The Binding Number of a Random Graph

Vadim E. Zverovich ${ }^{*}$
Department II of Mathematics
RWTH Aachen, Aachen 52056, Germany

Abstract

Let \mathbf{G} be a random graph with n labelled vertices in which the edges are chosen independently with a fixed probability $p, 0<p<1$. In this note we prove that, with the probability tending to 1 as $n \rightarrow \infty$, the binding number of a random graph \mathbf{G} satisfies: (i) $b(\mathbf{G})=(n-1) /(n-\delta)$, where δ is the minimal degree of \mathbf{G}; (ii) $1 / q-\epsilon<b(\mathbf{G})<1 / q$, where ϵ is any fixed positive number and $q=1-p$; (iii) $b(\mathbf{G})$ is realized on a unique set $X=V(\mathbf{G}) \backslash N(x)$, where $\operatorname{deg}(x)=$ $\delta(\mathbf{G})$, and the induced subgraph $\langle X\rangle$ contains exactly one isolated vertex x.

All graphs will be finite and undirected, without loops or multiple edges. If G is a graph, $V(G)$ denotes the set of vertices in G, and $n=|V(G)|$. We shall denote the neighborhood of a vertex x by $N(x)$. More generally, $N(X)=\bigcup_{x \in X} N(x)$ for $X \subseteq V(G)$. The minimal degree of vertices and the vertex connectivity of G are denoted by $\delta=\delta(G)$ and $\kappa(G)$, respectively. For a set X of vertices, $\langle X\rangle$ denotes the subgraph of G induced by X.

Woodall [5] defined the binding number $b(G)$ of a graph G as follows:

$$
b(G)=\min _{X \in \mathcal{F}} \frac{|N(X)|}{|X|}
$$

where $\mathcal{F}=\{X: \emptyset \neq X \subseteq V(G), N(X) \neq V(G)\}$. We say that $b(G)$ is realized on a set X if $X \in \mathcal{F}$ and $b(G)=|N(X)| /|X|$, and the set X is called a realizing set for $b(G)$.

Proposition 1 For any graph G,

$$
\frac{\delta}{n-\delta} \leq b(G) \leq \frac{n-1}{n-\delta}
$$

[^0]Proof. The upper bound is proved by Woodall in [5]. Let us prove the lower bound. Let $X \in \mathcal{F}$ and $|N(X)| /|X|=b(G)$, i.e., X is a realizing set. We have $|N(X)| \geq \delta$, since the set X is not empty. Suppose that $|X| \geq n-\delta+1$. Then any vertex of G is adjacent to some vertex of X, i.e. $N(X)=V(G)$, a contradiction. Therefore $|X| \leq n-\delta$ and $b(G)=|N(X)| /|X| \geq \delta /(n-\delta)$. The proof is complete.

Note that the difference between the upper and lower bounds on $b(G)$ in Proposition 1 is less than 1 . In the sequel we shall see that the binding number of almost every graph is equal to the upper bound in Proposition 1.

Let $0<p<1$ be fixed and put $q=1-p$. Denote by $\mathcal{G}(n, \mathbf{P}(e d g e)=p)$ the discrete probability space consisting of all graphs with n fixed and labelled vertices, in which the probability of each graph with M edges is $p^{M} q^{N-M}$, where $N=\binom{n}{2}$. Equivalently, the edges of a labelled random graph are chosen independently and with the same probability p . We say that a random graph \mathbf{G} satisfies a property Q if

$$
\mathbf{P}(\mathbf{G} \text { has } Q) \rightarrow 1 \text { as } n \rightarrow \infty .
$$

We shall need the following results.
Theorem 1 (Bollobás [1]) A random graph \mathbf{G} satisfies $\kappa(\mathbf{G})=\delta(\mathbf{G})$.
Theorem 2 (Bollobás [1]) A random graph \mathbf{G} satisfies

$$
\left|\delta(\mathbf{G})-p n+(2 p q n \log n)^{1 / 2}-\left(\frac{p q n}{8 \log n}\right)^{1 / 2} \log \log n\right| \leq C(n)\left(\frac{n}{\log n}\right)^{1 / 2},
$$

where $C(n) \rightarrow \infty$ arbitrarily slowly.
Theorem 3 (Erdös and Wilson [3]) A random graph has a unique vertex of minimal degree.

Now we can state the main result of the paper.
Theorem 4 The binding number of a random graph \mathbf{G} satisfies

$$
b(\mathbf{G})=\frac{n-1}{n-\delta}
$$

Proof. Taking into account Proposition 1, it is sufficient to prove that

$$
\frac{|N(X)|}{|X|} \geq \frac{n-1}{n-\delta}
$$

for any set $X \in \mathcal{F}$. Let $Y=N(X) \backslash X$ and consider three cases.
(i) The induced subgraph $\langle X\rangle$ does not contain an isolated vertex. The set $V(\mathbf{G}) \backslash N(X)$ is not empty, since $X \in \mathcal{F}$. Hence the set Y is a cutset of the graph G. By Theorem 1, $\kappa(\mathbf{G})=\delta(\mathbf{G})$. Therefore $|Y| \geq \delta$ and $|X|<n-\delta$. We have

$$
\frac{|N(X)|}{|X|}=\frac{|Y|+|X|}{|X|}=\frac{|Y|}{|X|}+1 \geq \frac{n}{n-\delta}>\frac{n-1}{n-\delta} .
$$

(ii) The induced subgraph $\langle X\rangle$ contains exactly one isolated vertex. Obviously $|Y| \geq \delta$ and $|X| \leq n-\delta$. Then, taking into account that $\delta(\mathbf{G})>0$, we obtain

$$
\frac{|N(X)|}{|X|}=\frac{|Y|+|X|-1}{|X|}=\frac{|Y|-1}{|X|}+1 \geq \frac{n-1}{n-\delta} .
$$

(iii) The induced subgraph $\langle X\rangle$ contains more than one isolated vertex. If x and y are different vertices of \mathbf{G}, then $\operatorname{deg}(x, y)$ denotes the pair degree of the vertices x and y, i.e., the cardinality $|N(\{x, y\}) \backslash\{x, y\}|$. Define $\mu=\mu(\mathbf{G})=\min \operatorname{deg}(x, y)$, where the minimum is taken over all pairs of different vertices $x, y \in V(\mathbf{G})$. Now introduce a random variable ξ on $\mathcal{G}(n, \mathbf{P}(e d g e)=p)$. The random variable ξ is equal to the number of pairs of different vertices in \mathbf{G} such that

$$
\operatorname{deg}(x, y) \leq\left(1-q^{2}-\epsilon\right)(n-2)
$$

where ϵ is fixed and $0<\epsilon<1-q^{2}$. We need to estimate the expectation $\mathbf{E} \xi$. Let the vertices x and y be fixed. Then

$$
\Pi=\mathbf{P}(\operatorname{deg}(x, y) \leq k)=\sum_{t \leq k}\binom{n-2}{t}\left(1-q^{2}\right)^{t}\left(q^{2}\right)^{n-2-t}
$$

where $k=(n-2)\left(1-q^{2}-\epsilon\right)$. We now use the Chernoff formula [2]:

$$
\sum_{t \leq k}\binom{m}{t} P^{t} Q^{m-t} \leq \exp \left(k \log \frac{m P}{k}+(m-k) \log \frac{m Q}{m-k}\right)
$$

whenever $k \leq m P, P>0, Q>0$ and $P+Q=1$. Taking $m=n-2, k=m\left(1-q^{2}-\epsilon\right)$, $P=1-q^{2}$ and $Q=q^{2}$, and noting that $\log x<x-1$ if $x \neq 1$, we find that

$$
\Pi \leq \exp \{(n-2) \Theta\}
$$

where

$$
\begin{aligned}
\Theta= & \left(1-q^{2}-\epsilon\right) \log \frac{1-q^{2}}{1-q^{2}-\epsilon}+\left(q^{2}+\epsilon\right) \log \frac{q^{2}}{q^{2}+\epsilon} \\
& <\left(1-q^{2}\right)-\left(1-q^{2}-\epsilon\right)+q^{2}-\left(q^{2}+\epsilon\right)=0
\end{aligned}
$$

Thus $\Pi<e^{-C n}$, where $C>0$ is a constant. At last, we get

$$
\mathbf{E} \xi \leq\binom{ n}{2} e^{-C n}=o(1)
$$

If ξ is a non-negative random variable with expectation $\mathbf{E} \xi>0$ and $r>0$, then from the Markov inequality it follows that

$$
\mathbf{P}(\xi \geq r \mathbf{E} \xi) \leq 1 / r
$$

Taking $r=1 / \mathbf{E} \xi$, we have $\mathbf{P}(\xi \geq 1) \leq \mathbf{E} \xi=o(1)$, i.e. $\mathbf{P}(\xi=0)=1-o(1)$. Thus

$$
\mu>\left(1-q^{2}-\epsilon\right)(n-2) .
$$

Denote by m the number of isolated vertices in the graph $\langle X\rangle$. Clearly $m \leq \alpha$, where $\alpha=\alpha(\mathbf{G})$ is the independence number of \mathbf{G}. It is well-known [4] that for a random graph $\mathbf{G}, \alpha(\mathbf{G})=o(n)$, so that $\mu>\alpha$. Furthermore, $|Y| \geq \mu$ and $|X| \leq n-\mu$, since $m \geq 2$, and so $|Y|-m \geq \mu-\alpha>0$. We obtain

$$
\begin{gathered}
\frac{|N(X)|}{|X|}=\frac{|Y|+|X|-m}{|X|}=\frac{|Y|-m}{|X|}+1 \geq \frac{\mu-\alpha}{n-\mu}+1= \\
\frac{n-\alpha}{n-\mu}>\frac{n-o(n)}{n-\left(1-q^{2}-\epsilon\right)(n-2)}=\frac{1}{\epsilon+q^{2}}(1-o(1)) .
\end{gathered}
$$

On the other hand, by Theorem 2 ,

$$
\frac{n-1}{n-\delta}=\frac{n-1}{n-p n(1-o(1))}=\frac{1}{q}(1-o(1)) .
$$

Now, if we take $\epsilon<q-q^{2}$, then we have

$$
\frac{|N(X)|}{|X|}>\frac{n-1}{n-\delta} .
$$

This completes the proof of Theorem 4.
Using Theorems 2-4, the following corollaries are obtained.
Corollary 1 If $C(n) \rightarrow \infty$ arbitrarily slowly, then the binding number of a random graph \mathbf{G} satisfies

$$
\frac{n-1}{K+C(n)(n / \log n)^{1 / 2}} \leq b(\mathbf{G}) \leq \frac{n-1}{K-C(n)(n / \log n)^{1 / 2}},
$$

where

$$
K=q n+(2 p q n \log n)^{1 / 2}-\left(\frac{p q n}{8 \log n}\right)^{1 / 2} \log \log n .
$$

The proof follows immediately from Theorems 2 and 4.
It may be pointed out that the bounds in Corollary 1 are essentially best possible, since the result of Theorem 2 is best possible (see [1]).
Corollary 2 If $\epsilon>0$ is fixed, then the binding number of a random graph \mathbf{G} satisfies

$$
1 / q-\epsilon<b(\mathbf{G})<1 / q .
$$

The proof follows immediately from Corollary 1.
Corollary 3 The binding number of a random graph \mathbf{G} is realized on a unique set $X=V(\mathbf{G}) \backslash N(x)$, where $\operatorname{deg}(x)=\delta(\mathbf{G})$, and the graph $\langle X\rangle$ contains exactly one isolated vertex x.
Proof. One may see from the proof of Theorem 4 that the equality

$$
|N(X)| /|X|=(n-1) /(n-\delta)
$$

for a random graph \mathbf{G} is possible only if the graph $\langle X\rangle$ contains exactly one isolated vertex x and $|X|=n-\delta$. Thus $\operatorname{deg}(x)=\delta(\mathbf{G})$ and $X=V(\mathbf{G}) \backslash N(x)$. By Theorem 3 , the set X is unique.

Acknowledgment The author thanks the referee for useful suggestions.

References

[1] B. Bollobás, Degree sequences of random graphs, Discrete Math. 33 (1981) 1-19.
[2] H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations, Ann. Math. Stat. 23 (1952) 493-509.
[3] P. Erdös and R.J. Wilson, On the chromatic index of almost all graphs, J. Combinatorial Theory Ser. B 23 (1977) 255-257.
[4] K. Weber, Random graphs - a survey, Rostock. Math. Kolloq. 21 (1982) 83-98.
[5] D.R. Woodall, The binding number of a graph and its Anderson number, J. Combinatorial Theory Ser. B 15 (1973) 225-255.

[^0]: *On leave from Faculty of Mechanics and Mathematics, Belarus State University, Minsk 220050, Republic of Belarus. Supported by an award from the Alexander von Humboldt Foundation.

