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Abstract 

Let n > m 2:: 4 be positive integers. The edge framing number 
efr( Cm, Cn) of Cm and Cn is defined as the minimum size of a graph ev
ery edge of which belongs to an induced Cm and an induced Cn. We show 
that efr(Cm,Cn) = n+4 ifn = 2m-4 and m 2:: 5, efr(Cm,Cn) = n+5 
if n = 2m-6 and m ~ 7 and efr(Cm1 Cn) = n+6 if n = 2m-8 (m ~ 10) 
or m = n -1 (where n ~ 5 and n ¢ {6,S}) or m = n - 2 (n = 6 or 
n 2:: 9). It is also shown that efr(Cm1 Cn) ~ n + 6 for n > m ~ 4 with 
n i=- 2m - 4 or 2m - 6 and (m,n) =f. (5,7). Furthermore, for the cases 
n = 2m - 4 (m ~ 5) and n = 2m - 6 (m ~ 7) we show that Cm and Cn 

are uniquely edge framed. 

1 Introduction 

In this paper, we use fairly standard graph theoretic terminology and notation. For 
example, for a graph G = (V, E) with vertex set V and edge set E, p( G) and q( G) 
will denote, respectively, the number of vertices I V I (also called the order) and the 
number of edges lEI (also called the size). If v E V, the degree of v in G is written as 
degv and the minimum degree of G is given by J(G) = min{degv: v E V}, whereas 
the maximum degree of G is given by .6.(G) = max{degv: v E V}. For other graph 
theory terminology we follow [3]. 

Chartrand, Gavlas, and Schultz [1] introduced the framing number of a graph. A 
graph G is homogeneously embedded in a graph H if for every vertex x of G and every 
vertex y of H, there exists an embedding of G in H as an induced subgraph with x 
at y. A graph F of minimum order in which G can be homogeneously embedded is 
called a Jrame of G, and the order of F is called the Jraming number Jr( G) of G. 
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In [1] it is shown that a frame exists for every graph, although a frame need not be 
unique. 

Results involving frames and framing numbers of graphs have been presented by, 
among others Chartrand, Gavlas, and Schultz [1], Chartrand, Henning, Hevia, and 
Jarrett [2], Entringer, Goddard, and Henning [4], Gavlas, Henning, and Schultz [5], 
Goddard, Henning, Oellermann, and Swart [7, 8], and Henning [9]. 

Maharaj [10] introduced the edge framing number of a graph. A nonempty graph 
G is said to be edge homogeneously embedded in a graph H if for every edge e of G 
and every edge f of H, there exists an edge isomorphism between G and a vertex 
induced subgraph of H which sends e to f. A graph F of minimum size in which G 
can be edge homogeneously embedded is called an edge frame of G, and the size of 
F is called the edge framing number efr( G) of G. In [10] it is shown that an edge 
frame exists for every nonempty graph, although an edge frame need not be unique. 

Theorem A (Maharaj) Every nonempty graph has an edge frame. 

Maharaj [10] showed that edge homogeneous embedding does not directly imply 
(vertex) homogeneous embedding in general, and vice versa. Thus the two embedding 
requirements do not directly imply each other. However they are related in a natural 
way through line graphs. Maharaj [10] showed that for a large class of graphs, 
homogeneous embedding reduces to edge homogeneous embedding. In this sense, 
the edge homogeneous embedding requirement is a stronger embedding requirement 
than the (vertex) embedding requirement. The following result from [10] will prove 
useful to us. 

Theorem B (M aharaj) Let G be a nonempty graph which is different from C3 and 
K1,3' If G has two adjacent vertices of maximum degrees, and if G can be edge 
homogeneously embedded in a graph H, then J (H) ~ .6.( G). 

For nonempty graphs G1 and G2 , the edge framing number efr( GI , G2 ) of G1 and 
G2 is defined as the minimum size of a graph F such that G i (i = 1, 2) can be edge 
homogeneously embedded in F. The graph F is called an edge frame of G1 and G2 . 

Then efr(G1 , G 2 ) exists and, in fact, efr(G1 , G 2 ) ::;: efr(Gl U G 2 ). 

In this paper we investigate the edge framing number e f r( G1 , G2 ) for several pairs 
G1 , G 2 of cycles. It is shown that efr( Cs, C7 ) = 12. Furthermore, it is established 
that 

n + 4 if n = 2m 4 and m ~ 5 

n + 5 if n = 2m - 6 and m ~ 7 

if n = 2m - 8 and m ~ 10, or 
n + 6 if n = m + 1 and n ~ 5 and n tJ {6, 8}, or 

if m = n - 2 and n = 6 or n ~ 9 

It is also shown that efr(Cm , Cn) ~ n + 6 for n > m ~ 4 with n i=- 2m - 4 or 
2m 6 and (m, n) =J. (5,7). Furthermore, for the cases n = 2m - 4 (m ~ 5) and 
n = 2m 6 (m ~ 7) we show that Cm and Cn are uniquely edge framed. 
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2 The framing number of pairs of cycles 

For integers n > m ;:::: 3, the framing number fr( Cm, Cn) of a cycle Cm of length m 
and a cycle Cn of length n is defined as the minimum order of a graph every vertex 
of which belongs to an induced Cm and an induced Cn. In [6] the framing num
ber fr( G1 , G2 ) for several pairs GI , G2 of cycles is investigated. We will need the 
following result in [6]. 

Lemlna A For integers n > m 2:: 3, fr(Cm, Cn) 2:: n + 2. 

In [6], the class of frames for all those pairs of cycles Cm and Cn (m < n) for 
which fr(Cm,Cn) = n + 2 is completely characterized. In order to state this result 
neatly, we define certain sets of graphs. Let S = {(3, 5), (3, 6)} U {(m, n) In = m + 1 
and m ;:::: 3} U {(m, n) In = 2m - 4 and m ;:::: 6} U {(m, n) In = 2m - 3 and m 2:: 
5} U {(m, n) In = 2m - 2 and m 2:: 4}. 

F3,5: ~ 
~ 

H4'6:~ 
t=V 

Figure 1: 

For each (m, n) E S, we define a set <Pm,n of graphs as follows. For m = 3 and 
for i E {4, 5, 6}, or for m = 4 and for i = 5, let <Pm,i be the set of all nonisomorphic 
graphs obtainable from the graph Fm,i in Figure 1 by adding any combination (the 
presence or absence) of the dotted edges, provided that if uw is an edge of F4 ,5, then 
so too are uv and wx. Let <P 4,6 be the set of all nonisomorphic graphs obtainable 
from the graph F4 ,6 or G4 ,6 in Figure 2 or the graph H 4 ,6 in Figure 1 by adding any 
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combination (the presence or absence) of the dotted edges. Let <1>6,8 be the set of 
all nonisomorphic graphs obtainable from the graph G6,8 or H6 ,8 in Figure 1 or the 
graph F6 ,8 in Figure 2 by adding any combination (the presence or absence) of the 
dotted edges. For m ~ 5 and i = m + 1, or for m = 5 or m ~ 7 and i = 2m 3, or 
m ~ 7 and i = 2m - 4, let <1>m,i be the set of all nonisomorphic graphs obtainable 
from the graph Fm,i in Figure 2 by adding any combination (the presence or absence) 
of the dotted edges, provided that if uw is an edge of Fm ,2m-3, then so too is vw. 

Fm ,2m-2 : 

'------v-----" 
m - 5 vertices 

Fm ,2m-4 : 

m - 4 vertices 

m - 5 vertices 
~ 

'------v-----" 
m - 5 vertices 

u ~ v 

~ 
Fm

,2m-3 :~ .•••• : •• ~ 

m - 4 vertices 
~ 

'------v-----" 

m - 4 vertices 

~ 

m - 5 vertices 

Gm ,2m-2 : 

Figure 2: 

m 4 vertices 
~ 

'------v-----" 

m - 4 vertices 

Let <1>6,9 be the set of all nonisomorphic graphs obtainable from the graph F6,9 in 
Figure 2 by adding any combination (the presence or absence) of the dotted edges. 
For m = 5 or m ~ 7, let <P m ,2m-2 be the set of all nonisomorphic graphs obtainable 
from the graph Fm ,2m-2 or Gm ,2m-2 in Figure 2 by adding any combination (the 

260 



presence or absence) of the dotted edges. Let <P6,1O be the set of all nonisomorphic 
graphs obtainable from the graph H6 ,1O in Figure 1 or the graph F6 ,lO or G6 ,lO in 
Figure 2 by adding any combination (the presence or absence) of the dotted edges. 

Theorem C For integers n > m ~ 3, fr(Om, On) = n + 2 if and only if (m, n) E S. 
Furthermore) if (m, n) E S) then the set of all nonisomorphic frames of Om and On 
is given by <Pm,n' 

3 The edge framing number of pairs of cycles 

For n > m = 3, the edge framing number efr(m, n) has been determined by Ma
haraj [10]. 

Proposition A For any integer n > 3) 

if n == 0, 2 or 3 (mod 4) 

Hence in this section we consider integers n > m ~ 4. For such integers, ev
ery graph that edge homogeneously embeds On and Om also vertex homogeneously 
embeds en and Om. Hence we have the following corollary of Lemma A. 

Corollary 1 For integers n > m ~ 4, if H is a graph that edge homogeneously 
embeds en and Om) then p(H) ~ n + 2. 

The following lemmas will prove to be useful. 

Lemma 1 Let G and H be graphs with no induced 0 4 , and let F be an edge frame 
ofG and H. Ifu and v are two vertices of degree 2 in F) then N(u) -=I N(v). 

Proof. Assume, to the contrary, that N(u) = N(v). We show then that F - u edge 
homogeneously embeds G and H. Let e E E(G) and let f E E(F - u). Let Ge be 
an edge embedding of G in F with e at f. If u (j:. V( Ge ), then Ge is in F - u. If 
u E V( Ge ), then, since 0 4 -I< G, v (j:. V( Ge ) and therefore ((V( Ge ) - {u}) U {v}) is an 
edge embedding of G in F - u with e at f. Hence F - u edge homogeneously embeds 
G. Similarly, F - u edge homogeneously embeds H. This, however, contradicts the 
fact that F is an edge frame of G and H. 0 

Lemma 2 For integers n > m ~ 4) if H is a graph that edge homogeneously embeds 
On and Om, then H contains at least three vertices of degree at least 3. 

Proof. Let 0' : Vo, VI, . .• , Vm-l, Vo be an induced Om in H, and let 0" be an 
induced On in H which contains the edge VOVI' Further, let Vi, Vi+! , ..• ,Vo, Vi, ... , 

Vj-I, Vj (j < i) where addition is taken modulo m, be a longest path common to 
0' and e" that contains the edge VOVI. Since Vi-l and Vj+l do not belong to G", it 
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follows that each of Vi and Vj has degree at least 3. We deduce, therefore, that every 
induced Cm and Cn contains at least two vertices of degree at least 3. 

Suppose that H has exactly two vertices, a and b say, of degree at least 3. Since 
every induced Cm and Cn contains at least two vertices of degree at least 3, the 
vertices a and b must lie on every induced Cm and Cn in H. Consequently, the graph 
H consists of the vertices a and b and a set S of internally disjoint paths joining a and 
b. Observe that any induced cycle containing an edge of a path from S must contain 
all the edges of this path. Hence we may denote an induced Cm or Cn containing a 
path PES by Cm(P) or Cn(P), respectively. Let pI be a shortest a-b path, and let 
pel) denote the a-b path of length n - d(a, b) on Cn(P I

) which is disjoint from P', 
Furthermore, let p(2) denote the a-b path of length m (n - d(a,b)) on Cm(p(l») 
which is disjoint from p(l). Then p(2) is an a-b path of length less than d( a, b), which 
is impossible. The desired result now follows. 0 

Proposition 1 For m 2 5, efr(Cm, C2m- 4 ) = 2m. Furthermore, Cm and C2m- 4 

are uniquely edge framed by the graph shown in Figure 3. 

Proof. Since Cm and C2m- 4 can be edge homogeneously embedded in the graph of 
size 2m shown in Figure 3, it follows that efr(Cm, C2m- 4 ) S; 2m. Now let F be an 
edge frame for C2m- 4 and Cm- By Corollary 1, p(F) 2 2m-2. Applying Theorem B, 
we have o(F) 2 2. Let k be the number of vertices of H of degree at least 3. By 
Lemma 2, k 2 3. Hence2(2m) 2 2q(F) 2 3k+2(p(F)-k) = 2p(F)+k 2 2p(F)+3 
whence p(F) :::; 2m - 2. Thus p(F) = 2m - 2 = fr(Cm1 C2m- 4 ). By Theorem C, the 
only graph of order 2m-2 which both frames Cm and C2m- 4 and edge homogeneously 
embeds Cm and C2m- 4 is the graph shown in shown in Figure 3. Consequently, 
efr( Cm, C2m- 4 ) = 2m, and Cm and C2m- 4 are uniquely edge framed by the graph 
shown in Figure 3. 0 

m - 5 vertices 
~ 

~ 

m 5 vertices 

Figure 3: An edge frame for Cm and C2m- 4 for m 2 5. 

Lemma 3 Let n > m 24 where n i- 2m - 4 and (m, n) i- (5,7). If a graph Hedge 
homogeneously embeds Cm and Cn) then p(H) 2 n + 3. 
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Proof. Let H be a graph which edge homogeneously embeds Cm and Cn. By 
Corollary 1, p(H) :2: n + 2. Suppose that p(H) = n + 2. Then by Lemma A we 
deduce that H frames Cm and Cn. By Theorem C it follows that (m, n) E 5, where 
5 is the set of ordered pairs defined in Section 2. For (m, n) E S the frames for Cm 

and Cn have been completely determined in Theorem C and in each case it is easily 
checked that H does not edge homogeneously embed Cm and Cn unless n = 2m - 4 
(in which case H is the graph shown in Figure 3) or n = 2m - 3 and m = 5 (in 
which case H is the graph shown in Figure 4). This produces a contradiction and 
we deduce that p(H) :2: n + 3. 0 

Figure 4: An edge frame for C5 and C7 • 

Proposition 2 For m :2: 7) efr(Cm ,C2m - 6 ) = 2m-1. 

Proof. Since Cm and C2m - 6 can be edge homogeneously embedded in the graph of 
size 2m - 1 shown in Figure 5, it follows that efr(Cm , C2m - 6 ) S 2m 1. We show 
that efr(Cm , C2m - 6 ) = 2m - 1 by verifying that there is no graph of size 2m - 2 
or less which edge homogeneously embeds Cm and C2m - 6 • Suppose, to the contrary, 
that such a graph H exists. By Lemma 3, p(H) :2: 2m 3. Applying Theorem B, 
we have 8(H) :2: 2. Let k be the number of vertices of H of degree at least 3. By 
Lemma 2, k :2: 3. Hence 4m - 4 :2: 2q(H) :2: 3k + 2(p(H) k) = 2p(H) + k :2: 
2(2m - 3) + 3 4m - 3, which is impossible. 0 

m - 7 vertices 
~ 

~ 

m - 6 vertices 

Figure 5: An edge frame for Cm and C2m - 6 for m :2: 7. 

Lemma 4 For n > m :2: 4 where n # 2m - 4 or 2m - 6) there is no graph of order 
n + 3 and size at most n + 5 that edge homogeneously embeds Cm and Cn. 
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Proof. Assume, to the contrary, that such a graph H exists. Applying Theorem B, 
we have S(H) 2:: 2. Let k be the number of vertices of H of degree at least 3. Hence 
2n + 10 2:: 2q(H) 2:: 3k + 2(p(H) - k) = 2p(H) + k = 2n + 6 + k, so k ::; 4. By 
Lemma 2, k 2:: 3. Thus k = 3 or 4. 

Case 1. k = 3. 
Since every graph contains an even number of vertices of odd degree, at least one 
vertex of H has degree 4 or more. Thus 2n + 10 2:: 2q(H) 2:: 10 + 2(p(H) - 3) = 
2p( H) + 4 = 2n + 10. Since all these inequalities must be equalities, it follows that 
q( H) = n + 5 and H contains two vertices of degree 3, one of degree 4, and n of 
degree 2. Let W denote the vertex of degree 4. Since no vertex of degree 2 in H can 
lie on a K3 , and since q(H) = n + 5 and S(H) = 2, it follows that every induced Cn 

in H must contain the vertex w. Let Cw : W = WI, W2, ... , W n , WI be an induced 
Cn containing w, and let a, b, and c be the names of the three vertices of H not in 
Cwo Without loss of generality, we may assume that W is adjacent to a and b. Since 
q(H) = n + 5 and S(H) = 2, at most one of a and b is adjacent to a vertex of Cw 

different from w. Without loss of generality, we may assume that b is adjacent to no 
vertex of Cw other than w. Since no vertex of degree 2 in H can lie on a K 3 , and 
since q(H) = n + 5, the vertices a and b cannot be adjacent. Hence b is adjacent 
only to c and w. . 

Suppose firstly that a is adjacent to c. If deg c = 2, then c belongs to no induced Ce 
for £ 2:: 5. Hence degc = 3. Then a and b are vertices of degree 2 with N(a) = N(b). 
Thus we must have m = 4 otherwise by Lemma 1 we have a contradiction. Now cis 
adjacent with Wj for some j (2 ::; j ::; n). Thus H is the graph shown in Figure 6. 

Wn WI W2 

C .. aYb .. J 
Wj 

Figure 6: The graph H. 

Then deg Wj = deg c = 3, deg WI = 4, and the remaining vertices of H have degree 
2. Thus any induce C4 containing the edge WI W2 must contain the vertices WI, Wj, 

c and either a or b. Consequently j = 2. Similarly, by considering the edge WI Wn 

we get j = n. Thus n = 2, a contradiction. Thus a and c are not adjacent. Since 
q( H) = n + 5, deg a = deg c = 2. Since no vertex of degree 2 belongs to a K3 , 

the vertex a is not adjacent to W2 or w n . Furthermore, the vertex c is not adjacent 
to W2 or W n , for otherwise c belongs to no induced Cn for n 2:: 5. Without loss of 
generality, we may assume that a is adjacent to Wr and c is adjacent to Ws where 
3 :S s < r ::; n - 1. The graph H is shown in Figure 7. 

Since the vertex b belongs to no C4 , we must have m 2:: 5. If r = n - 1, then 
a and Wn are vertices of degree 2 with N(a) = N(wn ) which contradicts Lemma l. 
Hence r ::; n - 2. We now consider the vertex a. The vertex a belongs to three cycles, 
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Figure 7: The graph H. 

namely, G(l) : a, Wr , Wr +l, ... ,Wn , WI, a (of length n - 1" + 3), G(2) : a, WI, W2, ... ,Wr, a 
(of length 1'+1) and G(3): a,wl,b,c,ws ,ws+l, ... ,wr,a (of length 1'-s+5). At least 
one of these cycles is of length n. If C(1) has length n, then 1" = s = 3 contradicting 
1" > s. If G(2) has length n, then 1" = n - 1 contradicting 1" :::; n - 2. Therefore C(3) 

must be of length n, implying that n - 2 2: 1" = n + s - 5, so s :::; 3. Thus s = 3 
and 1" = n - 2. But then the vertex Wn belongs to three cycles of lengths 5, nand 
n + 1. Hence m = 5. However the edge W3W4 then belongs to no G5 , a contradiction. 
Hence Case 1 produces a contradiction. 

Case 2. k = 4. 
Then 2n + 10 ~ 2q(H) ~ 2n + 6 + k = 2n + 10. Since all these inequalities must be 
equalities, it follows that q( H) = n + 5 and H contains four vertices of degree 3 and 
n - 1 vertices of degree 2. The following claim will prove to be useful. 

Claim 1 If c' is an induced Cn in Hand U the set of three vertices of H that do 
not belong to G', then (U) e:' /{l U /{2 or P3. Furthermore, if (U) e:' /{l U /{2, then 
each vertex of U has degree 2 in H. If (U) e:' P3 , then the central vertex of this P3 

has degree 3 in H and the two end-vertices have degree 2 in H. 

Proof. Since q(H) = n + 5, there are exactly five edges incident with the vertices 
of U. Since J(H) = 2, and no vertex of degree 2 belongs to a /{31 a simple counting 
argument shows that q((U)) = 1 or 2. Hence (U) e:' /{lU/{2 or P3 • If (U) e:' /{lU/{2, 

then, since q( H) = n + 5, each vertex of U has degree 2 in H. If (U) e:' P3 , then 
three of the five edges incident with vertices of U are also incident with vertices of 
C'. It follows that exactly three of the four vertices of degree 3 belong to C' and the 
remaining vertex of degree 3 is in U. Hence one vertex of U has degree 3 and the 
remaining two vertices have degree 2. Suppose (U) is the path a, b, c, and C' is the 
(induced) cycle VI, V2, ... ,Vn, VI. We show that deg b = 3. If this is not the case, then 
we may assume that deg a = 3 and deg b = deg c = 2. Without loss of generality, we 
may assume aVI, aVi and CVj are edges of H where 2 :::; i < j :::; n. The graph H is 
shown in Figure 8. 

Since the vertex b belongs to no 4-cycle, we may assume here that n > m 2: 5. 
Now there are only two induced cycles containing the edge VI V2, namely C' and the 
cycle G": VI, V2, .•. , Vi, a, VI. Since C f has length n, C" must have length m so that 
i = m - 1. We now consider the edge aVl. The edge aVI belongs to three induced 
cycles, namely, Gf! (oflength m), VI, a, Vm-I, Vm , Vm +1,' .. ,Vn , VI (oflength n -m +4) 
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~ ~ ~ 

C ... A ... -J 
Vj Vi 

Figure 8: The graph H. 

and Gill : vI,a,b,e,vj, ... ,Vn,VI (of length n - j + 5). Thus n = n - m + 4 or 
n = n - j + 5. If n = n - m + 4, then m = 4 contradicting m 2:: 5. Thus Gill has 
length nand j = 5. Hence m - 1 = i ~ j - 1 = 4, so m ~ 5, i.e., m = 5. But then 
the edge aV4 belongs to no Gn , a contradiction. We deduce, therefore, that deg b = 3 
and deg a = deg e = 2. This completes the proof of the claim. D 

We now return to the proof of Case 2. Let u and V be two (distinct) vertices of 
degree 3 for which d( u, v) is a minimum, and let P be a shortest u-v path. Then all 
interior vertices (if any) of P have degree 2. Let Gp : VI, V2, ... ,Vn , VI be an induced 
Gn containing an edge of P. Necessarily, Cp contains all edges of P. Let a, b, e be 
the three vertices of H that do not belong to Gp . By Claim 1, ({a, b, e}) ~ J{I U J{2 

or P3 . We consider the two possibilities in turn. 
Case 2.1 ({a,b,e}) ~ P3. 

Without loss of generality, we may assume that a, b, c is a path. By Claim 1, deg b = 3 
and deg a = deg c = 2. Since b is adjacent to a vertex of degree 3 of Gp , our choice 
of u and v implies that d( u, v) = 1, so u and v are adjacent vertices on Cpo Without 
loss of generality, we may assume that u = VI and v = V2. If b is adjacent to either u 
or v, then, without loss of generality, H is then the graph shown in Figure 9( i). Since 
the vertex a belongs to induced cycles of only two possible lengths, namely, 4 and 
n, we must have m = 4. But then the edge VI Vn belongs to no Gm , a contradiction. 
Hence b is adjacent to neither u nor V, so bVi is an edge for some i (3 :::; i :::; n). 

( i) ( ii) 

Figure 9: The graph H. 

Without loss of generality, H is then the graph shown in Figure 9( ii). Since the 
edge VIV2 belongs to no 4-cycle, we must have m ~ 5. The edge be belongs to 
three cycles, namely b, e, V2, VI, a, b (of length 5), b, C, V2, V3, ... ,Vi, b (of length i + 1) 
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and c, b, Vi, Vi+l, ... , V n , VI, V2, C (of length n - i + 5). Since n > 5, we must have 
n = i + 1 OT" n - i + 5. Suppose n = n i + 5. Then i = 5 and the edge VI Vn lies on 
cycles of only two possible lengths, namely, n - 1 and n. Hence m = n - 1. Now 
the edge VIV2 (V2V3) lies on cycles of length 5,7 and n (6, 7 and n, respectively). We 
deduce that m = 7 and n = 8. However, then, n = 2m - 6 which is contrary to our 
choice of m and n. Thus n = i + 1, i.e., i = n - 1. The edge V2V3 then lies only on 
cycles of length nand n + 1 so that V2V3 does not lie on any cycle of length m. This 
produces a contradiction. 

Case 2.2 ({a, b, c}) ~ f{1 U f{2. 

Without loss of generality, we may assume that a is the isolated vertex in (U), so be 
is an edge. By Lemma 1, each of a, band e has degree 2. Let Ca be an induced Cn 

containing the vertex a. We show that the edge be belongs to Ca. If this is not the 
case, then, without loss of generality, we may assume that Ca is a, V2, V3, ... ,Vn , a. 
By Claim 1, the three vertices VI, band c that do not belong to Ca induce either a 
P3 or f{1 U K2 • If ({Vb b, e}) ~ P3, then, since b.. (H) = 3, the vertex VI must be 
an end-vertex of ({VI, b, e}) ~ P3 • But then VI has degree 3 in H which contradicts 
Claim 1. Thus ({Vb b, e}) 3:! f{I U f{2 and VI has degree 2 in H. Hence a and VI 

are two nonadjacent vertices of degree 2 in H with N(a) = N(vt). This, however, 
contradicts Lemma 1 if m ~ 5. Hence m = 4. Without loss of generality, we may 
assume that the vertex b (e) is adjacent with the vertex Vi (Vj, respectively) where 
3 :::; i < j :::; n - 1. Since the edge be must lie on an induced C4 , it follows that 
j = i + 1. However the edge be then belongs to no cycle of length 5 or more. This 
produces a contradiction. We deduce, therefore, that the edge be must belong to Ca. 

Let 5 be the set of three vertices of Cp that do not belong to Ca. By Claim 1, 
(5) ~ f{l U f{2 or P3 . Clearly, (5) ~ f{I U f{2. Without loss of generality, we may 
assume that 5 = {V2' Vi, vi+d where 5 :::; i :::; n - 2. Hence n ~ 7, and Vl, V3, Vi-I 

and Vi+2 are the four vertices of degree 3 in H. If N( a) = N( V2), then, since the 
edge be belongs to cycles only of length 6 and n, it follows that m = 6. However, the 
vertex a belongs to cycles only of length 4 and n, so m = 4, a contradiction. Hence 
N ( a) =f- N ( V2) . 

If Ca is given by VI, b, C, V3, V4 ... , Vi-I, a, Vi+2, ... , V n , VI, then H is the graph 
shown in Figure 10(i). Now the edge VIVn belongs to cycles of length n -1, n, n + 1. 
Thus m = n - 1. However, the edge bc belongs to no induced Cn - I (n ~ 7). Hence 
we may assume, without loss of generality, that Ca is given by either C~I): VI, a, Vi-I, 

Vi-2, ... , V3, b, e, Vi+2, ... , Vn , VI, in which case H is the graph shown in Figure 10(ii), 
or C~1): VI, b, e, Vi-I, Vi-2, ... ,V3, a, Vi+2, ... ,Vn , VI, in which case H is the graph shown 
in Figure 10(iii). If Ca is C~1), then the edge Vl Vn belongs to cycles oflength n -i +4 
and n. Thus m = n - i + 4. Furthermore, the edge V3V4 belongs to cycles of length 
i,i+2 and n. Thus m = i or i+2. Ifm = i, then n = 2m-4 and ifm = i+2, then 
n = 2m - 6. In either case we contradict our choice of m and n. A similar argument 
shows that Ca cannot be C~2). This completes the proof of Case 2.2, and therefore 
of Lemma 4. 0 

Corollary 2 FOT" n > m ~ 4 with n 1= 2m - 4 OT" 2m - 6 and (m, n) =f- (5,7)) 

efr(Cm, Cn) 2: n + 6. 
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VI V2 V3 [ .. .. I I 

~ "'J 
Vi+2 Vi+I Vi Vi-I 

( i) 

VI a b c 
V3 

Vi-l V2 V3 V2 
b VI Vi-l 

C 

Vn Vi+2 Vi+! Vi Vn Vi+2 Vi+! Vi 

( ii) ( iii) 

Figure 10: 

Proof. We show that efr( Cm, Cn) ~ n + 6 by verifying that there is no graph of 
size n + 5 or less which edge homogeneously embeds Cm and Cn. Suppose, to the 
contrary, that such a graph H exists. By Lemma 3, p( H) ~ n + 3, and by Lemma 4, 
p( H) o:J n + 3; consequently, p( H) ~ n + 4. Applying Theorem B, we have o( H) ~ 2. 
Let k be the number of vertices of H of degree at least 3. By Lemma 2, k ~ 3. Hence 
2n + 10 ~ 2q(H) ~ 3k + 2(p(H) - k) = 2p(H) + k ~ 2n + 11, which is impossible. D 

Corollary 3 For m ~ 7) em and C2m- 6 are uniquely edge framed by the the graph 
of size 2m 1 shown in Figure 5. 

Proof. Let F be an edge frame for Cm and C2m- 6 • Then by Proposition 2, q(F) = 

2m 1. By Corollary 1, p(F) ~ 2m - 4. Applying Theorem B, we have o(F) ~ 2. 
Let k be the number of vertices of F of degree at least 3. By Lemma 2, k ~ 3. Hence 
4m-2 2q(F) ~ 3k+2(p(F)-k) = 2p(F)+k ~ 2p(F)+3, whencep(F):::; 2m-3. 
Thus 2m 4:::; p(F) :::; 2m - 3. If p(F) = 2m - 4, then p(F) = fr(Cm, C2m- 6 ) 

and so F frames Cm and C2m- 6 . However, by Theorem C, there is no graph of 
order 2m - 4 which edge homogeneously embeds Cm and C2m- 6 for m ~ 7. Thus 
p(F) = 2m - 3 (2m - 6) + 3. From the proof of Lemma 4 we deduce that Cm and 
C2m- 6 have at most one edge frame. We conclude that Cm and C2m- 6 are uniquely 
edge framed. 0 

Proposition 3 For m ~ 4 and m tf- {5, 7L efr(Cm, Cm+d = m + 7. 

Proof. Since Cm and Cm +! can be edge homogeneously embedded in the graph of 
size m + 7 shown in Figure 11(i) for m = 4 and in Figure 11(ii) for m = 6 or m ~ 8, 
it follows that efr( Cm, Cm+!) :::; m + 7. By Corollary 2, efr( Cm, Cm+!) ~ m + 7. 
Consequently efr(Cm, Cm+d = m + 7 as required. 0 
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( i) 
Figure 11: 

Proposition 4 For m ~ 10) efr(Cm, C2m- s) = 2m 2. 

~ 

m - 5 vertices 
( ii) 

Proof. Since C2m- S and Cm can be edge homogeneously embedded in the graph 
of size 2m 2 shown in Figure 12, it follows that efr( C2m- S , Cm) ::::; 2m - 2. By 
Corollary 2, efr( C2m - S , Cm) ~ 2m - 2. Consequently efr( C2m- S , em) = 2m - 2 as 
required. 0 

m 9 vertices 

m - 9 vertices 

Figure 12: An edge frame for Cm and C2m- 8 for m ~ 10. 

Proposition 5 efr( C5 , C7 ) = 12. 

Proof. Since C5 and C7 can be edge homogeneously embedded in the graph F5 ,7 

(without the dotted edges) of size 12 shown in Figure 2, it follows that efr( C5 , C7 ) ::::; 

12. We show that efr( C5 , C7 ) = 12 by verifying that there is no graph of size at 
most 11 which edge homogeneously embeds C5 and C7 . Suppose, to the contrary, 
that such a graph H exists. By Corollary 1, p(H) ~ 9. Applying Theorem B, we 
have J(H) ~ 2. Let k be the number of vertices of H of degree at least 3. By 
Lemma 2, k ~ 3. Hence 22 ~ 2q(H) ~ 3k + 2(p(H) k) 2p(H) + k ~ 2p(H) + 3 
whence p(H) ::::; 9. Consequently, p(H) = 9 = fr(C5 ,C7 ) and so H frames C5 and 
C7 . However, from Theorem C, the frames for C5 and C7 all have sizes greater than 
11. This produces a contradiction. 0 

Proposition 6 For m = 4 or m ~ 7) efr(Cm, Cm+2) m + 8. 
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Proof. Since Gm and Gm +2 can be edge homogeneously embedded in the graph of 
size m + 8 shown in Figure 13(i) for m = 4 and in Figure 13(ii) for m ~ 7, it follows 
that efr(Gm , Gm +2 ) ::; m+8. By Corollary 2, efr(Gm , Gm +2 ) ~ m+8. Consequently 
efr( Gm , Gm +2 ) = m + 8 as required. 0 

( i) 

Figure 13: 
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