On the Flat Antichain Conjecture

Frédéric Maire

Neurocomputing Research Centre Queensland University of Technology Box 2434, Brisbane Qld 4001, Australia maire@fit.qut.edu.au

Abstract

We present partial results on the Flat Antichain Conjecture. In particular, we prove that the conjecture is true when the average size of the edges is an integer.

1 Introduction

A hypergraph is a collection of subsets (called *edges*) of a finite set S. If a hypergraph \mathcal{A} is such that $A_i, A_j \in \mathcal{A}$ implies $A_i \not\subseteq A_j$, then \mathcal{A} is called an *antichain*. In other words \mathcal{A} is a collection of pairwise incomparable sets. Antichains are also known under the names *simple hypergraph* or *clutter*. The largest integer less than or equal to a real number x will be denoted by $\lfloor x \rfloor$. The smallest integer greater than or equal to a real number x will be denoted by $\lceil x \rceil$. The set of all k-subsets of an set S will be denoted by $\binom{S}{k}$.

The *Flat Antichain Conjecture*, due to Paulette Lieby [4], was motivated by the study of Completely Separating Systems [7].

Conjecture 1 (Flat Antichain Conjecture) Given an antichain \mathcal{A} on an n-set S, there exists an antichain \mathcal{F} on S satisfying the following conditions:

- 1. $|\mathcal{F}| = |\mathcal{A}|,$
- 2. $\sum_{E \in \mathcal{F}} |E| = \sum_{E \in \mathcal{A}} |E|,$
- 3. $\exists k \in [1, n], \ \mathcal{F} \subseteq \left(\binom{S}{k} \cup \binom{S}{k+1}\right).$

The first condition says that \mathcal{A} and \mathcal{F} have the same number of edges, the second condition says that their vertices versus edges incidence matrices have the same number of 1's, and the third condition says that \mathcal{F} is *flat*. If \mathcal{F} exists then we say

Australasian Journal of Combinatorics 15(1997), pp.241-245

that \mathcal{A} can be *flattened*. The sum $\sum_{E \in \mathcal{A}} |E|$ will be denoted by $t(\mathcal{A})$. We shall prove that the conjecture is true when $t(\mathcal{A})/|\mathcal{A}|$ is an integer. In fact in this case we can be more precise:

Theorem 1 Let \mathcal{A} be an antichain of an n-set S, such that $k=t(\mathcal{A})/|\mathcal{A}|$ is an integer. Then there exists an antichain \mathcal{F} on S such that

1. $|\mathcal{F}| = |\mathcal{A}|,$ 2. $t(\mathcal{F}) = t(\mathcal{A}),$ 3. $\mathcal{F} \subseteq {S \choose k}.$

To establish our results we will use the L.Y.M. inequality, which is a generalization of Sperner's theorem (the size of an antichain of an *n*-set is at most $\binom{n}{\lfloor \frac{n}{2} \rfloor}$). Lubell, Yamamoto and Meschalkin (see [1] or [2] for more details) generalized Sperner's theorem by proving that:

Theorem 2 (The L.Y.M. inequality) Let p_k denote the number of members of size k of an antichain A. Then

$$\sum_{k=1}^{n} \frac{p_k}{\binom{n}{k}} \le 1.$$

In passing, using ideas from [3], we will show that:

Theorem 3 Let \mathcal{A} be an antichain of an n-set. Then

$$\sum_{A \in \mathcal{A}} |A| \le \left\lceil \frac{n}{2} \right\rceil \binom{n}{\left\lceil \frac{n}{2} \right\rceil} \,.$$

In the last section we make some remarks on the general case of the Flat Antichain Conjecture.

2 Proofs

Proof of Theorem 1: To prove that \mathcal{F} exists, it is sufficient to prove that $|\mathcal{A}| \leq \binom{n}{k}$, where k is the integer $t(\mathcal{A})/|\mathcal{A}|$.

Let p_i denote the number of members of size *i* of the antichain \mathcal{A} , and let $m = |\mathcal{A}|$. The L.Y.M. inequality states that:

$$\sum_{i=1}^{n} \frac{p_i}{\binom{n}{i}} \le 1$$

Therefore we have:

$$\sum_{i=1}^n \frac{p_i}{m} f(i) \le \frac{1}{m}$$

where $f(i) = 1/{\binom{n}{i}}$. It is sufficient to prove that $f(k) \leq \frac{1}{m}$. The function f can be extended to the set of reals [0,n]: on [i, i+1], with i integer, define for u real in [0,1], f(i+u) = (1-u)f(i) + uf(i+1).

The function f is convex. We shall prove this later. As f is convex and $k = \sum_{i=1}^{n} i \frac{p_i}{m}$, we have

$$f(k) = f(\sum_{i=1}^{n} i \frac{p_i}{m}) \le \sum_{i=1}^{n} f(i) \frac{p_i}{m} \le \frac{1}{m}.$$

Hence we have $m \leq \binom{n}{k}$. To complete the proof we still have to show that f is convex. It is sufficient to prove that $f(i) \leq \frac{f(i-1)+f(i+1)}{2}$ for all $i \in \{1, \ldots, n-1\}$. We have

$$\frac{f(i-1)+f(i+1)}{f(i)} = \frac{n-i+1}{i} + \frac{i+1}{n-i} = \left(\frac{n-i}{i} + \frac{i}{n-i}\right) + \left(\frac{1}{i} + \frac{1}{n-i}\right)$$

But the function $y \to y+1/y$ is always greater than or equal to 2 on $]0, \infty[$. Therefore f is convex.

Proof of Theorem 3: We shall translate the hypothesis of Theorem 3 into a linear program. Using the duality theorem of linear programming and the L.Y.M. inequality we will prove the inequality of Theorem 3.

Claim 1

$$\max\{k\binom{n}{k} \mid 1 \le k \le n\} = \left\lceil \frac{n}{2} \right\rceil \binom{n}{\left\lceil \frac{n}{2} \right\rceil}$$

Proof of claim: We have

$$k\binom{n}{k} = n\binom{n-1}{k-1}.$$

Therefore, the maximum is obtained when $k-1 = \lfloor \frac{n-1}{2} \rfloor$. That is to say when $k = \lfloor \frac{n}{2} \rfloor$.

Let A be the $(n + 1) \times n$ matrix defined by $A_{1,j} = {n \choose j}^{-1}$ if $j \in [1,n], A_{i,i-1} = -1$ if $i \in [2, n + 1]$, and $A_{i,j} = 0$ otherwise. Let c = (1, 2, ..., n), and b = (1, 0, 0, ..., 0). The first row constraint of the system $Ax \leq b$ is the L.Y.M. inequality. (Here the variables in x represent the p_i 's.) The other constraints translate the non-negativity of x.

By the duality theorem of linear programming we know that

$$\max\{cx \mid Ax \le b\} = \min\{yb \mid y \ge 0, \ yA = c\}.$$

Let $y = (y_0, y_1, y_2, ..., y_n)$. We have $yb = y_0$ and $\binom{n}{k}^{-1}y_0 - y_k = k$ for $k \in [1, n]$. This can be transformed into $y_0 = \binom{n}{k}(k + y_k)$. The linear program $\min\{yb \mid y \ge 0, yA = c\}$ has the following feasible solution. Take $y_{\lceil \frac{n}{2} \rceil} = 0$. Then $y_0 = \lceil \frac{n}{2} \rceil \binom{n}{\lceil \frac{n}{2} \rceil}$. Because of the claim, it is possible to find suitable values for the other y_i 's. Hence we have that

$$\min\{yb \mid y \ge 0, yA = c\} \le \left\lceil \frac{n}{2} \right\rceil \binom{n}{\left\lceil \frac{n}{2} \right\rceil}$$

Therefore we have also

$$\max\{cx|Ax \le b\} \le \left\lceil \frac{n}{2} \right\rceil \binom{n}{\left\lceil \frac{n}{2} \right\rceil}$$

As the parameters p_1, p_2, \ldots, p_n are a feasible solution of $\max\{cx | Ax \leq b\}$, this finishes the proof of theorem 3.

This bound is best possible since it is achieved by the antichain formed by all the $\left[\frac{n}{2}\right]$ -sets.

3 Remarks on the General Case of the Conjecture

The profile of a hypergraph \mathcal{H} is the vector $p = (p_0, \ldots, p_n)$, whose entries are

$$p_i = \left| \begin{pmatrix} S \\ i \end{pmatrix} \cap \mathcal{H} \right|.$$

We will show that if the Flat Antichain Conjecture is true, then the profile of the antichain \mathcal{H} is determined by a linear system.

Let p_i denote the number of members of size *i* of an antichain \mathcal{A} . Let $m = |\mathcal{A}|$, and $t = t(\mathcal{A})$. Assume there exists a flat antichain \mathcal{F} such that

- 1. $|\mathcal{F}| = m$,
- 2. $t(\mathcal{F}) = t$,

3.
$$\exists k \in [1, n], \ \mathcal{F} \subseteq \left(\binom{S}{k} \cup \binom{S}{k+1}\right).$$

Let $q_k = |\mathcal{F} \cap {S \choose k}|$, and let $q_{k+1} = |\mathcal{F} \cap {S \choose k+1}|$. Note that q_k , q_{k+1} must satisfy the system

$$\begin{cases} kq_k + (k+1)q_{k+1} = t \\ q_k + q_{k+1} = m. \end{cases}$$

Using the fact that q_k and q_{k+1} are non negative, we deduce that $k = \lfloor \frac{t}{m} \rfloor$. Therefore k is equal to the quotient of the Euclidian division of t by m. More precisely t = mk + r with 0 < r < m (the case r = 0 is Theorem 1). To sum up, $q_k = m - r$ and $q_{k+1} = r$.

Using a similar argument to that in the proof of Theorem 1 with the equality

$$\frac{t}{m} = k\frac{m-r}{m} + (k+1)\frac{r}{m}$$

we can prove that

$$\frac{q_k}{\binom{n}{k}} + \frac{q_{k+1}}{\binom{n}{k+1}} \le 1,$$

which is the L.Y.M. inequality. Unfortunalety, this is not a sufficient condition for the existence of an antichain \mathcal{F} . There exist families of integers p_0, \ldots, p_m that satisfy the L.Y.M. inequality, but with no antichain having these profiles.

Computer experiments from Paulette Lieby and these partial results make us believe that the conjecture is true.

Acknowledgements

The author thanks Paulette Lieby and Ian Roberts for many fruitful discussions.

References

- [1] Anderson I. : Combinatorics of Finite Sets, Oxford science publication, 1987.
- [2] Berge C. : Graphs and Hypergraphs, North-Holland, 1985.
- [3] Frankl P., Katona G. : Polytopes determined by hypergraph classes, European J. Combin. 6, 223-243, 1985.
- [4] Lieby P. : Honours Thesis (Maths), Northern Territory University, Australia, 1995.
- [5] Lubell D. : A short proof of Sperner's theorem, J. Combin. Theory 1, pp. 299, 1966.
- [6] Meschalkin L. D. : A generalization of Sperner's theorem on the number of subsets of a finite set, Theory Probab. Appl. 8, pp. 203-4, 1963.
- [7] Ramsay C., Roberts I.T. : Minimal completely separating systems of sets, Australiasian Journal of Combinatorics, 13, pp. 129 - 150, 1996.
- [8] Sperner E. : Ein Satz uber Untermengen einer endlichen Menge. Math. Z. 27, pp. 544-8, 1928.
- [9] Yamamoto K. : Logarithmic order of free distributive lattices. J. Math. Soc. Japan. 6, pp. 343-53, 1954.

(Received 9/8/96)

