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Abstract 

Let G be a random graph with n labelled vertices in which the edges are 

chosen independently with a fixed probability p, 0 < p < 1. In this note 

we prove that, with the probability tending to 1 as n -+ 00, the binding 

number of a random graph G satisfies: 

(i) b(G) = (n - l)/(n - 8), where 8 is the minimal degree of G; 

(ii) l/q - E < b(G) < l/q, where E is any fixed positive number and 

q = 1 - p; 

(iii) b(G) is realized on a unique set X = V( G)\N(x), where deg(x) = 

8(G), and the induced subgraph (X) contains exactly one isolated vertex 

x. 

All graphs will be finite and undirected, without loops or multiple edges. If G is 

a graph, V(G) denotes the set of vertices in G, and n =1 V(G) I. We shall denote 

the neighborhood of a vertex x by N(x). More generally, N(X) UxEX N(x) for 

X ~ V( G). The minimal degree of vertices and the vertex connectivity of G are 

denoted by 8 = 8( G) and K,( G), respectively. For a set X of vertices, (X) denotes 

the subgraph of G induced by X. 

Woodall [5] defined the binding number b( G) of a graph G as follows: 

b(G) = . I N(X) I 
Tl~ IX I ' 

where :F = {X : 0 =I- X ~ V(G), N(X) =I- V(G)}. We say that b(G) is realized on a 

set X if X E :F and b( G) N (X) I / 1 X I, and the set X is called a realizing set 

for b( G). 

Proposition 1 For any graph G) 

_8 _ ::; b( G) ::; n - 1 
n-8 n-
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Proof. The upper bound is proved by Woodall in [5]. Let us prove the lower 
bound. Let X E :F and I N(X) I j I X 1= b(G), i.e., X is a realizing set. We have 
I N(X) 12:: 0, since the set X is not empty. Suppose that I X 12:: n - 0 + 1. Then 
any vertex of G is adjacent to some vertex of X, i.e. N(X) = V(G), a contradiction. 
Therefore I X I:::; n - 0 and b(G) =1 N(X) I j I X 12:: oj(n 0). The proof is 
complete. III 

Note that the difference between the upper and lower bounds on b( G) in Propo
sition 1 is less than 1. In the sequel we shall see that the binding number of almost 
every graph is equal to the upper bound in Proposition 1. 

Let 0 < p < 1 be fixed and put q = 1 - p. Denote by Q(n,P(edge) = p) the 
discrete probability space consisting of all graphs with n fixed and labelled vertices, 

in which the probability of each graph with M edges is pM qN-M, where N = (~). 
Equivalently, the edges of a labelled random graph are chosen independently and 
with the same probability p. We say that a random graph G satisfies a property Q 
if 

P(G has Q) -+ 1 as n -+ 00. 

We shall need the following results. 

Theorem 1 (Bollobas [1]) A random graph G satisfies h;(G) = J(G). 

Theorem 2 (Bollobas [1]) A random graph G satisfies 

I o(G) - pn + (2pqn log n)1/2 - ( Plqn ) 1/2 log log n I :::; C(n) (-1 n ) 1/2, 
80gn ogn 

where C(n) -+ 00 arbitrarily slowly. 

Theorem 3 (Erdos and Wilson [3]) A random graph has a unique vertex of 
minimal degree. 

Now we can state the main result of the paper. 

Theorem 4 The binding number of a random graph G satisfies 

b(G) = n - 1 
n-

Proof. Taking into account Proposition 1, it is sufficient to prove that 

for any set X E F. Let Y = N(X) \X and consider three cases. 
(i) The induced subgraph (X) does not contain an isolated vertex. The set 

V(G)\N(X) is not empty, since X E F. Hence the set Y is a cutset of the graph 
G. By Theorem 1, h;(G) = o(G). -Therefore I Y 12:: 0 and I X 1< n o. We have 

I N(X) I = I Y I + I X I = ~ + 1 > _n_ > ~. 
IXI IXI IXI -n 0 n-O 
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(ii) The induced subgraph (X) contains exactly one isolated vertex. Obviously 
I y 12: 6 and I X I::; n - 6. Then, taking into account that 6(G) > 0, we obtain 

I N(X) I I Y I + I X I -1 I Y I -1 n 1 
IXI = IXI = IXI +l2: n _ 

(iii) The induced subgraph (X) contains more than one isolated vertex. If x and 
yare different vertices of G, then deg(x, y) denotes the pair degree of the vertices x 
and y, i.e., the cardinality I N({x,y})\{x,y} I. Define Ji Ji(G) = mindeg(x,y), 
where the minimum is taken over all pairs of different vertices x, y E V(G). Now 
introduce a random variable ~ on Q(n, P(edge) = p). The random variable ~ is equal 
to the number of pairs of different vertices in G such that 

deg(x, y) ::; (1 - q2 - f)(n - 2), 

where f is fixed and 0 < f < 1 - q2. We need to estimate the expectation E( Let 
the vertices x and y be fixed. Then 

II = P(deg(x,y) :::; k) = L (n ~ 2) (1 - q2)t(q2r-2-t, 
t5,k 

where k = (n 2)(1 - q2 - f). We now use the Chernoff formula [2]: 

~ (7) p'Qm-' :0: exp (k log m: + (m - k) log mffiQJ 

whenever k :s: mP, P > 0, Q > 0 and P+Q = 1. Taking m = n-2, k = m(1-q2-f), 
P = 1 - q2 and Q = q2, and noting that log x < x-I if x i=- 1, we find that 

II ::; exp{(n - 2)8} 

where 
1 _ q2 q2 

e = (1 q2 - f) log 2 + (q2 + f) log -2-
1-q-f q+f 

< (1 -l) - (1 - q2 - f) + l- (q2 + f) = O. 

Thus II < e-Cn , where C > 0 is a constant. At last, we get 

E~ ::; (~) e-Cn = 0(1). 

If ~ is a non-negative random variable with expectation E~ > 0 and r > 0, then 
from the Markov inequality it follows that 

P(~ 2: rE~) :::; l/r. 

Taking r l/E~, we have P(~ 2: 1) ::; E~ = 0(1), i.e. P(~ 0) = 1 - 0(1). Thus 

Ji > (1 - q2 - f) (n - 2). 
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Denote by m the number of isolated vertices in the graph (X). Clearly m ::; a, 
where a = a( G) is the independence number of G. It is well-known [4] that for 
a random graph G, a(G) = o(n), so that fl > a. Furthermore, IYI 2:: fl and 
IXI :::; n - fl, since m ~ 2, and so IYI - m ~ fl - a > O. We obtain 

I N(X) I I Y I + I X I -m I Y I -m fl - a 
IXI = IXI = IXI +12:: n _ fl + 1 = 

n - a n - o(n) 1 
n - f1 > n - (1 - q2 - c) (n _ 2) = c + q2 (1 - o( 1 ) ) . 

On the other hand, by Theorem 2, 

n-l n-l 1 
n - 5 n pn(1 _ 0(1)) = q(1 - 0(1)). 

Now, if we take c < q q2, then we have 

I N(X) I n-l 
~--'-...,:.-.:. > 

IX I n-

This completes the proof of Theorem 4. I 

U sing Theorems 2-4, the following corollaries are obtained. 

Corollary 1 If C (n) 4- 00 arbitrarily slowly! then the binding number of a random 
graph G satisfies 

where 

n - 1 b(G) n 1 
f{ + C(n)(n/logn)1/2 ::; :::; f{ - C(n)(n/logn)1/2' 

f{ = qn + (2pqn log n )1/2 - ( PI qn ) 1/2 log log n. 
80gn 

The proof follows immediately from Theorems 2 and 4. III 

It may be pointed out that the bounds in Corollary 1 are essentially best possible, 
since the result of Theorem 2 is best possible (see [1]). 

Corollary 2 If c > 0 is fixed) then the binding number of a random graph G satisfies 

l/q - c < b(G) < l/q. 

The proof follows immediately from Corollary 1. I 

Corollary 3 The binding number of a random graph G is realized on a unique set 
X = V(G)\N(x)) where deg(x) = 5(G)) and the graph (X) contains exactly one 
isolated vertex x. 

Proof. One may see from the proof of Theorem 4 that the equality 

I N(X) I / I X 1= (n - 1)/(n - 5) 

for a random graph G is possible only if the graph (X) contains exactly one isolated 
vertex x and I X 1= n - 5. Thus deg(x) = 5(G) and X = V(G)\N(x). By Theorem 
3, the set X is unique. I 
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