\rangle \beta$ then $\operatorname{Cay}\left(D_{2 k} ; T\right)$ must be a bipartite graph. But $\operatorname{Cay}\left(D_{2 k} ; S\right)$ is not bipartite since it contains a circuit of odd length. So we can assert that $|T \cap\langle\alpha\rangle|=2$. Assume that $T=\left\{\alpha^{ \pm u}, \beta\right\}$. We have $\operatorname{ord}\left(\alpha^{i}\right)=\operatorname{ord}\left(\alpha^{u}\right)$ from $|\langle S\rangle|=|\langle T\rangle|$. By Lemma 1.6, there exists $\pi \in \operatorname{Aut}\left(Z_{k}\right)$ such that $i^{\pi}=u$. By Lemma 1.8, we know that $\pi$ can be extended to an automorphism $\bar{\pi}$ of $D_{2 k}$ with $S^{\bar{\pi}}=T$.
Case 3. $|S \cap\langle\alpha\rangle|=2$ and $\operatorname{Cay}\left(D_{2 k} ; S\right)$ is not an undirected graph. So we can assume that $S=\left\{\alpha^{i}, \alpha^{j}, \beta\right\}$ where $i+j \not \equiv 0(\bmod k)$. There are just one edge and two arcs starting from each vertex of $\operatorname{Cay}\left(D_{2 k} ; S\right)$. So we can assert that $|T \cap\langle\alpha\rangle|=2$. Assume that $T=\left\{\alpha^{u}, \alpha^{v}, \beta\right\}$. If we delete all edges from $\operatorname{Cay}\left(D_{2 k} ; S\right)$ and $\operatorname{Cay}\left(D_{2 k} ; T\right)$, the two digraphs we get are again isomorphic, namely, $\operatorname{Cay}\left(D_{2 k} ; \alpha^{i}, \alpha^{j}\right) \cong \operatorname{Cay}\left(D_{2 k} ; \alpha^{u}, \alpha^{v}\right)$. Hence $\operatorname{Cay}\left(\langle\alpha\rangle ; \alpha^{i}, \alpha^{j}\right) \cong \operatorname{Cay}\left(\langle\alpha\rangle ; \alpha^{u}, \alpha^{v}\right) . \operatorname{By}$

Theorem 1.3 and Lemma 1.8, it follows that there is an automorphism $\bar{\pi} \in \operatorname{Aut}\left(D_{2 k}\right)$ such that $S^{\pi}=T$.
Case 4. $|S \cap\langle\alpha\rangle|=1$. So there are exactly two edges and one arc starting from each vertex of $\operatorname{Cay}\left(D_{2 k} ; S\right)$. Hence $|T \cap\langle\alpha\rangle|=1$. By Lemma 1.5, we have $|\langle S\rangle|=|\langle T\rangle|$. It suffices to show that the statement is true for the case $\langle S\rangle=\langle T\rangle=D_{2 k}$. (If $\langle S\rangle \neq D_{2 k}$, we still have $\operatorname{Cay}(\langle S\rangle ; S) \cong \operatorname{Cay}(\langle T\rangle ; T)$. Using the proof below, we can get an isomorphism $\pi_{1}:\langle S\rangle \rightarrow\langle T\rangle$ with $S^{\pi_{1}}=T$. Then Lemma 1.9 applies and $\pi_{1}$ can be extended to an automorphism of $D_{2 k}$.)
Suppose that $\sigma: \operatorname{Cay}\left(D_{2 k} ; S\right) \rightarrow \operatorname{Cay}\left(D_{2 k} ; T\right)$ is an isomorphism. Since Cayley digraphs are vertex-transitive, we can assume $1^{\sigma}=1$. In $\operatorname{Cay}\left(D_{2 k} ; S\right)$ we have that $\left\{x \in D_{2 k} \mid\right.$ any path from 1 to $x$ contains even number of edges $\}=\langle\alpha\rangle$. And $\operatorname{Cay}\left(D_{2 k} ; T\right)$ has the same property. Hence $\langle\alpha\rangle^{\sigma}=\langle\alpha\rangle$. By Lemma 3.4, we know that $\sigma$ induces an isomorphism $\bar{\sigma}: S T\left(\operatorname{Cay}\left(D_{2 k} ; S\right)\right) \rightarrow S T\left(\operatorname{Cay}\left(D_{2 k} ; T\right)\right)$. Assume $S=\left\{\beta, \alpha^{j} \beta, \alpha^{i}\right\}$ and $T=\left\{\beta, \alpha^{\nu} \beta, \alpha^{u}\right\}$. By Lemma 3.3, we have

$$
S T\left(\operatorname{Cay}\left(D_{2 k} ; S\right)\right)=\operatorname{Cay}\left(D_{2 k} ; \alpha^{2 i}, \alpha^{ \pm j}, \alpha^{ \pm i} \beta, \alpha^{j \pm i} \beta\right)
$$

and

$$
S T\left(\operatorname{Cay}\left(D_{2 k} ; T\right)\right)=\operatorname{Cay}\left(D_{2 k} ; \alpha^{2 u}, \alpha^{ \pm v}, \alpha^{ \pm u} \beta, \alpha^{v \pm u} \beta\right)
$$

Because $\langle\alpha\rangle^{\sigma}=\langle\alpha\rangle$ and the subdigraph of $S T\left(\operatorname{Cay}\left(D_{2 k} ; S\right)\right)$ spanned by $\langle\alpha\rangle$ is Cay $\left(\langle\alpha\rangle ; \alpha^{2 i}, \alpha^{ \pm j}\right)$, we have that Cay $\left(\langle\alpha\rangle ; \alpha^{2 i}, \alpha^{ \pm j}\right) \cong \operatorname{Cay}\left(\langle\alpha\rangle ; \alpha^{2 u}, \alpha^{ \pm v}\right)$. By Theorem 1.3, there is an automorphism $\pi \in \operatorname{Aut}\left(Z_{k}\right)$ such that $\{2 i, \pm j\}^{\pi}=\{2 u, \pm v\}$. Hence $\{ \pm j\}^{\pi}=\{ \pm v\}$ and $\{2 i\}^{\pi}=\{2 u\}$. Since $2 \nmid k$, we have $i^{\pi}=u$. Now if $j^{\pi}=v$, by Lemma 1.8, there exists $\bar{\pi} \in \operatorname{Aut}\left(D_{2 k}\right)$ such that

$$
\beta^{\bar{\pi}}=\beta,\left(\alpha^{m}\right)^{\bar{\pi}}=\alpha^{m^{\pi}}, \forall m \in Z .
$$

So $S^{\bar{\pi}}=T$. If $j^{\pi}=-v$, by Lemma 1.7, consider $\gamma=\alpha^{v} \beta$. Since $\beta=\alpha^{-v} \gamma$, it is the same as when $j^{\pi}=v$.
Case 5. $S \subseteq\{\alpha\rangle \beta$. By the analysis above, we immediately get $T \subseteq\langle\alpha\rangle \beta$. Assume $S=\left\{\beta, \alpha^{i} \beta, \alpha^{j} \beta\right\}$ and $T=\left\{\beta, \alpha^{u} \beta, \alpha^{v} \beta\right\}$. Write

$$
S_{2}=\left\{\alpha^{ \pm i}, \alpha^{ \pm j}, \alpha^{ \pm(i-j)}\right\}, T_{2}=\left\{\alpha^{ \pm u}, \alpha^{ \pm v}, \alpha^{ \pm(u-v)}\right\} .
$$

By Lemma 3.3, we have

$$
S T\left(\operatorname{Cay}\left(D_{2 k} ; S\right)\right)=\operatorname{Cay}\left(D_{2 k} ; S_{2}\right),
$$

and

$$
S T\left(\operatorname{Cay}\left(D_{2 k} ; T\right)\right)=\operatorname{Cay}\left(D_{2 k} ; T_{2}\right)
$$

By Lemma 3.4, we have

$$
\operatorname{Cay}\left(D_{2 k} ; S_{2}\right) \cong \operatorname{Cay}\left(D_{2 k} ; T_{2}\right)
$$

Hence

$$
\operatorname{Cay}\left(\langle\alpha\rangle ; S_{2}\right) \cong \operatorname{Cay}\left(\langle\alpha\rangle ; T_{2}\right)
$$

Notice that $\left|S_{2}\right|=\left|T_{2}\right|=2,4$ or 6 . If $\left|S_{2}\right|=\left|T_{2}\right|=2$ or 4 , by Theorem 1.3, $\langle\alpha\rangle$ is 2 -CI and $4-\mathrm{CI}$, and thus there exists $\pi \in \operatorname{Aut}(\langle\alpha\rangle)$ such that $S_{2}{ }^{\pi}=T_{2}$. So the conclusion is immediate. Now let us consider the case for $\left|S_{2}\right|=\left|T_{2}\right|=6$. By Lemma 3.1, there exists $\pi \in \operatorname{Aut}\left(Z_{k}\right)$ such that $\{ \pm i, \pm j, \pm(i-j)\}^{\pi}=\{ \pm u, \pm v, \pm(u-v)\}$. Without loss of generality, we can assume that $i^{\pi}=u$, and hence $(-i)^{\pi}=-u$. If $j^{\pi}=-v$, then $u+v=(i-j)^{\pi} \in\{ \pm(u-v)\}$, and therefore $u=0$ or $v=0$. This contradicts the fact that $|T|=3$.
If $j^{\pi}=-(u-v)$ we can get the same contradiction as above.
If $j^{\pi}=v$ then $(i+j)^{\pi}=u+v$. By Lemma 1.8, there exists $\bar{\pi} \in \operatorname{Aut}\left(D_{2 k}\right)$ such that

$$
\beta^{\bar{\pi}}=\beta, \quad\left(\alpha^{m}\right)^{\bar{\pi}}=\alpha^{m^{\pi}}, \quad \forall m \in Z .
$$

So $S^{\bar{\pi}}=T$.
If $j^{\pi}=(u-v)$, then $(i-j)^{\pi}=v$. By Lemma 1.8, there exists $\bar{\pi} \in \operatorname{Aut}\left(D_{2 k}\right)$ such that

$$
\beta^{\bar{\pi}}=\alpha^{u} \beta, \quad\left(\alpha^{m}\right)^{\bar{\pi}}=\alpha^{-\left(m^{\pi}\right)}, \quad \forall m \in Z .
$$

So $S^{\pi}=T$.
The proof is completed by the analysis above.
Corollary 3.7 $D_{2 k}$ is 3 -CI if and only if $2 \nmid k$.

## Acknowledgment

Professor Ming-Yao Xu introduced us to this field. We are grateful for his encouragement and help. We thank the referee and the editor for very helpful suggestions.

## References

[1] Xin-Gui Fang, A characterization of finite abelian 2-DCI-groups (Chinese), J. of Math. (Wuhan) 8 (1988), 315-317.
[2] Xin-Gui Fang, Abelian 3-DCI-groups of even order, Ars Combinatoria 32 (1991), 263-267.
[3] Xin-Gui Fang and Min Wang, Isomorphisms of Cayley graphs of valency m $(\leq 5)$ for a finite commutative group (Chinese), Chinese Ann. Math. Ser.A 13 (1992), suppl.7-14.
[4] Xin-Gui Fang and Ming-Yao Xu, Abelian 3-DCI-groups of odd order, Ars Combinatoria 28 (1989), 247-251.
[5] Xin-Gui Fang and Ming-Yao Xu, On isomorphisms of Cayley graphs of small valency, Algebra Colloq. 1 (1994), 67-76.
[6] Cai Heng Li, Finite Abelian groups with the m-DCI property, Ars Combinatoria (summitted for publication.)
[7] Mingyao Xu, Some work on vertex-transitive graphs by Chinese mathematicians, in Group Theory in China, Science Press/Kluwer Academic Publishers, Beijing/New York, 1996; pp.224-254.
(Received 24/6/96)


[^0]:    *The work for this paper was supported by the National Natural Science Foundation of China and the Doctorial Program Foundation of Institutions of Higher Education (P. R. China).

