ON THE DIRECTED TRIPLE SYSTEMS WITH A GIVEN AUTOMORPHISM

Biagio Micale *
Department of Mathematics - University of Catania - Italy
and
\section*{Mario Pennisi ${ }^{*}$}
Department of S.A.V.A. - University of Molise - Italy

Abstract

A directed triple system of order v, denoted DTS(v), is said to be f-bicyclic if it admits an automorphism consisting of f fixed points and two disjoint cycles. In this paper, we give necessary and sufficient conditions for the existence of f-bicyclic DTS(v)s.

1. Introduction

A directed triple is a set of three ordered pairs of the form $\{(\mathrm{x}, \mathrm{y}),(\mathrm{y}, \mathrm{z}),(\mathrm{x}, \mathrm{z})\}$, that we will denote by $[\mathrm{x}, \mathrm{y}, \mathrm{z}]$. A directed triple system of order v , denoted DTS(v), is a pair (V, β), where V is a v-set and β is a set of directed triples of elements of V , called blocks, such that any ordered pair of distinct elements of V occurs in exactly one block of β. A DTS(v) exists if and only if $v \equiv 0$ or $1(\bmod 3)$ [4].

An automorphism of a $\operatorname{DTS}(\mathrm{v})$ is a permutation π of V which fixes β. The orbit of a block under π is the image of the block under the powers of π. A set of blocks β^{\prime} is said to be a set of base blocks for a $\mathrm{DTS}(\mathrm{v})$ under the permutation π if the orbits of the blocks of β^{\prime} produce the $\operatorname{DTS}(\mathrm{v})$ and exactly one block of β^{\prime} occurs in each orbit.

Several types of automorphisms have been studied for the question: "For what values

[^0]of v does there exist a DTS(v) admitting an automorphism of the given type?". In particular, a DTS(v) admitting an automorphism consisting of a single cycle is said to be cyclic; a cyclic DTS(v) exists if and only if $\mathrm{v} \equiv 1,4$ or $7(\bmod 12)$ [2]. A DTS(v) admitting an automorphism consisting of a fixed point and a cycle of length $\mathrm{v}-1$ is said to be rotational; a rotational DTS(v) exists if and only if $\mathrm{v} \equiv 0(\bmod 3)$ [1]. A DTS(v) admitting an automorphism consisting of f fixed points and a single cycle of length ≥ 2 will be said to be f -cyclic; an f -cyclic DTS(v), with $\mathrm{f} \geq 2$, exists if and only if $\mathrm{v} \geq 2 \mathrm{f}+1$ and, further, $\mathrm{v} \equiv 0(\bmod 3)$ and $\mathrm{f} \equiv 1(\bmod 3)$ or $\mathrm{v} \equiv 1(\bmod 3)$ and $\mathrm{f} \equiv 0(\bmod 3)[5]$. A DTS(v) admitting an automorphism consisting of two distinct cycles is said to be bicyclic; a bicyclic DTS(v) admitting an automorphism consisting of two cycles of the same length exists if and only if $\mathrm{v} \equiv 4(\bmod 6)$; a bicyclic DTS(v) admitting an automorphism consisting of a cycle of length M and a cycle of length N, where $M>N$, exists if and only if $\mathrm{N} \equiv 1,4$ or $7(\bmod 12)$ and $\mathrm{M}=\mathrm{kN}$, with $\mathrm{k} \equiv 2(\bmod 3)[3]$.

A DTS(v) admitting an automorphism consisting of f fixed points and two disjoint cycles will be said to be f-bicyclic. The purpose of this paper is to present necessary and sufficient conditions for the existence of f-bicyclic DTS(v)s. We break this into two cases: in the first we assume that the two cycles have the same length, and in the second case we assume that the cycles have different lengths.

2. Automorphism consisting of fixed points and two cycles of the same length

In this section, we will consider f -bicyclic DTS(v)s, in which the two cycles have the same length N, with vertex set $Z_{N} \times\{0,1\} \cup\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{f}\right\}$, where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{f}$ are the fixed points of the automorphism π. We will represent $(x, 0) \in Z_{N} \times\{0\}$ as x_{0} and $(\mathrm{x}, 1) \in \mathrm{Z}_{\mathrm{N}} \times\{1\}$ as x_{1}, therefore we have:

$$
\pi=\left(\alpha_{1}\right)\left(\alpha_{2}\right) \ldots\left(\alpha_{\mathrm{f}}\right)\left(0_{0}, 1_{0}, \ldots,(\mathrm{~N}-1)_{0}\right)\left(0_{1}, 1_{1}, \ldots,(\mathrm{~N}-1)_{1}\right)
$$

It is easy to prove the following preliminary lemma.
Lemma 2.1. The fixed points of an automorphism of a DTS(v) form a subsystem.

We have the following necessary conditions:
Lemma 2.2. If there exists an f -bicyclic $\mathrm{DTS}(\mathrm{v})$ admitting an automorphism π in which the two cycles have the same length, then $\mathrm{v} \geq 2 \mathrm{f}+1, \mathrm{v} \equiv 0$ or $1(\bmod 3), \mathrm{f} \equiv 0$ or 1 $(\bmod 3)$ and $\mathrm{v}+\mathrm{f} \equiv 4(\bmod 6)$.

Proof. A basic condition for the existence of an f -bicyclic DTS(v) is $\mathrm{v} \equiv 0$ or $1(\bmod 3)$, since this is the spectrum for DTS(v)s. Further, from Lemma 2.1 it follows that $\mathrm{f} \equiv 0$ or 1 $(\bmod 3)$.
Since the automorphism π has two cycles of length $\frac{v-f}{2}$, we have that $v-f$ is even.
Further, if α is a fixed point, then there does exist two blocks starter containing α as only fixed point, $\left[0_{0}, \alpha, x_{0}\right]$ and $\left[0_{1}, \alpha, x_{1}\right]$, or $\left[0_{0}, \alpha, x_{1}\right]$ and $\left[0_{1}, \alpha, x_{0}\right]$. It follows that, using the standard idea of difference methods, we have that the number of fixed points can't be greater than the half of the number of differences, i. e. $f \leq v-f-1$, therefore we have $v \geq 2 f+1$. Finally, the number of blocks of fixed points is $\frac{f(f-1)}{3}$ and the length of the orbit of each other block is $\frac{\mathrm{v}-\mathrm{f}}{2}$; since the number of blocks in a $\operatorname{DTS}(\mathrm{v})$ is $\frac{\mathrm{v}(\mathrm{v}-1)}{3}$, we have that $\frac{\mathrm{v}-\mathrm{f}}{2}$ divides $\frac{\mathrm{v}(\mathrm{v}-1)}{3}-\frac{\mathrm{f}(\mathrm{f}-1)}{3}$, and therefore $\mathrm{v}+\mathrm{f} \equiv 1(\bmod 3)$. Since $\mathrm{v}-\mathrm{f}$ is even, we have $\mathrm{v}+\mathrm{f} \equiv 4(\bmod 6)$.

Theorem 2.1. An f-bicyclic DTS(v) admitting an automorphism π in which the two cycles have the same length, exists if and only if $\mathrm{v} \geq 2 \mathrm{f}+1, \mathrm{v} \equiv 0$ or $1(\bmod 3), \mathrm{f} \equiv 0$ or 1 $(\bmod 3) \operatorname{and} \mathrm{v}+\mathrm{f} \equiv 4(\bmod 6)$.
Proof. If $\mathrm{v} \geq 2 \mathrm{f}+1, \mathrm{v} \equiv 0$ or $1(\bmod 3), \mathrm{f} \equiv 0$ or $1(\bmod 3)$ and $\mathrm{v}+\mathrm{f} \equiv 4(\bmod 6)$, then there is a DTS(v) which admits an automorphism π consisting of f fixed points and a cycle of length v-f. By considering π^{2} we see that this $\operatorname{DTS}(v)$ is also f-bicyclic. This shows that the necessary conditions of Lemma 2.2 are also sufficient.

3. Automorphism consisting of f fixed points and two cycles of different lengths

In this section, we will consider f -bicyclic $\mathrm{DTS}(\mathrm{v}) \mathrm{s}, \mathrm{f}>0$, in which the two cycles
have lengths M and $N, M>N$, with vertex set $Z_{N} \times\{0\} \cup Z_{M} \times\{1\} \cup\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{f}\right\}$, where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{f}$ are the fixed points of the automorphism π. We will represent $(\mathrm{x}, 0) \in \mathrm{Z}_{\mathrm{N}} \times\{0\}$ as x_{0} and $(\mathrm{x}, 1) \in \mathrm{Z}_{\mathrm{M}} \times\{1\}$ as x_{1}, therefore we have:

$$
\pi=\left(\alpha_{1}\right)\left(\alpha_{2}\right) \ldots\left(\alpha_{\mathrm{f}}\right)\left(0_{0}, 1_{0}, \ldots,(\mathrm{~N}-1)_{0}\right)\left(0_{1}, 1_{1}, \ldots,(\mathrm{M}-1)_{1}\right)
$$

We have the following necessary conditions:
Lemma 3.1. If there exists an f -bicyclic $\mathrm{DTS}(\mathrm{v}), \mathrm{f}>0$, admitting an automorphism π in which the two cycles have lengths M and N respectively, $\mathrm{M}>\mathrm{N}$, then $\mathrm{N} \geq \mathrm{f}+1$, $\mathrm{M}=\mathrm{kN}, \mathrm{k} \equiv 2(\bmod 3)$ and, further, $\mathrm{N} \equiv 1(\bmod 3)$ and $\mathrm{f} \equiv 0(\bmod 3)$ or $\mathrm{N} \equiv 2(\bmod 3)$ and $\mathrm{f} \equiv 1(\bmod 3)$.

Proof. Suppose that there is an f-bicyclic DTS(v) with the vertex set and the automorphism as described above.
The set of fixed points of π^{N} is precisely the set $Z_{N} \times\{0\} \cup\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{f}\right\}$, therefore by using the Lemma 2.1 we obtain that this set forms an f -cyclic $\mathrm{DTS}(\mathrm{N}+\mathrm{f})$. Therefore, $\mathrm{N} \geq \mathrm{f}+1$ and, further, $\mathrm{N}+\mathrm{f} \equiv 0(\bmod 3)$ and $\mathrm{f} \equiv 1(\bmod 3)$ or $\mathrm{N}+\mathrm{f} \equiv 1(\bmod 3)$ and $\mathrm{f} \equiv 0$ $(\bmod 3)$. So there must be some blocks of the f-bicyclic DTS(v) with one vertex from $Z_{N} \times\{0\}$ and two vertices from $Z_{M} \times\{1\}$. Since such blocks are fixed under π^{M}, we have that N divides M , say $\mathrm{M}=\mathrm{kN}$.
The number of blocks of the DTS(v) is $\frac{\mathrm{v}(\mathrm{v}-1)}{3}$ and the number of blocks of the f -cyclic $\operatorname{DTS}(\mathrm{N}+\mathrm{f})$ with vertex set $\mathrm{Z}_{\mathrm{N}} \times\{0\} \cup\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\mathrm{f}}\right\}$ is $\frac{(\mathrm{N}+\mathrm{f})(\mathrm{N}+\mathrm{f}-1)}{3}$. The length of the orbit of each other block of the $\operatorname{DTS}(v)$ is M, therefore M divides $\frac{\mathrm{v}(\mathrm{v}-1)}{3}-\frac{(\mathrm{N}+\mathrm{f})(\mathrm{N}+\mathrm{f}-1)}{3}$. It follows that $\mathrm{M}+2(\mathrm{~N}+\mathrm{f}) \equiv 1(\bmod 3)$. If $\mathrm{N}+\mathrm{f} \equiv 1$ $(\bmod 3)$, then $\mathrm{kN} \equiv 2(\bmod 3)$; therefore, $\mathrm{N} \equiv 1(\bmod 3), \mathrm{f} \equiv 0(\bmod 3)$ and $\mathrm{k} \equiv 2$ $(\bmod 3)$. If $\mathrm{N}+\mathrm{f} \equiv 0(\bmod 3)$, then $\mathrm{kN} \equiv 1(\bmod 3)$; therefore, $\mathrm{N} \equiv 2(\bmod 3), \mathrm{f} \equiv 1$ $(\bmod 3)$ and $\mathrm{k} \equiv 2(\bmod 3)$.

We now show that the necessary conditions of Lemma 3.1 are also sufficient.
We require the use of two structures. An (A, n)-system is a collection of ordered pairs
$\left(a_{r}, b_{r}\right), \mathrm{r}=1,2, \ldots, \mathrm{n}$, that partition the set $\{1,2, \ldots, 2 \mathrm{n}\}$ with the property that $\mathrm{b}_{\mathrm{r}}=\mathrm{a}_{\mathrm{r}}$ +r , for every r . It is proved in [7] that an (A, n)-system exists if and only if $\mathrm{n} \equiv 0$ or 1 $(\bmod 4) . \mathrm{A}(\mathrm{B}, \mathrm{n})$-system is a collection of ordered pairs $\left(a_{r}, b_{r}\right), \mathrm{r}=1,2, \ldots, \mathrm{n}$, that partition the set $\{1,2, \ldots, 2 n-1,2 n+1\}$ with the property that $b_{r}=a_{r}+r$ for every r. It is proved in [6] that a (B, n)-system exists if and only if $n \equiv 2$ or $3(\bmod 4)$.

Lemma 3.2. An f -bicyclic $\operatorname{DTS}(\mathrm{v}), \mathrm{f}>0$, admitting an automorphism π in which the two cycles have lengths M and N respectively, $\mathrm{M}>\mathrm{N}$, exists if $\mathrm{N} \geq \mathrm{f}+1, \mathrm{M}=\mathrm{kN}, \mathrm{k} \equiv 2$ $(\bmod 3), \mathrm{N} \equiv 1(\bmod 3)$ and $\mathrm{f} \equiv 0(\bmod 3)$.

Proof. Let $\mathrm{N} \equiv 1(\bmod 3), \mathrm{f} \equiv 0(\bmod 3), \mathrm{f}>0, \mathrm{~N} \geq \mathrm{f}+1, \mathrm{M}=\mathrm{kN}$, with $\mathrm{k} \equiv 2(\bmod 3)$ and let $\mathrm{h}=\frac{\mathrm{M}-\mathrm{N}-\mathrm{f}-1}{3}$.

We define a set of blocks, β_{1}, and we consider two cases:

1) If $h \equiv 0$ or $1(\bmod 4)$, let:
$\beta_{1}=\left\{\left[0_{1}, r_{1},\left(b_{r}+h\right)_{1}\right]: r=1,2, \ldots, h\right.$ and b_{r} from an (A, h) - system
(omit these blocks if $\mathrm{h}=0)\} \cup\left\{\left[0_{1}, \alpha_{\mathrm{i}},(3 \mathrm{~h}+\mathrm{i})_{1}\right]: \mathrm{i}=1,2, \ldots, \mathrm{f}-2\right\}$
2) If $h \equiv 2$ or $3(\bmod 4)$, let:
$\beta_{1}=\left\{\left[0_{1}, r_{1},\left(\mathrm{~b}_{\mathrm{r}}+\mathrm{h}\right)_{1}\right]: \mathrm{r}=1,2, \ldots, \mathrm{~h}\right.$ and b_{r} from $\left.\mathrm{a}(\mathrm{B}, \mathrm{h})-\operatorname{system}\right\} \cup\left\{\left[0_{1}, \alpha_{1},(3 \mathrm{~h})_{1}\right]\right\} \cup$ $\cup\left\{\left[0_{1}, \alpha_{i},(3 h+i)_{1}\right]: i=2,3, \ldots, f-2\right.$ (omit these blocks if $\left.\left.f=3\right)\right\}$

We now define another set of blocks, β_{2}, and we consider four cases:

1) If $N \equiv 1(\bmod 12)$, say $N=12 t+1$, let:
$\beta_{2}=\left\{\left[0_{0},(3 t+r)_{1},(3 t-r-1)_{1}\right],\left[0_{0},(9 t+r+1)_{1},(9 t-r-1)_{1}\right]\right.$,
$\left.\left[(9 t-r-1)_{1},(M-3 t+r)_{1}, 0_{0}\right],\left[(3 t-r-1)_{1},(M-9 t-1+r)_{1}, 0_{0}\right]: r=0,1, \ldots, 3 t-1\right\} \cup$
$\left.\mathcal{Y}\left[(9 \mathrm{t})_{1}, 0_{0},(\mathrm{M}-3 \mathrm{t}-1)_{1}\right]\right\} \cup\left\{\left[0_{1}, \alpha_{\mathrm{f}-1},(\mathrm{M}-\mathrm{N}-2)_{1}\right],\left[0_{1}, \alpha_{\mathrm{f}},(\mathrm{M}-\mathrm{N}-1)_{1}\right]\right\}$
2) If $N \equiv 4(\bmod 12)$, say $N=12 t+4$, let:
$\beta_{2}=\left\{\left[0_{0},(3 t+r+1)_{1},(3 t-r)_{1}\right],\left[(9 t+2-r)_{1},(M-3 t+r)_{1}, 0_{0}\right]: r=0,1, \ldots, 3 t\right\} \cup$
$\cup\left\{\left[0_{0},(9 t+4+r)_{1},(9 t+2-r)_{1}\right],\left[(3 t+1-r)_{1},(M-9 t-2+r)_{1}, 0_{0}\right]: r=0,1, \ldots, 3 t-1\right\} \cup$
$\cup\left\{\left[1_{1}, 0_{0},(\mathrm{M}-6 \mathrm{t}-2)_{1}\right],\left[(9 \mathrm{t}+3)_{1}, 0_{0},(\mathrm{M}-3 \mathrm{t}-1)_{1}\right]\right\} \cup$
$\cup\left\{\left[0_{1}, \alpha_{f-1},(\mathrm{M}-\mathrm{N}-2)_{1}\right],\left[0_{1}, \alpha_{f},(\mathrm{M}-\mathrm{N}-1)_{1}\right]\right\}$
3) If $N \equiv 7(\bmod 12)$, say $N=12 t+7$, let:
$\beta_{2}=\left\{\left[0_{0},(3 \mathrm{t}+2+\mathrm{r})_{1},(3 \mathrm{t}+1-\mathrm{r})_{1}\right],\left[(3 \mathrm{t}+1-\mathrm{r})_{1},(\mathrm{M}-9 \mathrm{t}-5+\mathrm{r})_{1}, 0_{0}\right]: \mathrm{r}=0,1, \ldots, 3 \mathrm{t}+1\right\} \cup$
$\cup\left\{\left[0_{0},(9 t+6+r)_{1},(9 t+4-r)_{1}\right],\left[(9 t+4-r)_{1},(M-3 t-1+r)_{1}, 0_{0}\right]: r=0,1, \ldots, 3 t\right\} \cup$
$\cup\left\{\left[(9 \mathrm{t}+5)_{1}, 0_{0},(\mathrm{M}-3 \mathrm{t}-2)_{1}\right]\right\} \cup\left\{\left[0_{1}, \alpha_{\mathrm{f}-1},(\mathrm{M}-\mathrm{N}-2)_{1}\right],\left[0_{1}, \alpha_{\mathrm{f}},(\mathrm{M}-\mathrm{N}-1)_{1}\right]\right\}$
4) If $N \equiv 10(\bmod 12)$, say $N=12 t+10$, let:
$\beta_{2}=\left\{\left[0_{0},(3 \mathrm{t}+2+\mathrm{r})_{1},(3 \mathrm{t}+1-\mathrm{r})_{1}\right],\left[0_{0},(9 \mathrm{t}+7+\mathrm{r})_{1},(9 \mathrm{t}+5-\mathrm{r})_{1}\right]: \mathrm{r}=0,1, \ldots, 3 \mathrm{t}+1\right\} \cup$
$\cup\left\{\left[(9 \mathrm{t}+7-\mathrm{r})_{1},(\mathrm{M}-3 \mathrm{t}-1+\mathrm{r})_{1}, 0_{0}\right]: r=0,1, \ldots, 3 \mathrm{t}\right\} \cup$
$\cup\left\{\left[(3 t+3-r)_{1},(M-9 t-6+r)_{1}, 0_{0}\right]: r=0,1, \ldots, 3 t+2\right\} \cup$
$\cup\left\{\left[(9 \mathrm{t}+8)_{1}, 0_{0},(\mathrm{M}-3 \mathrm{t}-4)_{1}\right],\left[(12 \mathrm{t}+10)_{1}, 0_{0},(\mathrm{M}-1)_{1}\right]\right\} \cup$
$\cup\left\{\left[0_{1}, \alpha_{f-1},(\mathrm{M}-\mathrm{N})_{1}\right],\left[0_{1}, \alpha_{\mathrm{f}},(\mathrm{M}-6 \mathrm{t}-6)_{1}\right]\right\}$
In all cases, the union of the set $\beta_{1} \cup \beta_{2}$ with a set of base blocks for an f-cyclic $\operatorname{DTS}(N+f)$ on $Z_{N} \times\{0\} \cup\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{f}\right\}$ forms a set of base blocks for an f-bicyclic DTS(v).

Lemma 3.3. An f -bicyclic $\mathrm{DTS}(\mathrm{v})$ admitting an automorphism π in which the two cycles have lengths M and N respectively, $\mathrm{M}>\mathrm{N}$, exists if $\mathrm{N} \geq \mathrm{f}+1, \mathrm{M}=\mathrm{kN}, \mathrm{k} \equiv 2(\bmod 3)$, $\mathrm{N} \equiv 5,8$ or $11(\bmod 12)$ and $\mathrm{f} \equiv 1(\bmod 3)$.

Proof. Let $\mathrm{N} \equiv 5,8$ or $11(\bmod 12), \mathrm{f} \equiv 1(\bmod 3), \mathrm{N} \geq \mathrm{f}+1, \quad \mathrm{M}=\mathrm{kN}$, with $\mathrm{k} \equiv 2$ $(\bmod 3)$ and let $\mathrm{h}=\frac{\mathrm{M}-\mathrm{N}-\mathrm{f}-1}{3}$.

We define a set of blocks, β_{1}, and we consider two cases:

1) If $h \equiv 0$ or $1(\bmod 4)$, let:
$\beta_{1}=\left\{\left[0_{1}, r_{1},\left(b_{r}+h\right)_{1}\right]: r=1,2, \ldots, h\right.$ and b_{r} from an $(A, h)-$ system (omit these blocks if $h=0)\} \cup\left\{\left[0_{1}, \alpha_{i},(3 h+i)_{1}\right]: i=1,2, \ldots, f\right\}$
2) If $h \equiv 2$ or $3(\bmod 4)$, let:
$\beta_{1}=\left\{\left[0_{1}, r_{1},\left(b_{r}+h\right)_{1}\right]: r=1,2, \ldots, h\right.$ and b_{r} from $\left.a(B, h)-\operatorname{system}\right\} \cup\left\{\left[0_{1}, \alpha_{1},(3 h)_{1}\right]\right\} \cup$ $\cup\left\{\left[0_{1}, \alpha_{i},(3 h+i)_{1}\right]: i=2,3, \ldots, f(\right.$ omit these blocks if $\left.\mathrm{f}=1)\right\}$

We now define another set, β_{2}, of blocks and we consider three cases:

1) If $N \equiv 5(\bmod 12)$, say $N=12 t+5$, let:
$\beta_{2}=\left\{\left[0_{0},(3 t+1+r)_{1},(3 t-r)_{1}\right],\left[(9 t+2-r)_{1},(M-3 t-1+r)_{1}, 0_{0}\right]: r=0,1, \ldots, 3 t\right\} \cup$
$\cup\left\{\left[0_{0},(9 t+4+r)_{1},(9 t+2-r)_{1}\right],\left[(3 t-r)_{1},(M-9 t-4+r)_{1}, 0_{0}\right]: r=0,1, \ldots, 3 t\right\} \cup$ $\cup\left\{\left[(9 \mathrm{t}+3)_{1}, 0_{0},(\mathrm{M}-3 \mathrm{t}-2)_{1}\right]\right\}$
2) If $N \equiv 8(\bmod 12)$, say $N=12 t+8$, let:
$\beta_{2}=\left\{\left[0_{0},(3 t+2+r)_{1},(3 t+1-r)_{1}\right],\left[(9 t+5-r)_{1},(M-3 t-1+r)_{1}, 0_{0}\right]: r=0,1, \ldots, 3 t+1\right\} \cup$ $\cup\left\{\left[0_{0},(9 t+7+r)_{1},(9 t+5-r)_{1}\right],\left[(3 t+2-r)_{1},(M-9 t-5+r)_{1}, 0_{0}\right]: r=0,1, \ldots, 3 t\right\} \cup$ $\cup\left\{\left[(9 t+6)_{1}, 0_{0},(M-3 t-2)_{1}\right],\left[1_{1}, 0_{0},(M-6 t-4)_{1}\right]\right\}$
3) If $N \equiv 11(\bmod 12)$, say $N=12 t+11$, let:
$\beta_{2}=\left\{\left[0_{0},(3 t+3+r)_{1},(3 t+2-r)_{1}\right]: r=0,1, \ldots, 3 t+2\right\} \cup$
$\cup\left\{\left[0_{0},(9 t+9+r)_{1},(9 t+7-r)_{1}\right],\left[(9 t+7-r)_{1},(M-3 t-2+r)_{1}, 0_{0}\right]: r=0,1, \ldots, 3 t+1\right\} \cup$
$\cup\left\{\left[(3 t+2-r)_{1},(M-9 t-8+r)_{1}, 0_{0}\right]: r=0,1, \ldots, 3 t+2\right\} \cup$
$\cup\left\{\left[(9 t+8)_{1}, 0_{0},(\mathrm{M}-3 \mathrm{t}-3)_{1}\right]\right\}$
In all cases, the union of the set $\beta_{1} \cup \beta_{2}$ with a set of base blocks for an f-cyclic $\operatorname{DTS}(\mathrm{N}+\mathrm{f})$ on $\mathrm{Z}_{\mathrm{N}} \times\{0\} \cup\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\mathrm{f}}\right\}$ forms a set of base blocks for an f -bicyclic DTS(v).
Lemma 3.4. An f -bicyclic $\mathrm{DTS}(\mathrm{v})$ admitting an automorphism π in which the two cycles have lengths M and N respectively, $\mathrm{M}>\mathrm{N}$, exists if $\mathrm{N} \geq \mathrm{f}+1, \mathrm{M}=\mathrm{kN}, \mathrm{k} \equiv 2(\bmod 3)$, $\mathrm{N} \equiv 2(\bmod 12)$ and $\mathrm{f} \equiv 1(\bmod 3)$.

Proof. Let $N \equiv 2(\bmod 12)$, say $N=12 t+2, f \equiv 1(\bmod 3), N \geq f+1, M=k N$, with $k \equiv 2$ $(\bmod 3)$ and let $\mathrm{h}=\frac{\mathrm{M}-\mathrm{N}-\mathrm{f}-1}{3}$.

We define a set of blocks, β_{1}, and we consider two cases:

1) If $h \equiv 0$ or $1(\bmod 4)$, let:
$\beta_{1}=\left\{\left[0_{1}, r_{1},\left(b_{r}+h\right)_{1}\right]: r=1,2, \ldots, h\right.$ and b_{r} from an $(A, h)-$ system
(omit these blocks if $\mathrm{h}=0)\} \cup\left\{\left[\mathrm{N}_{1}, 0_{0},(\mathrm{M}-1)_{1}\right],\left[(6 \mathrm{t}+1)_{1}, 0_{0},(\mathrm{M}-2)_{1}\right]\right\} \cup$
$\cup\left\{\left[0_{1}, \alpha_{i},(3 \mathrm{~h}+\mathrm{i})_{1}\right]: \mathrm{i}=1,2, \ldots, \mathrm{f}-1\right.$ (omit these blocks if $\left.\left.\mathrm{f}=1\right)\right\} \cup$
$\cup\left\{\left[0_{1}, \alpha_{f},(M-6 t-2)_{1}\right]\right\}$
2) If $h \equiv 2$ or $3(\bmod 4)$, let:

$$
\begin{aligned}
\beta_{1}= & \left\{\left[0_{1}, \mathrm{r}_{1},\left(\mathrm{~b}_{\mathrm{r}}+\mathrm{h}\right)_{1}\right]: \mathrm{r}=1,2, \ldots, \mathrm{~h} \text { and } \mathrm{b}_{\mathrm{r}} \text { from a }(\mathrm{B}, \mathrm{~h})-\text { system }\right\} \cup \\
& \cup\left\{\left[\mathrm{N}_{1}, 0_{0},(\mathrm{M}-2)_{1}\right],\left[(6 \mathrm{t}+1)_{1}, 0_{0},(\mathrm{M}-1)_{1}\right]\right\} \cup\left\{\left[0_{1}, \alpha_{\mathrm{f}},(\mathrm{M}-6 \mathrm{t}-3)_{1}\right]\right\} \cup \\
& \left.\cup\left\{\left[0_{1}, \alpha_{1},(3 \mathrm{~h})_{1}\right],\left[0_{1}, \alpha_{\mathrm{f}-1},(\mathrm{M}-\mathrm{N}-1)_{1}\right] \text { (omit these blocks if } \mathrm{f}=1\right)\right\} \cup \\
& \left.\cup\left\{\left[0_{1}, \alpha_{\mathrm{i}},(3 \mathrm{~h}+\mathrm{i})_{1}\right]: \mathrm{i}=2,3, \ldots, \mathrm{f}-2 \text { (omit these blocks if } \mathrm{f}=1\right)\right\}
\end{aligned}
$$

Further, let:
$\beta_{2}=\left\{\left[0_{1},(1+r)_{0},(M-6 t-1+2 r)_{1}\right]: r=0,1, \ldots, 3 t\right\} \cup$
$\cup\left\{\left[(9 \mathrm{t}-\mathrm{r})_{1}, 0_{0},(\mathrm{M}-3 \mathrm{t}-1+\mathrm{r})_{1}\right]: \mathrm{r}=0,1, \ldots, 3 \mathrm{t}-2\right\} \cup$
$\cup\left\{\left[(6 \mathrm{t}-\mathrm{r})_{1}, 0_{0},(\mathrm{M}+\mathrm{r})_{1}\right],\left[(3 \mathrm{t}-\mathrm{r})_{1}, 0_{0},(\mathrm{M}-9 \mathrm{t}-2+\mathrm{r})_{1}\right]: \mathrm{r}=0,1, \ldots, 3 \mathrm{t}-1\right\}$
In all cases, the union of the set $\beta_{1} \cup \beta_{2}$ with a set of base blocks for an f-cyclic $\operatorname{DTS}(\mathrm{N}+\mathrm{f})$ on $\mathrm{Z}_{\mathrm{N}} \times\{0\} \cup\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\mathrm{f}}\right\}$ forms a set of base blocks for an f -bicyclic DTS(v).

The results of this section combine to give us:
Theorem 3.1. An f -bicyclic $\mathrm{DTS}(\mathrm{v})$, with $\mathrm{f}>0$, admitting an automorphism π in which the two cycles have lengths M and N respectively, $\mathrm{M}>\mathrm{N}$, exists if and only if $\mathrm{N} \geq \mathrm{f}+1$, $\mathrm{M}=\mathrm{kN}, \mathrm{k} \equiv 2(\bmod 3)$ and, further, $\mathrm{N} \equiv 1(\bmod 3)$ and $\mathrm{f} \equiv 0(\bmod 3)$ or $\mathrm{N} \equiv 2(\bmod 3)$ and $\mathrm{f} \equiv 1(\bmod 3)$.

References

[1] C. J. Cho, Y. Chae and S. G. Hwang, Rotational directed triple systems, J. Korean Math. Soc. 24 (1987) 133-142.
[2] C. J. Colbourn and M. J. Colbourn, The analysis of directed triple systems by refinement, Annals of Discrete Math., 15 (1982) 93-103.
[3] R. Gardner, Bicyclic directed triple systems, Ars Combinatoria (to appear).
[4] S. H. Y. Hung and N. S. Mendelsohn, Directed triple systems, J. Combin. Theory Ser. A 14 (1973) 310-318.
[5] B. Micale and M. Pennisi, The spectrum of d-cyclic oriented triple systems, Ars Combinatoria (to appear).
[6] E. S. O'Keefe, Verification of a conjecture of Th. Skolem, Math. Scand. 9 (1961) 80-82.
[7] T. Skolem, On certain distributions of integers in pairs with given differences, Math. Scand. 5 (1957) 57-68.

[^0]: * Work supported by M.U.R.S.T. and G.N.S.A.G.A.

