Edge Homogeneous Embeddings of Cycles in Graphs

Michael A. Henning* and Hiren Maharaj
Department of Mathematics
University of Natal
Private Bag X01
Pietermaritzburg 3209 South Africa

Abstract

Let $n>m \geq 4$ be positive integers. The edge framing number efr $\left(C_{m}, C_{n}\right)$ of C_{m} and C_{n} is defined as the minimum size of a graph every edge of which belongs to an induced C_{m} and an induced C_{n}. We show that efr $\left(C_{m}, C_{n}\right)=n+4$ if $n=2 m-4$ and $m \geq 5$, efr $\left(C_{m}, C_{n}\right)=n+5$ if $n=2 m-6$ and $m \geq 7$ and $e f r\left(C_{m}, C_{n}\right)=n+6$ if $n=2 m-8(m \geq 10)$ or $m=n-1$ (where $n \geq 5$ and $n \notin\{6,8\}$) or $m=n-2(n=6$ or $n \geq 9$). It is also shown that $\operatorname{efr}\left(C_{m}, C_{n}\right) \geq n+6$ for $n>m \geq 4$ with $n \neq 2 m-4$ or $2 m-6$ and $(m, n) \neq(5,7)$. Furthermore, for the cases $n=2 m-4(m \geq 5)$ and $n=2 m-6(m \geq 7)$ we show that C_{m} and C_{n} are uniquely edge framed.

1 Introduction

In this paper, we use fairly standard graph theoretic terminology and notation. For example, for a graph $G=(V, E)$ with vertex set V and edge set $E, p(G)$ and $q(G)$ will denote, respectively, the number of vertices $|V|$ (also called the order) and the number of edges $|E|$ (also called the size). If $v \in V$, the degree of v in G is written as $\operatorname{deg} v$ and the minimum degree of G is given by $\delta(G)=\min \{d e g v: v \in V\}$, whereas the maximum degree of G is given by $\Delta(G)=\max \{\operatorname{deg} v: v \in V\}$. For other graph theory terminology we follow [3].

Chartrand, Gavlas, and Schultz [1] introduced the framing number of a graph. A graph G is homogeneously embedded in a graph H if for every vertex x of G and every vertex y of H, there exists an embedding of G in H as an induced subgraph with x at y. A graph F of minimum order in which G can be homogeneously embedded is called a frame of G, and the order of F is called the framing number $f r(G)$ of G.

Research supported in part by the University of Natal and the South African Foundation for Research Development.

In [1] it is shown that a frame exists for every graph, although a frame need not be unique.

Results involving frames and framing numbers of graphs have been presented by, among others Chartrand, Gavlas, and Schultz [1], Chartrand, Henning, Hevia, and Jarrett [2], Entringer, Goddard, and Henning [4], Gavlas, Henning, and Schultz [5], Goddard, Henning, Oellermann, and Swart [7, 8], and Henning [9].

Maharaj [10] introduced the edge framing number of a graph. A nonempty graph G is said to be edge homogeneously embedded in a graph H if for every edge e of G and every edge f of H, there exists an edge isomorphism between G and a vertex induced subgraph of H which sends e to f. A graph F of minimum size in which G can be edge homogeneously embedded is called an edge frame of G, and the size of F is called the edge framing number efr (G) of G. In [10] it is shown that an edge frame exists for every nonempty graph, although an edge frame need not be unique.

Theorem A (Maharaj) Every nonempty graph has an edge frame.
Maharaj [10] showed that edge homogeneous embedding does not directly imply (vertex) homogeneous embedding in general, and vice versa. Thus the two embedding requirements do not directly imply each other. However they are related in a natural way through line graphs. Maharaj [10] showed that for a large class of graphs, homogeneous embedding reduces to edge homogeneous embedding. In this sense, the edge homogeneous embedding requirement is a stronger embedding requirement than the (vertex) embedding requirement. The following result from [10] will prove useful to us.

Theorem B (Maharaj) Let G be a nonempty graph which is different from C_{3} and $K_{1,3}$. If G has two adjacent vertices of maximum degrees, and if G can be edge homogeneously embedded in a graph H, then $\delta(H) \geq \Delta(G)$.

For nonempty graphs G_{1} and G_{2}, the edge framing number efr $\left(G_{1}, G_{2}\right)$ of G_{1} and G_{2} is defined as the minimum size of a graph F such that $G_{i}(i=1,2)$ can be edge homogeneously embedded in F. The graph F is called an edge frame of G_{1} and G_{2}. Then efr $\left(G_{1}, G_{2}\right)$ exists and, in fact, efr $\left(G_{1}, G_{2}\right) \leq \operatorname{efr}\left(G_{1} \cup G_{2}\right)$.

In this paper we investigate the edge framing number efr $\left(G_{1}, G_{2}\right)$ for several pairs G_{1}, G_{2} of cycles. It is shown that efr $\left(C_{5}, C_{7}\right)=12$. Furthermore, it is established that

$$
\operatorname{efr}\left(C_{m}, C_{n}\right)=\left\{\begin{aligned}
n+4 & \text { if } n=2 m-4 \text { and } m \geq 5 \\
n+5 & \text { if } n=2 m-6 \text { and } m \geq 7 \\
& \text { if } n=2 m-8 \text { and } m \geq 10, \text { or } \\
n+6 & \text { if } n=m+1 \text { and } n \geq 5 \text { and } n \notin\{6,8\}, \text { or } \\
& \text { if } m=n-2 \text { and } n=6 \text { or } n \geq 9
\end{aligned}\right.
$$

It is also shown that $e f r\left(C_{m}, C_{n}\right) \geq n+6$ for $n>m \geq 4$ with $n \neq 2 m-4$ or $2 m-6$ and $(m, n) \neq(5,7)$. Furthermore, for the cases $n=2 m-4(m \geq 5)$ and $n=2 m-6(m \geq 7)$ we show that C_{m} and C_{n} are uniquely edge framed.

2 The framing number of pairs of cycles

For integers $n>m \geq 3$, the framing number $f r\left(C_{m}, C_{n}\right)$ of a cycle C_{m} of length m and a cycle C_{n} of length n is defined as the minimum order of a graph every vertex of which belongs to an induced C_{m} and an induced C_{n}. In [6] the framing number $\operatorname{fr}\left(G_{1}, G_{2}\right)$ for several pairs G_{1}, G_{2} of cycles is investigated. We will need the following result in [6].

Lemma A For integers $n>m \geq 3, f r\left(C_{m}, C_{n}\right) \geq n+2$.
In [6], the class of frames for all those pairs of cycles C_{m} and $C_{n}(m<n)$ for which $\operatorname{fr}\left(C_{m}, C_{n}\right)=n+2$ is completely characterized. In order to state this result neatly, we define certain sets of graphs. Let $S=\{(3,5),(3,6)\} \cup\{(m, n) \mid n=m+1$ and $m \geq 3\} \cup\{(m, n) \mid n=2 m-4$ and $m \geq 6\} \cup\{(m, n) \mid n=2 m-3$ and $m \geq$ $5\} \cup\{(m, n) \mid n=2 m-2$ and $m \geq 4\}$.

Figure 1:

For each $(m, n) \in S$, we define a set $\Phi_{m, n}$ of graphs as follows. For $m=3$ and for $i \in\{4,5,6\}$, or for $m=4$ and for $i=5$, let $\Phi_{m, i}$ be the set of all nonisomorphic graphs obtainable from the graph $F_{m, i}$ in Figure 1 by adding any combination (the presence or absence) of the dotted edges, provided that if $u w$ is an edge of $F_{4,5}$, then so too are $u v$ and $w x$. Let $\Phi_{4,6}$ be the set of all nonisomorphic graphs obtainable from the graph $F_{4,6}$ or $G_{4,6}$ in Figure 2 or the graph $H_{4,6}$ in Figure 1 by adding any
combination (the presence or absence) of the dotted edges. Let $\Phi_{6,8}$ be the set of all nonisomorphic graphs obtainable from the graph $G_{6,8}$ or $H_{6,8}$ in Figure 1 or the graph $F_{6,8}$ in Figure 2 by adding any combination (the presence or absence) of the dotted edges. For $m \geq 5$ and $i=m+1$, or for $m=5$ or $m \geq 7$ and $i=2 m-3$, or $m \geq 7$ and $i=2 m-4$, let $\Phi_{m, i}$ be the set of all nonisomorphic graphs obtainable from the graph $F_{m, i}$ in Figure 2 by adding any combination (the presence or absence) of the dotted edges, provided that if $u w$ is an edge of $F_{m, 2 m-3}$, then so too is $v w$.

$m-4$ vertices

Figure 2:

Let $\Phi_{6,9}$ be the set of all nonisomorphic graphs obtainable from the graph $F_{6,9}$ in Figure 2 by adding any combination (the presence or absence) of the dotted edges. For $m=5$ or $m \geq 7$, let $\Phi_{m, 2 m-2}$ be the set of all nonisomorphic graphs obtainable from the graph $F_{m, 2 m-2}$ or $G_{m, 2 m-2}$ in Figure 2 by adding any combination (the
presence or absence) of the dotted edges. Let $\Phi_{6,10}$ be the set of all nonisomorphic graphs obtainable from the graph $H_{6,10}$ in Figure 1 or the graph $F_{6,10}$ or $G_{6,10}$ in Figure 2 by adding any combination (the presence or absence) of the dotted edges.

Theorem C For integers $n>m \geq 3, f r\left(C_{m}, C_{n}\right)=n+2$ if and only if $(m, n) \in S$. Furthermore, if $(m, n) \in S$, then the set of all nonisomorphic frames of C_{m} and C_{n} is given by $\Phi_{m, n}$.

3 The edge framing number of pairs of cycles

For $n>m=3$, the edge framing number efr (m, n) has been determined by Maharaj [10].

Proposition A For any integer $n>3$,

$$
\operatorname{efr}\left(C_{3}, C_{n}\right)= \begin{cases}\left\lceil\frac{n}{2}\right\rceil+n & \text { if } n \equiv 0,2 \text { or } 3(\bmod 4) \\ \left\lceil\frac{n}{2}\right\rceil+n+1 & \text { if } n \equiv 1(\bmod 4)\end{cases}
$$

Hence in this section we consider integers $n>m \geq 4$. For such integers, every graph that edge homogeneously embeds C_{n} and C_{m} also vertex homogeneously embeds C_{n} and C_{m}. Hence we have the following corollary of Lemma A.

Corollary 1 For integers $n>m \geq 4$, if H is a graph that edge homogeneously embeds C_{n} and C_{m}, then $p(H) \geq n+2$.

The following lemmas will prove to be useful.
Lemma 1 Let G and H be graphs with no induced C_{4}, and let F be an edge frame of G and H. If u and v are two vertices of degree 2 in F, then $N(u) \neq N(v)$.

Proof. Assume, to the contrary, that $N(u)=N(v)$. We show then that $F-u$ edge homogeneously embeds G and H. Let $e \in E(G)$ and let $f \in E(F-u)$. Let G_{e} be an edge embedding of G in F with e at f. If $u \notin V\left(G_{e}\right)$, then G_{e} is in $F-u$. If $u \in V\left(G_{e}\right)$, then, since $C_{4} \nprec G, v \notin V\left(G_{e}\right)$ and therefore $\left\langle\left(V\left(G_{e}\right)-\{u\}\right) \cup\{v\}\right\rangle$ is an edge embedding of G in $F-u$ with e at f. Hence $F-u$ edge homogeneously embeds G. Similarly, $F-u$ edge homogeneously embeds H. This, however, contradicts the fact that F is an edge frame of G and H.

Lemma 2 For integers $n>m \geq 4$, if H is a graph that edge homogeneously embeds C_{n} and C_{m}, then H contains at least three vertices of degree at least 3 .

Proof. Let $C^{\prime}: v_{0}, v_{1}, \ldots, v_{m-1}, v_{0}$ be an induced C_{m} in H, and let $C^{\prime \prime}$ be an induced C_{n} in H which contains the edge $v_{0} v_{1}$. Further, let $v_{i}, v_{i+1}, \ldots, v_{0}, v_{1}, \ldots$, $v_{j-1}, v_{j}(j<i)$ where addition is taken modulo m, be a longest path common to C^{\prime} and $C^{\prime \prime}$ that contains the edge $v_{0} v_{1}$. Since v_{i-1} and v_{j+1} do not belong to $C^{\prime \prime}$, it
follows that each of v_{i} and v_{j} has degree at least 3 . We deduce, therefore, that every induced C_{m} and C_{n} contains at least two vertices of degree at least 3 .

Suppose that H has exactly two vertices, a and b say, of degree at least 3 . Since every induced C_{m} and C_{n} contains at least two vertices of degree at least 3 , the vertices a and b must lie on every induced C_{m} and C_{n} in H. Consequently, the graph H consists of the vertices a and b and a set S of internally disjoint paths joining a and b. Observe that any induced cycle containing an edge of a path from S must contain all the edges of this path. Hence we may denote an induced C_{m} or C_{n} containing a path $P \in S$ by $C_{m}(P)$ or $C_{n}(P)$, respectively. Let P^{\prime} be a shortest $a-b$ path, and let $P^{(1)}$ denote the $a-b$ path of length $n-d(a, b)$ on $C_{n}\left(P^{\prime}\right)$ which is disjoint from P^{\prime}. Furthermore, let $P^{(2)}$ denote the $a-b$ path of length $m-(n-d(a, b))$ on $C_{m}\left(P^{(1)}\right)$ which is disjoint from $P^{(1)}$. Then $P^{(2)}$ is an $a-b$ path of length less than $d(a, b)$, which is impossible. The desired result now follows.

Proposition 1 For $m \geq 5$, efr $\left(C_{m}, C_{2 m-4}\right)=2 m$. Furthermore, C_{m} and $C_{2 m-4}$ are uniquely edge framed by the graph shown in Figure 3.

Proof. Since C_{m} and $C_{2 m-4}$ can be edge homogeneously embedded in the graph of size $2 m$ shown in Figure 3, it follows that efr $\left(C_{m}, C_{2 m-4}\right) \leq 2 m$. Now let F be an edge frame for $C_{2 m-4}$ and C_{m}. By Corollary $1, p(F) \geq 2 m-2$. Applying Theorem B, we have $\delta(F) \geq 2$. Let k be the number of vertices of H of degree at least 3. By Lemma $2, k \geq 3$. Hence $2(2 m) \geq 2 q(F) \geq 3 k+2(p(F)-k)=2 p(F)+k \geq 2 p(F)+3$ whence $p(F) \leq 2 m-2$. Thus $p(F)=2 m-2=f r\left(C_{m}, C_{2 m-4}\right)$. By Theorem C, the only graph of order $2 m-2$ which both frames C_{m} and $C_{2 m-4}$ and edge homogeneously embeds C_{m} and $C_{2 m-4}$ is the graph shown in shown in Figure 3. Consequently, efr $\left(C_{m}, C_{2 m-4}\right)=2 m$, and C_{m} and $C_{2 m-4}$ are uniquely edge framed by the graph shown in Figure 3.

Figure 3: An edge frame for C_{m} and $C_{2 m-4}$ for $m \geq 5$.

Lemma 3 Let $n>m \geq 4$ where $n \neq 2 m-4$ and $(m, n) \neq(5,7)$. If a graph H edge homogeneously embeds C_{m} and C_{n}, then $p(H) \geq n+3$.

Proof. Let H be a graph which edge homogeneously embeds C_{m} and C_{n}. By Corollary $1, p(H) \geq n+2$. Suppose that $p(H)=n+2$. Then by Lemma A we deduce that H frames C_{m} and C_{n}. By Theorem C it follows that $(m, n) \in S$, where S is the set of ordered pairs defined in Section 2. For $(m, n) \in S$ the frames for C_{m} and C_{n} have been completely determined in Theorem C and in each case it is easily checked that H does not edge homogeneously embed C_{m} and C_{n} unless $n=2 m-4$ (in which case H is the graph shown in Figure 3) or $n=2 m-3$ and $m=5$ (in which case H is the graph shown in Figure 4). This produces a contradiction and we deduce that $p(H) \geq n+3$.

Figure 4: An edge frame for C_{5} and C_{7}.

Proposition 2 For $m \geq 7$, efr $\left(C_{m}, C_{2 m-6}\right)=2 m-1$.
Proof. Since C_{m} and $C_{2 m-6}$ can be edge homogeneously embedded in the graph of size $2 m-1$ shown in Figure 5, it follows that $\operatorname{efr}\left(C_{m}, C_{2 m-6}\right) \leq 2 m-1$. We show that efr $\left(C_{m}, C_{2 m-6}\right)=2 m-1$ by verifying that there is no graph of size $2 m-2$ or less which edge homogeneously embeds C_{m} and $C_{2 m-6}$. Suppose, to the contrary, that such a graph H exists. By Lemma 3, $p(H) \geq 2 m-3$. Applying Theorem B, we have $\delta(H) \geq 2$. Let k be the number of vertices of H of degree at least 3. By Lemma $2, k \geq 3$. Hence $4 m-4 \geq 2 q(H) \geq 3 k+2(p(H)-k)=2 p(H)+k \geq$ $2(2 m-3)+3=4 m-3$, which is impossible.

Figure 5: An edge frame for C_{m} and $C_{2 m-6}$ for $m \geq 7$.

Lemma 4 For $n>m \geq 4$ where $n \neq 2 m-4$ or $2 m-6$, there is no graph of order $n+3$ and size at most $n+5$ that edge homogeneously embeds C_{m} and C_{n}.

Proof. Assume, to the contrary, that such a graph H exists. Applying Theorem B, we have $\delta(H) \geq 2$. Let k be the number of vertices of H of degree at least 3. Hence $2 n+10 \geq 2 q(H) \geq 3 k+2(p(H)-k)=2 p(H)+k=2 n+6+k$, so $k \leq 4$. By Lemma $2, k \geq 3$. Thus $k=3$ or 4 .

Case 1. $k=3$.
Since every graph contains an even number of vertices of odd degree, at least one vertex of H has degree 4 or more. Thus $2 n+10 \geq 2 q(H) \geq 10+2(p(H)-3)=$ $2 p(H)+4=2 n+10$. Since all these inequalities must be equalities, it follows that $q(H)=n+5$ and H contains two vertices of degree 3 , one of degree 4 , and n of degree 2 . Let w denote the vertex of degree 4 . Since no vertex of degree 2 in H can lie on a K_{3}, and since $q(H)=n+5$ and $\delta(H)=2$, it follows that every induced C_{n} in H must contain the vertex w. Let $C_{w}: w=w_{1}, w_{2}, \ldots, w_{n}, w_{1}$ be an induced C_{n} containing w, and let a, b, and c be the names of the three vertices of H not in C_{w}. Without loss of generality, we may assume that w is adjacent to a and b. Since $q(H)=n+5$ and $\delta(H)=2$, at most one of a and b is adjacent to a vertex of C_{w} different from w. Without loss of generality, we may assume that b is adjacent to no vertex of C_{w} other than w. Since no vertex of degree 2 in H can lie on a K_{3}, and since $q(H)=n+5$, the vertices a and b cannot be adjacent. Hence b is adjacent only to c and w.

Suppose firstly that a is adjacent to c. If $\operatorname{deg} c=2$, then c belongs to no induced C_{ℓ} for $\ell \geq 5$. Hence $\operatorname{deg} c=3$. Then a and b are vertices of degree 2 with $N(a)=N(b)$. Thus we must have $m=4$ otherwise by Lemma 1 we have a contradiction. Now c is adjacent with w_{j} for some $j(2 \leq j \leq n)$. Thus H is the graph shown in Figure 6.

Figure 6: The graph H.

Then $\operatorname{deg} w_{j}=\operatorname{deg} c=3, \operatorname{deg} w_{1}=4$, and the remaining vertices of H have degree 2. Thus any induce C_{4} containing the edge $w_{1} w_{2}$ must contain the vertices w_{1}, w_{j}, c and either a or b. Consequently $j=2$. Similarly, by considering the edge $w_{1} w_{n}$ we get $j=n$. Thus $n=2$, a contradiction. Thus a and c are not adjacent. Since $q(H)=n+5, \operatorname{deg} a=\operatorname{deg} c=2$. Since no vertex of degree 2 belongs to a K_{3}, the vertex a is not adjacent to w_{2} or w_{n}. Furthermore, the vertex c is not adjacent to w_{2} or w_{n}, for otherwise c belongs to no induced C_{n} for $n \geq 5$. Without loss of generality, we may assume that a is adjacent to w_{r} and c is adjacent to w_{s} where $3 \leq s<r \leq n-1$. The graph H is shown in Figure 7.

Since the vertex b belongs to no C_{4}, we must have $m \geq 5$. If $r=n-1$, then a and w_{n} are vertices of degree 2 with $N(a)=N\left(w_{n}\right)$ which contradicts Lemma 1 . Hence $r \leq n-2$. We now consider the vertex a. The vertex a belongs to three cycles,

Figure 7: The graph H.
namely, $C^{(1)}: a, w_{r}, w_{r+1}, \ldots, w_{n}, w_{1}, a$ (of length $n-r+3$), $C^{(2)}: a, w_{1}, w_{2}, \ldots, w_{r}, a$ (of length $r+1$) and $C^{(3)}: a, w_{1}, b, c, w_{s}, w_{s+1}, \ldots, w_{r}, a$ (of length $r-s+5$). At least one of these cycles is of length n. If $C^{(1)}$ has length n, then $r=s=3$ contradicting $r>s$. If $C^{(2)}$ has length n, then $r=n-1$ contradicting $r \leq n-2$. Therefore $C^{(3)}$ must be of length n, implying that $n-2 \geq r=n+s-5$, so $s \leq 3$. Thus $s=3$ and $r=n-2$. But then the vertex w_{n} belongs to three cycles of lengths $5, n$ and $n+1$. Hence $m=5$. However the edge $w_{3} w_{4}$ then belongs to no C_{5}, a contradiction. Hence Case 1 produces a contradiction.

Case 2. $k=4$.
Then $2 n+10 \geq 2 q(H) \geq 2 n+6+k=2 n+10$. Since all these inequalities must be equalities, it follows that $q(H)=n+5$ and H contains four vertices of degree 3 and $n-1$ vertices of degree 2 . The following claim will prove to be useful.

Claim 1 If C^{\prime} is an induced C_{n} in H and U the set of three vertices of H that do not belong to C^{\prime}, then $\langle U\rangle \cong K_{1} \cup K_{2}$ or P_{3}. Furthermore, if $\langle U\rangle \cong K_{1} \cup K_{2}$, then each vertex of U has degree 2 in H. If $\langle U\rangle \cong P_{3}$, then the central vertex of this P_{3} has degree 3 in H and the two end-vertices have degree 2 in H.

Proof. Since $q(H)=n+5$, there are exactly five edges incident with the vertices of U. Since $\delta(H)=2$, and no vertex of degree 2 belongs to a K_{3}, a simple counting argument shows that $q(\langle U\rangle)=1$ or 2 . Hence $\langle U\rangle \cong K_{1} \cup K_{2}$ or P_{3}. If $\langle U\rangle \cong K_{1} \cup K_{2}$, then, since $q(H)=n+5$, each vertex of U has degree 2 in H. If $\langle U\rangle \cong P_{3}$, then three of the five edges incident with vertices of U are also incident with vertices of C^{\prime}. It follows that exactly three of the four vertices of degree 3 belong to C^{\prime} and the remaining vertex of degree 3 is in U. Hence one vertex of U has degree 3 and the remaining two vertices have degree 2. Suppose $\langle U\rangle$ is the path a, b, c, and C^{\prime} is the (induced) cycle $v_{1}, v_{2}, \ldots, v_{n}, v_{1}$. We show that $\operatorname{deg} b=3$. If this is not the case, then we may assume that $\operatorname{deg} a=3$ and $\operatorname{deg} b=\operatorname{deg} c=2$. Without loss of generality, we may assume $a v_{1}, a v_{i}$ and $c v_{j}$ are edges of H where $2 \leq i<j \leq n$. The graph H is shown in Figure 8.
Since the vertex b belongs to no 4 -cycle, we may assume here that $n>m \geq 5$. Now there are only two induced cycles containing the edge $v_{1} v_{2}$, namely C^{\prime} and the cycle $C^{\prime \prime}: v_{1}, v_{2}, \ldots, v_{i}, a, v_{1}$. Since C^{\prime} has length $n, C^{\prime \prime}$ must have length m so that $i=m-1$. We now consider the edge $a v_{1}$. The edge $a v_{1}$ belongs to three induced cycles, namely, $C^{\prime \prime}$ (of length m), $v_{1}, a, v_{m-1}, v_{m}, v_{m+1}, \ldots, v_{n}, v_{1}$ (of length $n-m+4$)

Figure 8: The graph H.
and $C^{\prime \prime \prime}: v_{1}, a, b, c, v_{j}, \ldots, v_{n}, v_{1}$ (of length $n-j+5$). Thus $n=n-m+4$ or $n=n-j+5$. If $n=n-m+4$, then $m=4$ contradicting $m \geq 5$. Thus $C^{\prime \prime \prime}$ has length n and $j=5$. Hence $m-1=i \leq j-1=4$, so $m \leq 5$, i.e., $m=5$. But then the edge $a v_{4}$ belongs to no C_{n}, a contradiction. We deduce, therefore, that $\operatorname{deg} b=3$ and $\operatorname{deg} a=\operatorname{deg} c=2$. This completes the proof of the claim.

We now return to the proof of Case 2 . Let u and v be two (distinct) vertices of degree 3 for which $d(u, v)$ is a minimum, and let P be a shortest $u-v$ path. Then all interior vertices (if any) of P have degree 2 . Let $C_{P}: v_{1}, v_{2}, \ldots, v_{n}, v_{1}$ be an induced C_{n} containing an edge of P. Necessarily, C_{P} contains all edges of P. Let a, b, c be the three vertices of H that do not belong to C_{P}. By Claim 1, $\langle\{a, b, c\}\rangle \cong K_{1} \cup K_{2}$ or P_{3}. We consider the two possibilities in turn.

Case $2.1\langle\{a, b, c\}\rangle \cong P_{3}$.
Without loss of generality, we may assume that a, b, c is a path. By Claim $1, \operatorname{deg} b=3$ and $\operatorname{deg} a=\operatorname{deg} c=2$. Since b is adjacent to a vertex of degree 3 of C_{P}, our choice of u and v implies that $d(u, v)=1$, so u and v are adjacent vertices on C_{P}. Without loss of generality, we may assume that $u=v_{1}$ and $v=v_{2}$. If b is adjacent to either u or v, then, without loss of generality, H is then the graph shown in Figure $9(i)$. Since the vertex a belongs to induced cycles of only two possible lengths, namely, 4 and n, we must have $m=4$. But then the edge $v_{1} v_{n}$ belongs to no C_{m}, a contradiction. Hence b is adjacent to neither u nor v, so $b v_{i}$ is an edge for some $i(3 \leq i \leq n)$.

Figure 9: The graph H.

Without loss of generality, H is then the graph shown in Figure $9(i i)$. Since the edge $v_{1} v_{2}$ belongs to no 4 -cycle, we must have $m \geq 5$. The edge $b c$ belongs to three cycles, namely b, c, v_{2}, v_{1}, a, b (of length 5), $b, c, v_{2}, v_{3}, \ldots, v_{i}, b$ (of length $i+1$)
and $c, b, v_{i}, v_{i+1}, \ldots, v_{n}, v_{1}, v_{2}, c$ (of length $n-i+5$). Since $n>5$, we must have $n=i+1$ or $n-i+5$. Suppose $n=n-i+5$. Then $i=5$ and the edge $v_{1} v_{n}$ lies on cycles of only two possible lengths, namely, $n-1$ and n. Hence $m=n-1$. Now the edge $v_{1} v_{2}\left(v_{2} v_{3}\right)$ lies on cycles of length 5,7 and $n(6,7$ and n, respectively). We deduce that $m=7$ and $n=8$. However, then, $n=2 m-6$ which is contrary to our choice of m and n. Thus $n=i+1$, i.e., $i=n-1$. The edge $v_{2} v_{3}$ then lies only on cycles of length n and $n+1$ so that $v_{2} v_{3}$ does not lie on any cycle of length m. This produces a contradiction.

Case $2.2\langle\{a, b, c\}\rangle \cong K_{1} \cup K_{2}$.
Without loss of generality, we may assume that a is the isolated vertex in $\langle U\rangle$, so $b c$ is an edge. By Lemma 1, each of a, b and c has degree 2. Let C_{a} be an induced C_{n} containing the vertex a. We show that the edge $b c$ belongs to C_{a}. If this is not the case, then, without loss of generality, we may assume that C_{a} is $a, v_{2}, v_{3}, \ldots, v_{n}, a$. By Claim 1, the three vertices v_{1}, b and c that do not belong to C_{a} induce either a P_{3} or $K_{1} \cup K_{2}$. If $\left\langle\left\{v_{1}, b, c\right\}\right\rangle \cong P_{3}$, then, since $\Delta(H)=3$, the vertex v_{1} must be an end-vertex of $\left\langle\left\{v_{1}, b, c\right\}\right\rangle \cong P_{3}$. But then v_{1} has degree 3 in H which contradicts Claim 1. Thus $\left\langle\left\{v_{1}, b, c\right\}\right\rangle \cong K_{1} \cup K_{2}$ and v_{1} has degree 2 in H. Hence a and v_{1} are two nonadjacent vertices of degree 2 in H with $N(a)=N\left(v_{1}\right)$. This, however, contradicts Lemma 1 if $m \geq 5$. Hence $m=4$. Without loss of generality, we may assume that the vertex $b(c)$ is adjacent with the vertex $v_{i}\left(v_{j}\right.$, respectively) where $3 \leq i<j \leq n-1$. Since the edge $b c$ must lie on an induced C_{4}, it follows that $j=i+1$. However the edge $b c$ then belongs to no cycle of length 5 or more. This produces a contradiction. We deduce, therefore, that the edge bc must belong to C_{a}.

Let S be the set of three vertices of C_{P} that do not belong to C_{a}. By Claim 1, $\langle S\rangle \cong K_{1} \cup K_{2}$ or P_{3}. Clearly, $\langle S\rangle \cong K_{1} \cup K_{2}$. Without loss of generality, we may assume that $S=\left\{v_{2}, v_{i}, v_{i+1}\right\}$ where $5 \leq i \leq n-2$. Hence $n \geq 7$, and v_{1}, v_{3}, v_{i-1} and v_{i+2} are the four vertices of degree 3 in H. If $N(a)=N\left(v_{2}\right)$, then, since the edge $b c$ belongs to cycles only of length 6 and n, it follows that $m=6$. However, the vertex a belongs to cycles only of length 4 and n, so $m=4$, a contradiction. Hence $N(a) \neq N\left(v_{2}\right)$.

If C_{a} is given by $v_{1}, b, c, v_{3}, v_{4} \ldots, v_{i-1}, a, v_{i+2}, \ldots, v_{n}, v_{1}$, then H is the graph shown in Figure $10(i)$. Now the edge $v_{1} v_{n}$ belongs to cycles of length $n-1, n, n+1$. Thus $m=n-1$. However, the edge $b c$ belongs to no induced $C_{n-1}(n \geq 7)$. Hence we may assume, without loss of generality, that C_{a} is given by either $C_{a}^{(1)}: v_{1}, a, v_{i-1}$, $v_{i-2}, \ldots, v_{3}, b, c, v_{i+2}, \ldots, v_{n}, v_{1}$, in which case H is the graph shown in Figure $10(i i)$, or $C_{a}^{(1)}: v_{1}, b, c, v_{i-1}, v_{i-2}, \ldots, v_{3}, a, v_{i+2}, \ldots, v_{n}, v_{1}$, in which case H is the graph shown in Figure $10(i i i)$. If C_{a} is $C_{a}^{(1)}$, then the edge $v_{1} v_{n}$ belongs to cycles of length $n-i+4$ and n. Thus $m=n-i+4$. Furthermore, the edge $v_{3} v_{4}$ belongs to cycles of length $i, i+2$ and n. Thus $m=i$ or $i+2$. If $m=i$, then $n=2 m-4$ and if $m=i+2$, then $n=2 m-6$. In either case we contradict our choice of m and n. A similar argument shows that C_{a} cannot be $C_{a}^{(2)}$. This completes the proof of Case 2.2, and therefore of Lemma 4.
Corollary 2 For $n>m \geq 4$ with $n \neq 2 m-4$ or $2 m-6$ and $(m, n) \neq(5,7)$,

$$
e f r\left(C_{m}, C_{n}\right) \geq n+6
$$

Figure 10:

Proof. We show that $\operatorname{efr}\left(C_{m}, C_{n}\right) \geq n+6$ by verifying that there is no graph of size $n+5$ or less which edge homogeneously embeds C_{m} and C_{n}. Suppose, to the contrary, that such a graph H exists. By Lemma $3, p(H) \geq n+3$, and by Lemma 4 , $p(H) \neq n+3$; consequently, $p(H) \geq n+4$. Applying Theorem B, we have $\delta(H) \geq 2$. Let k be the number of vertices of H of degree at least 3. By Lemma $2, k \geq 3$. Hence $2 n+10 \geq 2 q(H) \geq 3 k+2(p(H)-k)=2 p(H)+k \geq 2 n+11$, which is impossible.
Corollary 3 For $m \geq 7, C_{m}$ and $C_{2 m-6}$ are uniquely edge framed by the the graph of size $2 m-1$ shown in Figure 5.
Proof. Let F be an edge frame for C_{m} and $C_{2 m-6}$. Then by Proposition $2, q(F)=$ $2 m-1$. By Corollary $1, p(F) \geq 2 m-4$. Applying Theorem B, we have $\delta(F) \geq 2$. Let k be the number of vertices of F of degree at least 3 . By Lemma $2, k \geq 3$. Hence $4 m-2=2 q(F) \geq 3 k+2(p(F)-k)=2 p(F)+k \geq 2 p(F)+3$, whence $p(F) \leq 2 m-3$. Thus $2 m-4 \leq p(F) \leq 2 m-3$. If $p(F)=2 m-4$, then $p(F)=f r\left(C_{m}, C_{2 m-6}\right)$ and so F frames C_{m} and $C_{2 m-6}$. However, by Theorem C, there is no graph of order $2 m-4$ which edge homogeneously embeds C_{m} and $C_{2 m-6}$ for $m \geq 7$. Thus $p(F)=2 m-3=(2 m-6)+3$. From the proof of Lemma 4 we deduce that C_{m} and $C_{2 m-6}$ have at most one edge frame. We conclude that C_{m} and $C_{2 m-6}$ are uniquely edge framed.

Proposition 3 For $m \geq 4$ and $m \notin\{5,7\}$, efr $\left(C_{m}, C_{m+1}\right)=m+7$.
Proof. Since C_{m} and C_{m+1} can be edge homogeneously embedded in the graph of size $m+7$ shown in Figure 11(i) for $m=4$ and in Figure 11(ii) for $m=6$ or $m \geq 8$, it follows that $\operatorname{efr}\left(C_{m}, C_{m+1}\right) \leq m+7$. By Corollary $2, \operatorname{efr}\left(C_{m}, C_{m+1}\right) \geq m+7$. Consequently $\operatorname{efr}\left(C_{m}, C_{m+1}\right)=m+7$ as required.

(i)

(ii)

Figure 11:

Proposition 4 For $m \geq 10$, efr $\left(C_{m}, C_{2 m-8}\right)=2 m-2$.
Proof. Since $C_{2 m-8}$ and C_{m} can be edge homogeneously embedded in the graph of size $2 m-2$ shown in Figure 12, it follows that efr $\left(C_{2 m-8}, C_{m}\right) \leq 2 m-2$. By Corollary 2 , efr $\left(C_{2 m-8}, C_{m}\right) \geq 2 m-2$. Consequently $\operatorname{efr}\left(C_{2 m-8}, C_{m}\right)=2 m-2$ as required.

Figure 12: An edge framc for C_{m} and $C_{2 m-8}$ for $m \geq 10$.

Proposition 5 efr $\left(C_{5}, C_{7}\right)=12$.
Proof. Since C_{5} and C_{7} can be edge homogeneously embedded in the graph $F_{5,7}$ (without the dotted edges) of size 12 shown in Figure 2, it follows that efr $\left(C_{5}, C_{7}\right) \leq$ 12. We show that $\operatorname{efr}\left(C_{5}, C_{7}\right)=12$ by verifying that there is no graph of size at most 11 which edge homogeneously embeds C_{5} and C_{7}. Suppose, to the contrary, that such a graph H exists. By Corollary $1, p(H) \geq 9$. Applying Theorem B, we have $\delta(H) \geq 2$. Let k be the number of vertices of H of degree at least 3. By Lemma $2, k \geq 3$. Hence $22 \geq 2 q(H) \geq 3 k+2(p(H)-k)=2 p(H)+k \geq 2 p(H)+3$ whence $p(H) \leq 9$. Consequently, $p(H)=9=f r\left(C_{5}, C_{7}\right)$ and so H frames C_{5} and C_{7}. However, from Theorem C , the frames for C_{5} and C_{7} all have sizes greater than 11. This produces a contradiction.

Proposition 6 For $m=4$ or $m \geq 7$, efr $\left(C_{m}, C_{m+2}\right)=m+8$.

Proof. Since C_{m} and C_{m+2} can be edge homogeneously embedded in the graph of size $m+8$ shown in Figure 13(i) for $m=4$ and in Figure 13(ii) for $m \geq 7$, it follows that efr $\left(C_{m}, C_{m+2}\right) \leq m+8$. By Corollary 2 , efr $\left(C_{m}, C_{m+2}\right) \geq m+8$. Consequently $\operatorname{efr}\left(C_{m}, C_{m+2}\right)=m+8$ as required.

(i)

$m-5$ vertices
(ii)

Figure 13:

References

[1] G. Chartrand, H. Gavlas, and M. Schultz, FRAMED! A graph embedding problem. Bull. Inst. Combin. Appl. 4 (1992), 35-50.
[2] G. Chartrand, M.A. Henning, H. Hevia, and E. Jarrett, A new characterization of the Petersen graph. J. Combin. Inform. System. Sci. 20 (1995), 219-227.
[3] G. Chartrand and L. Lesniak, Graphs 8 Digraphs, Third Edition, Wadsworth and Brooks/Cole, Monterey, CA, 1996.
[4] R.C. Entringer, W. Goddard, and M.A. Henning, A note on cliques and independent sets. To appear in J. Graph Theory.
[5] H. Gavlas, M.A. Henning, and M. Schultz, On graphs and their frames. Vishwa Internat. J. Graph Theory 1(2) (1992), 111-131.
[6] W. Goddard, M.A. Henning and H. Maharaj, Homogeneous Embeddings of Cycles in Graphs. Submitted for publication.
[7] W. Goddard, M.A. Henning, O.R. Oellermann, and H.C. Swart, Some general results on the framing number of a graph. Quaestiones Math. 16(3) (1993), 289300.
[8] W. Goddard, M.A. Henning, O.R. Oellermann, and H.C. Swart, Which trees are uniquely framed by the Heawood graph. Quaestiones Math. 16(3) (1993), 237-251.
[9] M.A. Henning, On edge cliques and edge independent sets. Bull. Inst. of Combin. Appl. 18 (1996), 75-81.
[10] H. Maharaj, Edge frames of graphs: A graph embedding problem. To appear in Discrete Math.

