A classification of symmetric graphs of order 30^{*}

Da-Chang Guo

Guangdong Universty of Technology
Guangzhou 510643

Abstract

Let Γ be a simple undirected graph and G a subgroup of Aut Γ. Γ is said to be G-symmetric, if G acts transitively on the set of ordered adjacent pairs of vertices of Γ; Γ is said to be symmetric if it is Aut Γ symmetric. In this paper we give a complete classification for symmetric graphs of order 30. (See Theorem 10.)

1 Introduction

Let Γ be a simple undirected graph and G a subgroup of Aut Γ. Γ is said to be G symmetric, if G acts transitively on the set of ordered adjacent pairs of vertices of Γ; Γ is said to be symmetric if it is Aut Γ-symmetric. The classifications of symmetric graphs of order $p, 2 p, 3 p$ and $k p$, where k and p are distinct primes and $5 \leq k<p$, were done in [1], [2], [3] and [4], respectively. After finishing the classification of symmetric $p q$-graphs, some people tried to do the same thing for symmetric graphs of order $4 p, 6 p$. Our main results are in the same spirit. Although the class of graphs of order 30 is only a special class of symmetric graphs of order $6 p$, it is a necessary step in classifying that of $6 p$ since it is the only situtation where $p<6$. Thus the problem of classfying symmetric graphs of order $6 p$ splits into two cases, the case $p=5$ and the case $p \neq 5$. The aim of this paper is to classify the symmetric graphs of order 30 .

The group- and graph-theoretic notation and terminology used in this paper are standard in general; the reader can refer to [3] and [4] when necessary. Other notation and terminology such as block graphs, orbital graphs of a permutation group used here are the same as in [3] and [5].

Throughout this paper we use $V(\Gamma)$ and $E(\Gamma)$ to denote the vertex and edge sets of Γ, respectively. Two vertices u and v being adjacent is denoted by $u \sim v$ or

[^0]$u v \in E(\Gamma)$. For $v \in V(\Gamma), \Gamma_{1}(v)$ denotes the neighborhood of v in Γ, that is the set of vertices adjacent to v in Γ. Then Γ is G-symmetric if and only if G acts transitively on $V(\Gamma)$ and for any vertex $v \in V(\Gamma)$, the stabilizer G_{v} of v in G is transitive on the neighborhood $\Gamma_{1}(v)$ of v.

Now we consider how the group $\operatorname{PSL}(2,29)$ acts on the cosets of $Z_{29} \cdot Z_{14}$. Since this action is doubly transitive, this orbital graph $L_{2}(29)_{30}^{29} \cong K_{30}$. This is the unique primitive symmetric graph of order 30 . So to give the classifaction of symmetric graphs of order 30, it suffices to consider the imprimitive case.

Assume that G acts on Γ imprimitively and that B is a nontrivial block of G. Let $\Sigma=\left\{B_{0}, B_{1}, \cdots, B_{n-1}\right\}$ be a complete block system of A. We define the block graph of Γ corresponding to Σ, which is still denoted by Σ, by

$$
\begin{aligned}
& V(\Sigma)=\Sigma, \\
& E(\Sigma)=\left\{B_{i} B_{j} \mid \text { there exist } v_{i} \in B_{i}, v_{j} \in B_{j} \text { such that } v_{i} v_{j} \in E(\Gamma)\right\} .
\end{aligned}
$$

G induces an action on Σ. Assume that the kernel of this action is K. Set $\bar{G}=G / K$. Then \bar{G} acts on Σ faithfully. We quote a lemma about block graphs from [5].

Lemma 1.1 Assume that Γ is G-symmetric. Then
(1) Σ is \bar{G}-symmetric;
(2) If Γ is connected, then so is Σ;
(3) If the induced graph by B_{i} has an edge, then B_{i} is a union of several connected components of Γ.

By the above lemma, if Γ is connected, then there is no edge in each induced graph B_{i}, and if Γ is disconnected then the connected components of Γ must have size a divisor of 30 . Using Lemma 1.1,we have

Theorem 1 Assume that Γ is a disconnected symmetric graph of order 30. Then Γ is isomorphic to one of the following:

No	Graph	No	Graph	N_{0}	Graph	No	Graph	No	Graph
1	$5 K_{6}$	2	$5 K_{3,3}$	3	$5 C_{6}$	4	$5 C_{3}\left[2 K_{1}\right]$	5	$3 C_{5}\left[2 K_{1}\right]$
6	$3 K_{5,5}$	7	$3 K_{10}$	8	$3 C_{10}$	9	$3 G(2 \cdot 5,4)$	10	$3 K_{5}\left[2 K_{1}\right]$
11	$3 O_{3}$	12	$3 O_{3}^{c}$	13	$2 K_{15}$	14	$2 K_{5,5,5}$	15	$2 G(3 \cdot 5,4)$
16	$2 F(1)^{\prime}$	17	$2 T_{6}$	18	$2 T_{6}^{c}$	19	$2 G(3 \cdot 5,2)$	20	$2 K_{5}\left[3 K_{1}\right]$
21	$15 K_{2}$	22	$2 C_{15}$	23	$6 C_{5}$	24	$2 P G(3,2)$	25	$2 C_{5}\left[3 K_{1}\right]$
26	$10 C_{3}$	27	$30 K_{1}$	28	$6 K_{5}$				

Note that the graph $2 P G(3,2)$ will be described in section 7 . By virtue of this lemma, in the rest of this paper we always assume that Γ is connected. We determine all such graphs in the next six sections. We deal with the cases in which the lengths of the imprimitive blocks are $5,3,2,6,15,10$ in the sections $3,4,5,6,7,8$ respectively.

2 Preliminary Results

We use $Z_{p}=\{0,1, \cdots, p-1\}$ to denote the cyclic group of order p, written additively. The automorphism group Aut Z_{p} of Z_{p} is isomorphic to Z_{p-1}. For any positive divisor r of $p-1$ we use H_{r} to denote the unique subgroup of Aut_{p} of order r, which is isomorphic to Z_{r}.

The following obvious lemma gives a method of constructing larger symmetric graphs from smaller ones.
Lemma 2.1 If Σ is a symmetric graph of order n, then the lexicographic product $\Sigma\left[m K_{1}\right]$ of Σ by $m K_{1}$ is a symmetric graph of order $n m$.
By [1], [2], [3], we have a lemma about block graphs.
Lemma 2.2 (a) If $\left|B_{i}\right|=5$ then Σ could be one of the following:
(1) K_{6}; (2) $K_{3,3}$; (3) $G(2 \cdot 3,2)=C_{6}$; (4) $C_{3}\left[2 K_{1}\right]$.
(b) If $\left|B_{i}\right|=3, \Sigma$ could be one of the following:
(1) K_{10};
(2) $K_{5,5}$; (3) $G(2 \cdot 5,4)$;
(4) $K_{5}\left[2 K_{1}\right]$;
(5) $G(5,2)\left[2 K_{1}\right]$; (6) $G(2 \cdot 5,2)$;
(7) O_{3} or O_{3}^{c}.
(c) If $\left|B_{i}\right|=2 \Sigma$ could be one of the following:
(1) K_{15}; (2) $K_{5,5,5}$; (3) $C_{5}\left[3 K_{1}\right]$; (4) $G(3 \cdot 5,4)$; (5) $G(3 \cdot 5,2)$; (6) $K_{3}\left[5 K_{1}\right]$;
(7) T_{6}; (8) T_{6}^{c}; (9) $F^{\prime}(1)$; (10) C_{15}.
(d) If $\left|B_{i}\right|=6$ then Σ is isomorphic to K_{5}, C_{5}.
(e) If $\left|B_{i}\right|=15$ then $\Sigma=K_{2}$ and if $\left|B_{i}\right|=5$ then $\Sigma=C_{3}$

Note that

$$
\begin{aligned}
& K_{2}\left[15 K_{1}\right]=K_{3,3}\left[5 K_{1}\right]=K_{5,5} ; \\
& K_{3}\left[10 K_{1}\right]=\left(K_{3}\left[2 K_{1}\right]\right)\left[5 K_{1}\right]=K_{5,5,5}\left[2 K_{1}\right] ; \\
& K_{5}\left[6 K_{1}\right]=\left(K_{5}\left[2 K_{1}\right]\right)\left[3 K_{1}\right]=\left(K_{5}\left[3 K_{1}\right]\right)\left[2 K_{1}\right] ; \\
& G(5,2)\left[6 K_{1}\right]=\left(G(5,2)\left[3 K_{1}\right]\right)\left[2 K_{1}\right]=\left(G(5,2)\left[2 K_{1}\right]\right)\left[3 K_{1}\right] .
\end{aligned}
$$

Using Lemma 2.2 and the method of [3], it is not difficult to prove the following:
Theorem 2 If K acts on B_{i} unfaithfully, then Γ is isomorphic to one the following:

No	Graph	No	Graph	N_{0}	Graph	No	Graph
1	$G(2 \cdot 5,2)\left[3 K_{1}\right]$	2	$K_{3}\left[10 K_{1}\right]$	3	$K_{5}\left[6 K_{1}\right]$	4	$C_{5}\left[6 K_{1}\right]$
5	$G(2 \cdot 5,4)\left[3 K_{1}\right]$	6	$K_{10}\left[3 K_{1}\right]$	7	$K_{2}\left[15 K_{1}\right]$	8	$K_{15}\left[2 K_{1}\right]$
9	$G(3 \cdot 5,4)\left[2 K_{1}\right]$	10	$G(3 \cdot 5,2)\left[2 K_{1}\right]$	11	$T_{6}\left[2 K_{1}\right]$	12	$F^{\prime}(1)\left[2 K_{1}\right]$
13	$G(3 \cdot 5,1)\left[2 K_{1}\right]$	14	$T_{6}^{c}\left[2 K_{1}\right]$	15	$O_{3}\left[3 K_{1}\right]$	16	$O_{3}^{c}\left[3 K_{1}\right]$

By virtue of this lemma, we may assume that Γ is not isomorphic to any of the above sixteen graphs and that K acts on B_{i} faithfully. Now we consider the case that K acts on B_{i} doubly transitively. Also by the method of [3], we have
Theorem 3 If K acts on B_{i} doubly transitively and faithfully, then Γ is isomorphic to $\Sigma\left[p K_{1}\right]-p \Sigma$ (i.e $\Sigma\left[p K_{1}\right]$ minus a 1-factor), where $\Sigma\left[p K_{1}\right]$ is one of the sixteen graphs in Theorem 2 and so we have another sixteen graphs.

By virtue of this theorem, throughout the rest of this paper we may assume that:
Γ is not isomorphic to $\Sigma\left[p K_{1}\right]$ or $\Sigma\left[p K_{1}\right]-p \Sigma$ and K acts on B_{i} faithfully and simply-primitively or $K=1$.

$3 \quad A$ has a block of length $\mathbf{r}=5$

In this section we assume that $\Sigma=\left\{B_{i} \mid i \in Z_{6}\right\}$ is a complete block system of A, and that K is the kernel of the action of A on Σ. Set $\bar{A}=A / K$. We also use Σ to denote the corresponding block graph. Then Σ is \bar{A}-symmetric.

Now K acts on B_{i} simply-primitively and faithfully. In this case $K^{B_{i}}<A G L(1,5)$ is solvable. So $K^{B_{i}}$ has only one nonequivalent transitive representation of degree 5 ; and for any $v \in B_{i}, K_{v}<Z_{4}$ is semiregular on $B_{i}-\{v\}$.

Now we define six graphs. Let H_{2} be the unique subgroup of Aut $Z_{5} \cong Z_{4}$ of order 2. Then we define the graph $C_{6}(5,2)$ by

$$
\begin{aligned}
& V\left(C_{6}(5,2)\right)=\left\{(i, x) \mid i \in Z_{6}, x \in Z_{5}\right\} \\
& E\left(C_{6}(5,2)\right)=\left\{((i, x),(i+1, y)) \mid i \in Z_{6}, y-x \in H_{2}\right\}
\end{aligned}
$$

Assume that $H_{4}=\langle t\rangle$, then we define the graph $C_{6}(5,2)^{\prime}$ by

$$
\begin{aligned}
& V\left(C_{6}(5,2)^{\prime}\right)=\left\{(i, x) \mid i \in Z_{6}, x \in Z_{5}\right\}, \\
& E\left(C_{6}(5,2)^{\prime}\right)=\left\{((i, x),(i+1, y)) \mid i \in Z_{6}, y-x \in t^{i} H_{2}\right\} ;
\end{aligned}
$$

we define the graph $K_{6}(5,2)$ by

$$
\begin{aligned}
& V\left(K_{6}(5,2)\right)=\left\{(i, x) \mid i \in Z_{6}, x \in Z_{5}\right\}, \\
& E\left(K_{6}(5,2)\right)=\left\{((i, x),(j, y)) \mid i, j \in Z_{6}, y-x \in H_{r}\right\}
\end{aligned}
$$

we define the graph $K_{3,3}(5,2)$ by

$$
\begin{aligned}
& V\left(K_{3,3}(5,2)\right)=\left\{(i, k, x) \mid i \in Z_{2}, k \in Z_{3}, x \in Z_{5}\right\}, \\
& E\left(K_{3,3}(5,2)\right)=\left\{((i, k, x),(j, l, y)) \mid j-i=1, k, l \in Z_{3}, y-x \in H_{2}\right\} ;
\end{aligned}
$$

we define the graph $C_{3}\left[2 K_{1}\right](5,2)$ by

$$
\begin{aligned}
& V(\Gamma)=\left\{(i, k, x) \mid i \in Z_{3}, k \in Z_{2}, x \in Z_{5}\right\}, \\
& E(\Gamma)=\left\{((i, k, x),(j, l, y)) \mid i, j \in Z_{3}, i \neq j, k, l \in Z_{2}, x-y \in H_{2}\right\} ;
\end{aligned}
$$

and we define the graph $C_{3}\left[2 K_{1}\right](5,2)^{\prime}$ by

$$
\begin{aligned}
& V(\Gamma)=\left\{(i, k, x) \mid i \in Z_{3}, k \in Z_{2}, x \in Z_{5}\right\}, \\
& \left.E(\Gamma)=\{(i, k, x),(j, l, y)) \mid i, j \in Z_{3}, i \neq j, k, l \in Z_{2}, x-y \in t^{k-l} H_{2}\right\} .
\end{aligned}
$$

Lemma 3.1 Let K act on B_{i} simply primitively. Assume that the block graph $\Sigma \cong$ K_{6} and $\Gamma \neq K_{6}\left[5 K_{1}\right]$. Then Γ is isomorphic to $K_{6}(5,2)$.

Proof Since $\Sigma \cong K_{6}$, we have $\bar{A}=A / K \cong S_{6}$ or A_{6} by Lemma 3.1. Let $C=C_{A}(K)$ so that C is a normal subgroup of A. If $\bar{A} \cong S_{6}$, then the socle $T\left(\cong A_{6}\right)$ of \bar{A} is simple and Γ is T-symmetric. So in any case we may assume that A / K is a simple group. Thus either $C \leq K$ or $C K=A$. If $C \leq K$ then A / C is a group of automorphisms of K and has A_{6} or S_{6} as a factor group. Clearly, $|K|>10$, so we have $C K=A$. Since $Z(K)=1$, we have $K \cap C=1$. It follows that $C \cong S_{6}$ or $C \cong A_{6}$ and $A=K \times C$. Now we distinguish two cases: (a) $C \cong S_{6}$, and (b) $C \cong A_{6}$.
(a) $C \cong S_{6}$: Then there exists $\rho \in C$ such that $\rho^{6}=1$ and the action of ρ on Σ is

$$
\left(B_{0}, B_{1}, B_{2}, B_{3}, B_{4}, B_{5}\right)^{\rho}=\left(B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, B_{0}\right)
$$

Let $P=\langle\pi\rangle$. So $R=\langle\rho, \pi\rangle \cong Z_{30}$ is a regular subgroup of A. Then Γ is a Cayley graph of R. Now we determine the graph Γ. Assume that $v=(0,0) \in B_{0}$ is the unique fixed point of H in B_{0}. Renaming the vertices of the graph when necessary, we may assume that for any $x \in Z_{5},(0, x)^{\pi}=(0, x+1),(i, x)^{\rho}=(i+1, x)$. Now we have

$$
(i, x)^{\pi}=(0, x)^{\rho^{i} \pi}=(0, x)^{\pi \rho^{i}}=(0, x+1)^{\rho^{i}}=(i, x+1), i=1,2,3,4,5 .
$$

Since Γ is a Cayley graph, to determine Γ it suffices to determine the neighbourhood $\Gamma_{1}(v)$ of $v=(0,0)$ in Γ. Set $\Gamma_{1}^{B_{i}}(v)=\Gamma_{1}(v) \cap B_{i}$ for $i=1,2,3,4,5$. Then

$$
\Gamma_{1}(v)=\Gamma_{1}^{B_{1}}(v) \cup \Gamma_{1}^{B_{2}}(v) \cup \Gamma_{1}^{B_{3}}(v) \cup \Gamma_{1}^{B_{4}}(v) \cup \Gamma_{1}^{B_{5}}(v)
$$

Since $v=(0,0)$ is the only fixed point of H in $B_{0}, \Gamma_{1}^{B_{1}}(v)=\{(1, x) \mid x \in L\}$ where L is a coset of H_{r}. Replacing π by one of its powers we may assume that $L=$ H_{r}. To determine $\Gamma_{1}^{B_{i}}(v), i=2,3,4,5$, we should consider other automorphisms of Γ. Take $\lambda \in C$ such that $o(\lambda)=5$ and the action of λ on Σ is $B_{0}^{\lambda}=B_{0}$ and $\left(B_{1}, B_{2}, B_{3}, B_{4}, B_{5}\right)^{\lambda}=\left(B_{2}, B_{3}, B_{4}, B_{5}, B_{1}\right)$. Thus we have

$$
\Gamma_{1}^{B_{i}}(v)=\left(\Gamma_{1}^{B_{1}}(v)\right)^{\lambda i-1}=\left\{(i, x) \mid x \in H_{r}\right\}, i=2,3,4,5 .
$$

Since Γ is undirected, $(3, x) \in \Gamma_{1}^{B_{3}}(v)$ if and only if $(3,-x) \in \Gamma_{1}^{B_{3}}(v)$. So we have $\left(3, H_{r}\right)=\left(3,-H_{r}\right)$. It follows that $H_{r}=-H_{r}$, and hence that r is even, that is $r=2$. This proves that $\Gamma \cong K_{6}(5,2)$.
(b) $C \cong A_{6}$:

Since C is the doubly-transitive permutation group of $\Sigma=\left\{B_{0}, B_{1}, B_{2}, B_{3}, B_{4}\right.$, $\left.B_{5}\right\}$, we can choose $\rho \in C$ such that $(0, x)^{\rho}=(i, x)$ for any given $i \in\{2,3,4,5\}$. Renaming the vertices of graph when necessary, we may assume that for any $x \in Z_{5}$, $(0, x)^{\pi}=(0, x+1)$. Since $\rho \in C$, we have $\rho \pi=\pi \rho$ and hence

$$
(i, x)^{\pi}=(0, x)^{\rho \pi}=(0, x)^{\pi \rho}=(0, x+1)^{\rho}=(i, x)
$$

Since $C \cong A_{6}$ is a doubly-transitive group of Σ, we can take $\sigma \in C$ such that the action of σ on Σ is $\sigma=\left(B_{1}, B_{2}, B_{3}, B_{4}, B_{5}\right)$. As in case (a), we may assume that $\Gamma_{1}^{B_{1}}(v)=\left\{(1, x) \mid x \in H_{r}\right\}$. Thus

$$
\Gamma_{1}^{B_{i}}(v)=\left(\Gamma_{1}^{B_{1}}(v)\right)^{\sigma^{i-1}}=\left\{(i, x) \mid x \in H_{r}\right\}, i=2,3,4,5
$$

as in case (a). So we get the same graph as in case (a).

Lemma 3.2 Let K act on B_{i} simply primitively. In case (2), (3), (4) of Lemma 2.2, K contains a normal subgroup P of A such that
(1) $K=P \cdot H$ and $H \cong H_{r}$, where $r=1$, or $r=2$;
(2) P has a complement M in A and M is an extension of H by \bar{A}.
(3) Let $C=C_{A}(P)$. Then A / C is isomorphic to a subgroup of $A u t P \cong Z_{4}$.

Proof Noting that K is a Frobenius group with Frobenius kernel P of order $p=5$, we may assume that $K=P \cdot H$ and $H \cong Z_{r}$ for a divisor r of 4 . Since K does not act doubly transitively on B_{i}, we have $|H| \neq 4$ and thus $|H|=2$ or $|H|=1$. Since Pchar $K \triangleleft A$, it follows that $P \triangleleft A$. Next, in case (2),(3),(4) of Lemma 2.2 we claim that P has a complement M in A. To see this we use the fact that the order of P is prime to that of \bar{A}, so by the Schur-Zassenhaus theorem P has a complement M in A and the claim is established. Also M is an extension of H by \bar{A}. Statement (3) is obvious.

In what follows we will use this information frequently. Fix $C=C_{A}(P), P=\langle\pi\rangle$ and $o(\pi)=5$ throughout this section.

Lemma 3.3 Let K act on B_{i} simply primitively. Assume that the block graph $\Sigma \cong$ $K_{3,3}$ and $\Gamma \neq K_{3,3}\left[5 K_{1}\right]$. Then Γ is isomorphic to $K_{3,3}(5,2)$.

Proof It is easy to show that if $\Sigma \cong K_{3,3}$, then $\bar{A} \cong S_{3}^{2} \cdot Z_{2}$. Thus M is an extension of H by $S_{3}^{2} \cdot Z_{2}$. Renaming the block graph Σ, we assume that

$$
\left\{B_{0,0}, B_{0,1}, B_{0,2}, B_{1,0}, B_{1,1}, B_{1,2}\right\}
$$

is the complete block system of A. Take $\sigma, \tau \in M$ such that

$$
\bar{\sigma}=\sigma K, \bar{\tau}=\tau K \in \bar{A}
$$

and $o(\bar{\sigma})=3, o(\bar{\tau})=2$ and the actions of σ, and τ on Σ are

$$
\begin{gathered}
\sigma=\left(B_{0,0}, B_{0,1}, B_{0,2}\right)\left(B_{1,0}, B_{1,1}, B_{1,2}\right) \\
\tau=\left(B_{0,0}, B_{1,0}\right)\left(B_{0,1}, B_{1,2}\right)\left(B_{0,2}, B_{1,1}\right) .
\end{gathered}
$$

It is easy to see that $\sigma \in C$. Since $\sigma^{3} \in K \cap M=H$ and $H \cap C=1, \sigma^{3}=1$. Now we distinguish two cases: $(a) \tau \in C H$, and (b) $\tau \notin C H$.
(a) $\tau \in C H$: Replacing τ by τh for some suitable $h \in H$ we may assume $\tau \in C$. Since $\rho^{2} \in C \cap K \cap M=1$, so $\tau^{2}=1$.

So $R=\langle\pi, \sigma, \tau\rangle \cong Z_{30}$ is a regular subgroup of A and thus Γ is a Cayley graph of R. Now we determine the graph Γ. Assume that $(0,0,0) \in B_{0,0}$ is the unique fixed point of H. Renaming the vertices of the graph when necessary, we assume that for any $x \in Z_{5}$,

$$
\begin{array}{ll}
(0,0, x)^{\pi}=(0,0, x+1), & (0,0, x)^{\sigma}=(0,1, x), \\
(0,0, x)^{\sigma^{2}}=(0,2, x), & (0,0, x)^{\tau}=(1,0, x), \\
(0,0, x)^{\tau \sigma}=(1,1, x), & (0,0, x)^{\tau \sigma^{2}}=(1,2, x) .
\end{array}
$$

Now we have

$$
\begin{aligned}
& (0,1, x)^{\pi}=(0,0, x)^{\sigma \pi}=(0,0, x)^{\pi \sigma}=(0,0, x+1)^{\sigma}=(0,1, x+1), \\
& (0,2, x)^{\pi}=(0,0, x)^{\sigma^{2} \pi}=(0,0, x)^{\pi \sigma^{2}}=(0,0, x+1)^{\sigma^{2}}=(0,2, x+1), \\
& (1,0, x)^{\pi}=(0,0, x)^{\tau \pi}=(0,0, x)^{\pi \tau}=(0,0, x+1)^{\tau}=(1,0, x+1), \\
& (1,1, x)^{\pi}=(0,0, x)^{\tau \sigma \pi}=(0,0, x)^{\pi \tau \sigma}=(0,0, x+1)^{\tau \sigma}=(1,1, x+1), \\
& (1,2, x)^{\pi}=(0,0, x)^{\tau \sigma^{2} \pi}=(0,0, x)^{\pi \sigma^{2}}=(0,0, x+1)^{\tau \sigma^{2}}=(1,2, x+1) .
\end{aligned}
$$

Since Γ is a Cayley graph, to determine Γ it suffices to determine the neighbour$\operatorname{hood} \Gamma_{1}(v)$ of $v=(0,0,0)$ in Γ. Set $\Gamma_{1}^{B_{1, i}}=\Gamma_{1}(v) \cap B_{1, i}$ for $i=0,1,2$. Then

$$
\Gamma_{1}(v)=\Gamma_{1}^{B_{1,0}}(v) \cup \Gamma_{1}^{B_{1,1}}(v) \cup \Gamma_{1}^{B_{1,2}}(v) .
$$

First we need to determine $\Gamma_{1}^{B_{1,0}}(v)$. Since $v=(0,0,0)$ is the only fixed point of H, as in Lemma 3.5, we may assume that $\Gamma_{1}^{B_{1,0}}(v)=\left\{(1,0, x) \mid x \in H_{r}\right\}$.

Under the action of σ, we have

$$
\begin{aligned}
& \Gamma_{1}^{B_{1,1}}(v)=\left(\Gamma_{1}^{B_{1,0}}(v)\right)^{\sigma}=\left(1,1, H_{r}\right), \\
& \Gamma_{1}^{B_{1,2}}(v)=\left(\Gamma_{1}^{B_{1,0}}(v)\right)^{\sigma^{2}}=\left(1,2, H_{r}\right),
\end{aligned}
$$

Since Γ is undirected, $(1,0, x) \in \Gamma_{1}^{B_{1,0}}(v)$ if and only if $(1,0,-x) \in \Gamma_{1}^{B_{1,0}}(v)$. So we have $\left(1,0, H_{r}\right)=\left(1,0,-H_{r}\right)$. It follows that $H_{r}=-H_{r}$ and hence that r is even. So $r=2$. It follows that $\Gamma \cong K_{3,3}(5,2)$.
(b) $\tau \notin C H$:

Since A / C is cyclic, both $\langle\rho\rangle C / C$ and $H C / C$ are cyclic. Now $C \cap K=P$ and hence $C K / C \cong K / C \cap K \cong H=H_{2}$; but $C K=C H$ so A / C has order $2|A / C H|$. Hence $A / C \cong Z_{4}$. We could have chosen $\langle\tau C\rangle=A / C=M C / C$ with $\tau \in M$; then τ is such that τC still generates A / C and $\tau^{2} \in H$. Since $\tau \notin C H$ and $\tau^{2} \in C H, H C / C$ is a subgroup of $\langle\tau\rangle C / C$ of index 2 . Noting that $H C / C \cong H_{2}$, the automorphism of P induced by τ is of order 4. Writing $H_{2}=\langle s\rangle$ and $\pi^{\tau}=\pi^{t}$ for some $s, t \in Z_{4}$, we have $|\langle t\rangle:\langle s\rangle|=2$; so we may assume $s=t^{2}$. Let $H=\langle\gamma\rangle$. We may assume that $\pi^{\gamma}=\pi^{s}$. Since ρ^{2} induces an automorphism of P of order 2 , we may assume that ρ^{2} and γ induce the same automorphism $\pi \mapsto \pi^{s}$ on $P=\langle\pi\rangle$.

Now we determine the graph Γ. Assume again $V(\Gamma)=\left\{(i, k, x) \mid i \in Z_{2}, k \in\right.$ $\left.Z_{3}, x \in Z_{5}\right\}$. Renaming the vertices of the graph when necessary, we may assume that for any $x \in Z_{5},(0,0, x)^{\pi}=(0,0, x+1),(0,0, x)^{\tau}=(1,0, t x),(0,1, x)^{\tau}=(1,2, t x)$ and $(0,2, x)^{\tau}=(1,1, t x) .(1,0, x)^{\tau}=(0,0, t x),(1,1 \cdot x)^{\tau}=(0,2, t x),(1,2, x)^{\tau}=(0,1, t x)$. As in case (a), we may assume $(0,0,0) \sim(1,0,1)$. Acting by H, we have $(0,0,0) \sim$ $(1,0, y)$ for $y \in H_{2}$; acting by P, we have $(0,0, x) \sim(1,0, y)$ for $y-x \in H_{2}$. Acting by τ, we have $(1,0, t x) \sim(0,0, t y)$ for $y-x \in H_{2}$ i.e $(1,0, x) \sim(0,0, y)$ for $y-x \in t H_{2}$. So we have $(1,0, x) \sim(0,0,0)$ for $-x \in t H$ and this implies that $x \in-t H_{2}=t H_{2}$ which contradicts $\Gamma_{1}^{B_{1,0}}=\left(1,0, H_{2}\right)$. So (b) $\tau \notin C H$ does not happen.

At last, $K_{3,3}(5,2) \cong G(2 \cdot 5)\left[3 K_{1}\right]$. It follows that the map Φ from $K_{3,3}(5,2)$ to $G(2 \cdot 5)\left[3 K_{1}\right]$ is a graph isomorphism, where

$$
\Phi:(i, k, x) \longrightarrow(i, x, k), i \in Z_{2}, k \in Z_{3}, x \in Z_{5},
$$

since $(i, k, x) \sim(j, l, y)$ in $K_{3,3}(5,2)$ implies that $(i, x, k) \sim(j, y, l)$ in $G(2 \cdot 5)\left[3 K_{1}\right]$.

Lemma 3.4 Let K act on B_{i} simply primitively. Assume that the block graph $\Sigma \cong$ $C_{3}\left[2 K_{1}\right]$ and $\Gamma \neq C_{3}\left[2 K_{1}\right]\left[5 K_{1}\right]$. Then Γ is isomorphic to $C_{3}\left[2 K_{1}\right](5,2)$.

Proof Since $\Sigma \cong C_{3}\left[2 K_{1}\right]$ and $\bar{A} \cong Z_{2} \mathrm{wr}_{S_{3}}, \bar{A}$ contains a normal subgroup $\bar{N} \cong Z_{2}^{3}$ and a subgroup $\bar{T} \cong S_{3}$ such that $\bar{A}=\bar{N} \cdot \bar{T}$.

Since $P \triangleleft A$, we may assume that M is an extension of $H \cong Z_{r}$ by \bar{A}.
Now we deal with the two situations (i) $H \cong H_{2}$ and (ii) $H=1$ separately in the following:
(i) $H \cong H_{2}$: It is convenient to rename the vertices of Σ as

$$
\Sigma=\left\{B_{(i, k)} \mid i=0,1,2 ; k=0,1\right\}
$$

since Σ is the lexicograph product $C_{3}\left[2 K_{1}\right]$. Hence we can take $\rho, \tau, \tau_{0}, \tau_{1}, \tau_{2} \in M$ such that their actions on Σ are

$$
\begin{aligned}
\rho & =\left(B_{(0,0)}, B_{(1,0)}, B_{(2,0)}\right)\left(B_{(0,1)}, B_{(1,1)}, B_{(2,1)}\right), \\
\tau & =\left(B_{(0,0)}, B_{(0,1)}\right)\left(B_{(1,0)}, B_{(1,1)}\right)\left(B_{(2,0)} B_{(2,1)}\right), \\
\tau_{0} & =\left(B_{(0,0)}, B_{(0,1)}\right), \tau_{1}=\left(B_{(1,0)}, B_{(1,1)}\right), \tau_{2}=\left(B_{(2,0)} B_{(2,1)}\right) .
\end{aligned}
$$

Since $\rho K \in S_{3} K \leq \bar{A}$, so $\rho K \in \bar{A}^{\prime}=A^{\prime} K / K$ and thus $\rho \in A^{\prime} K \leq C K=C H$. Replacing ρ by ρh for some suitable $h \in H$ we may assume that $\rho \in C$ and thus $\rho^{3} \in K \cap M \cap C=1$.

Now we distinguish two cases:(1) $\tau \in C H,(2) \tau \notin C H$.
(a) $\tau \in C H$: As above, we may assume $\tau \in C$ and thus $\tau^{2}=1$. Since $\rho \tau=\tau \rho$, it follows that $\langle\rho, \tau\rangle \cong Z_{6}$ and thus $R=\langle\rho, \tau, \pi\rangle \cong Z_{30}$ is a regular subgroup of A. So we conclude that Γ is a Cayley graph of R.

Assume $V(\Gamma)=\left\{(i, j, x) \mid i \in Z_{3}, j \in Z_{2}, x \in Z_{5}\right\}$. Renaming the vertices of the graph when necessary, we may assume that for any $x \in Z_{5}$,
$(0,0, x)^{\pi}=(0,0, x+1),(0,0, x)^{\rho}=(1,0, x),(1,0, x)^{\rho}=(2,0, x)$,
$(0,1, x)^{\rho}=(1,1, x)$, and $(1,1, x)^{\rho}=(2,1, x)$.
Since $\rho^{3} \in K, \tau^{2} \in K, \rho^{3}, \tau^{2} \in K \cap C \cap M=1$ and hence $\rho^{3}=\tau^{2}=1$. Now we determine the graph Γ. Assume that $v=(0,0,0) \in B_{(0,0)}$ is the unique fixed point of H in $B_{(0,0)}$. Renaming the vertices of the graph when necessary, we may assume that for any $x \in Z_{5},(0,0, x)^{\pi}=(0,0, x+1)$. Now we have

$$
\begin{aligned}
& (1,0, x)^{\pi}=(0,0, x)^{\rho \pi}=(0,0, x)^{\pi \rho}=(0,0, x+1)^{\rho}=(1,0, x+1), \\
& (2,0, x)^{\pi}=(0,0, x)^{\rho^{2} \pi}=(0,0, x)^{\pi \rho^{2}}=(0,0, x+1)^{\rho^{2}}=(2,0, x+1), \\
& (1,1, x)^{\pi}=(0,0, x)^{\tau \rho \pi}=(0,0, x)^{\pi \tau \rho}=(0,0, x+1)^{\tau \rho}=(1,1, x+1), \\
& (2,1, x)^{\pi}=(0,0, x)^{\tau \rho^{2} \pi}=(0,0, x)^{\pi \tau \rho^{2}}=(0,0, x+1)^{\rho^{2}}=(2,1, x+1) .
\end{aligned}
$$

Since Γ is a Cayley graph, to determine Γ it suffices to determine the neighbourhood $\Gamma_{1}(v)$ of $v=(0,0,0)$ in Γ. Set $\Gamma_{1}^{B_{(i, j)}}(v)=\Gamma_{1}(v) \cap B_{(i, j)}$ for $i=1,2, j=0,1$. Then

$$
\Gamma_{1}(v)=\Gamma_{1}^{B_{(1,0)}}(v) \cup \Gamma_{1}^{B_{(1,1)}}(v) \cup \Gamma_{1}^{B_{(2,0)}}(v) \cup \Gamma_{1}^{B_{(2,1)}}(v) .
$$

Since $v=(0,0,0)$ is the only fixed point of H in $B_{0,0}$, as before we may assume that $\Gamma_{1}^{B_{(1,0)}}(v)=\left\{(1,0, x) \mid x \in H_{2}\right\}$. Acting by τ_{1}, we have

$$
\Gamma_{1}^{B_{(1,1)}}(v)=\Gamma_{1}^{B_{(1,0)}}(v)^{\tau_{1}}=\left\{(1,1, x) \mid x \in H_{2}\right\} .
$$

Acting by π, we have

$$
(0,0, x) \sim(1,0, y),(0,0, x) \sim(1,1, y), y-x \in H_{2}
$$

Thus acting by ρ, we get

$$
(1,0, x) \sim(2,0, y),(2,0, x) \sim(0,0, y), \text { for } y-x \in H_{2} .
$$

So we have $(0,0,0) \sim(2,0, x), x \in-H_{2}=H_{2}$. Acting by τ_{2}, we get $(0,0,0) \sim$ $(2,1, x), x \in H_{2}$. Now it is easy to check that $\Gamma \cong C_{3}\left[2 K_{1}\right](5,2)$.
(b) $\tau \notin C H$: As before we may assume that $\tau^{2} \neq 1$ and $\tau^{2}=\gamma \in H$. Thus $\tau \pi \tau^{-1}=\pi^{t}$. Since $\left.\tau\right|_{B_{(1, i)}}=\tau_{1}$, it follows that τ_{1} induces the same action as τ on P. Similarly, we have $\left.\tau\right|_{B_{(2, i)}}=\tau_{2}$. As before, we may suppose that $\Gamma_{1}^{B_{(1,0)}}(v)=$ $\left\{(1,0, x) \mid x \in H_{2}\right\}$. Acting by τ_{1}, we have $\Gamma_{1}^{B_{(1,1)}}(v)=\left\{(1,1, t x) \mid x \in H_{2}\right\}$. So acting by ρ, it follows that

$$
\begin{aligned}
\Gamma_{1}^{B_{(2,0)}}(v) & =\left\{(2,0, x) \mid x \in H_{2}\right\} \\
\Gamma_{1}^{B_{(2,1)}}(v) & =\left\{(2,1, x) \mid x \in t H_{2}\right\}
\end{aligned}
$$

Now it is easy to check that $\Gamma \cong C_{3}\left[2 K_{1}\right](5,2)^{\prime}$.
(ii) $H=1$: In this case we consider that $B_{(0,0)}, B_{(1,0)}$ and $B_{(2,0)}$ are the three adjacent blocks in Σ. We claim that the induced graph $\Gamma\left(B_{(0,0)}, B_{(1,0)}, B_{(2,0)}\right)$ is isomorphic to $5 K_{3}$. Set $B_{(0,0)}=\left\{a_{i}\right\}, B_{(1,0)}=\left\{b_{i}\right\}$ and $B_{(2,0)}=\left\{c_{i}\right\}, i=1,2,3,4,5$. Without loss of generality we may assume that $a_{i} \sim b_{i}$, and $a_{i} \sim c_{i}$ for $i=1,2,3,4,5$. Since $\Sigma \cong C_{3}\left[2 K_{1}\right]$, there exists an element in A / K which fixes $B_{(0,0)}$ setwise and interchanges $B_{(1,0)}$ and $B_{(2,0)}$. Since K is transitive on each $B_{(i, j)}$, we can find λ which fixes $B_{(0,0)}$ pointwise and interchanges $B_{(1,0)}$ and $B_{(2,0)}$. So λ will interchange b_{i} and c_{i} for $i=1,2,3,4,5$. By the remark of Lemma 4.2, we have

$$
\Gamma\left(B_{(0,0)}, B_{(1,0)}, B_{(2,0)}\right) \cong 5 K_{3} .
$$

Acting by $\tau_{0}, \tau_{1}, \tau_{2}$ and ρ, it is easy to prove that $\Gamma \cong 5 C_{3}\left[2 K_{1}\right]$. Since $5 C_{3}\left[2 K_{1}\right]$ is not connected, no new graphs occur here.

Since $C_{3}\left[2 K_{1}\right](5,2)$ is a Cayley graph of an Abelian group and $C_{3}\left[2 K_{1}\right](5,2)^{\prime}$ is a Cayley graph of a non-abelian group, it is easy to prove that they are non-isomorphic symmetric graphs.

Finally $C_{3}\left[2 K_{1}\right](5,2) \cong G(3 \cdot 5,2)\left[2 K_{1}\right]$. It follows that the map Φ from $C_{3}\left[2 K_{1}\right](5,2)$ to $G(3 \cdot 5,2)\left[2 K_{1}\right]$ is a graph isomorphism, where

$$
\Phi:(i, k, x) \longrightarrow(i, x, k), i \in Z_{3}, k \in Z_{2}, x \in Z_{5},
$$

since $(i, k, x) \sim(j, l, y)$ in $C_{3}\left[2 K_{1}\right](5,2)$ implies that $(i, x, k) \sim(j, y, l)$ in $G(3 \cdot 5,2)\left[2 K_{1}\right]$.

Lemma 3.5 Let K act on B_{i} simply primitively. Assume that the block graph $\Sigma \cong$ C_{6} and $\Gamma \neq C_{6}\left[5 K_{1}\right]$. Then Γ is isomorphic to $C_{6}(5,2), C_{6}(5,2)^{\prime}$ or C_{30}.

Proof The first two graphs have been determined in [7], where

$$
C^{ \pm 1}(5 ; 6,1)=C_{6}(5,2) ; \quad C^{ \pm \varepsilon}(5 ; 6,1)=C_{6}(5,2)^{\prime} .
$$

When $H_{r}=1$, it is easy to prove that $\Gamma \cong C_{30}$.
Summarizing the result obtained in this section, we have
Theorem 4 If Γ is a symmetric graph of order 30 and A acts on $V(\Gamma)$ imprimitively, and if A has a block of length 5, then Γ is isomorphic one of the graphs $C_{6}(5,2)$, $C_{6}(5,2)^{\prime}, C_{3}\left[2 K_{1}\right](5,2)^{\prime}$ or $K_{6}(5,2)$.

$4 \quad A$ has a block of length $\mathbf{r}=3$

In this section we assume that $\Sigma=\left\{B_{1}, \cdots, B_{10}\right\}$ is a complete block system of A, and that K is the kernel of the action of A on Σ. Then $1 \leq K \leq S_{3}$. Set $\bar{A}=A / K$. We also use Σ to denote the corresponding block graph.

We distinguish the following two subcases: $1 .|K|=3 ; 2 . K=1$.

$4.1 \quad|K|=3$

Since K acts on B_{i} simply-primitively and faithfully, $K \cong K^{B_{i}} \cong Z_{3}$ and for any adjacent blocks B_{i} and B_{j} and any $v \in B_{i},\left|\Gamma_{1}(v) \cap B_{j}\right|=1$ and so if there is a new graph occuring in this section, then it must be a covering graph Γ of Σ and we use $\Sigma \cdot \mathbb{Z}_{3}$ to denote it.

Definition 4.1 Ak-fold covering graph Γ of Σ is a graph whose vertex set is $V(\Sigma \times$ $W)$ and if $u v \in E(\Gamma)$ then the induced graph between two blocks $\{(v, w) \mid w \in W\}$ and $\{(u, w) \mid w \in W\}$ is a perfect matching, where $|W|=k$.

We quote a basic lemma about covering graphs from [3].
Lemma 4.2 Let K act on B_{i} simply primitively. Assume $\Sigma \cong K_{10}$ that B_{i}, B_{j}, and B_{k} are any three blocks in Σ. If there exists $\bar{\tau} \in A / K$ such that $B_{1}^{\tau}=B_{1}$, $B_{2}^{\tau}=B_{3}^{\tau}$ and $B_{3}^{\tau}=B_{2}$, then the induced block graph $\Gamma\left(B_{i}, B_{j}, B_{k}\right)$ of $\left(B_{i}, B_{j}, B_{k}\right)$ is isomorphic to $3 K_{3}$, and $\Gamma \cong 3 K_{10}$.

Actually, Lemma 4.2 would still be true under the hypothesis that $\left|B_{i}\right|$ is odd. We have used it for proving Lemma 4.3.

Lemma 4.3 Let K act on B_{i} simply primitively. Assume that the block graph $\Sigma \cong$ K_{10} and $\Gamma \neq K_{10}\left[3 K_{1}\right]$. In this case there are no new graphs occuring.

Proof If $\Sigma \cong K_{10}$ then $A / K=\bar{A} \cong A_{10}$ or S_{10}. Thus the action of \bar{A} on Σ is at least 3 -transitive. By the therom of Gaschötz, it easy to prove that $A=S \times K$, where $S \cong A_{10}$ or S_{10}. Set $K=\langle\pi\rangle$. If $B_{1}=\{u, v, w\}$, then

$$
S_{u}=S_{u}^{\pi}=\left(S \cap A_{u}\right)^{\pi}=S \cap A_{u^{\pi}}=S \cap A_{v}=S_{v} .
$$

So we have $S_{u}=S_{v}=S_{w}$. As Σ is at least 3-transitive there exists $\tau \in S$ such that $B_{1}^{\tau}=B_{1}, B_{2}^{\tau}=B_{3}^{\tau}$ and $B_{3}^{\tau}=B_{2}$. So τ acting on B_{1} either has a fixed point and hence fixes all the points in B_{1} or $\tau=(u, v, w)$. In the latter case, replacing τ by $\tau \pi^{2}$, also fixes all the points in B_{1}.

By the above discussion, if $\Gamma\left(B_{i}, B_{j}\right)=3 K_{2}$, then τ must fixes one edge of this three and interchanges two endpoints of this edge. By Lemma 4.2, $\Gamma\left(B_{i}, B_{j}, B_{k}\right) \cong$ $3 K_{3}$ and then $\Gamma=3 K_{10}$ and is not connected and hence is excluded.

Checking \bar{A} in the Lemma 2.2 (b) except for the case $\bar{A} \cong S_{10}, K$ has a complement M in A such that $M \cong \bar{A}$ by the Schur-Zassenhaus theorem. We fix such an M in the rest of this section.

Lemma 4.4 Let K act on B_{i} simply primitively. Assume that the block graph $\Sigma \cong$ $K_{5}\left[2 K_{1}\right]$ and $\Gamma \neq\left(K_{5}\left[2 K_{1}\right]\right)\left[3 K_{1}\right]$. Then $\Gamma \cong 3 K_{5}\left[2 K_{1}\right]$.

Proof Since $\Sigma \cong K_{5}\left[2 K_{1}\right]$ and $\bar{A} \cong Z_{2} \mathrm{wr} T(5,2)$, by the Schur-Zassenhaus theorem K has a complement M in A such that $M \cong \bar{A} \cong Z_{2} \mathrm{wr} T(5,2)$. Assume that B_{j} and B_{k} are any pair of blocks which are not adjacent in Σ, and $B_{i} \sim B_{j}, B_{i} \sim B_{k}$. By the structure of M, there exists τ such that $B_{i}^{\tau}=B_{i}, B_{j}^{\tau}=B_{k}$ and $B_{k}^{\tau}=B_{j}$. Add some edges to Σ such that $\Sigma^{*}=K_{10}=\Sigma \cup K_{5}\left[2 K_{1}\right]^{c}$. Then τ is still an automorphism of Σ^{*} since τ is an automorphism of $K_{5}\left[2 K_{1}\right]^{c}$. Let Γ^{*} be the graph whose block graph is Σ^{*}. By Lemma 4.3, $\Gamma^{*} \cong 3 K_{10}$ and then removing these extra edges we have $\Gamma \cong 3 K_{5}\left[2 K_{1}\right]$.

Similarly we have
Lemma 4.5 Let K act on B_{i} simply primitively. Assume that the block graph $\Sigma \cong$ $C_{5}\left[2 K_{1}\right]$ and $\Gamma \neq C_{5}\left[2 K_{1}\right]\left[3 K_{1}\right]$. Then $\Gamma \cong 3 C_{5}\left[2 K_{1}\right]$.

Lemma 4.6 Let K act on B_{i} simply primitively. Assume that the block graph $\Sigma \cong$ O_{3} or O_{3}^{c}, and $\Gamma \neq O_{3}\left[3 K_{1}\right]$ or $\Gamma \neq O_{3}^{c}\left[3 K_{1}\right]$. In this case there are no new graphs occurring.

Proof In this case $\Sigma \cong O_{3}$ or O_{3}^{c}, and $A / K \cong A_{5}$ or S_{5}. Since $K=\langle h\rangle \cong A_{3}$, again using the Gaschötz theorem we have $A=S \times K$, where $S \cong A_{5}$ or S_{5}. Since $\sigma=(12)(45) \in A_{5}$ and $(1,2),(3,4),(3,5) \in O_{3}$, we have $(1,2)^{\sigma}=(1,2)$, $(3,4)^{\sigma}=(3,5)$ and $(3,5)^{\sigma}=(3,4)$. So there exists $\tau \in S$ such that $B_{0}^{\tau}=B_{0}$ while $B_{1}^{\tau}=B_{2}^{\tau}$ and $B_{2}^{\tau}=B_{1}$ and thus Γ is isomorphic to $3 O_{3}$ or $3 O_{3}^{c}$.

Lemma 4.7 Let K act on B_{i} simply primitively. Assume that the block graph $\Sigma \cong$ $K_{5,5}$ and $\Gamma \neq K_{5,5}\left[3 K_{1}\right]$. Then $\Gamma \cong 3 K_{5,5}$.

Proof Since $\Sigma \cong K_{5,5}$ and $\bar{A} \cong S_{5}^{2} \cdot Z_{2}$, by the Schur-Zassenhaus theorem K has a complement M in A such that $M \cong \bar{A}$. Suppose that

$$
\begin{aligned}
& V(\Sigma)=\left\{B_{0}, B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, B_{6}, B_{7}, B_{8}, B_{9}\right\}, \\
& E(\Sigma)=\left\{B_{i} B_{j} \mid i-j=\text { odd }\right\} .
\end{aligned}
$$

Then there exists $\rho_{1}, \rho_{2} \in M$ such that the action of ρ_{1} and ρ_{2} on Σ are $\rho_{1}=$ $\left(B_{1}, B_{3}, B_{5}, B_{7}, B_{9}\right)$ and $\rho_{2}=\left(B_{0}, B_{2}, B_{4}, B_{6}, B_{8}\right)$. Assume that $(i, x) \in B_{i}, x=$
$0,1,2$. Since K is transitive on each B_{i}, we can find λ which fixes B_{0} pointwise and $(1, x)^{\lambda}=(3, x),(3, x)^{\lambda}=(5, x),(5, x)^{\lambda}=(7, x),(7, x)^{\lambda}=(9, x),(9, x)^{\lambda}=(1, x)$. As before, assume that $(0,0) \sim(1,1)$. Acting by λ, we have $(0,0) \sim(3,1)$ and $(0,0) \sim(5,1)$. Since K is transitive on each B_{i}, acting by K, we have

$$
\begin{aligned}
& (0,1) \sim(1,2), \quad(0,1) \sim(3,2),(0,1) \sim(5,2),(0,1) \sim(7,2),(0,1) \sim(9,2), \\
& (0,2) \sim(1,0), \quad(0,2) \sim(3,0),(0,2) \sim(5,0),(0,2) \sim(7,0),(0,2) \sim(9,0)
\end{aligned}
$$

Similarly acting by ρ_{2}, we have

$$
\begin{aligned}
& \Gamma_{1}(0,0)=\Gamma_{1}(2,0)=\Gamma_{1}(4,0)=\Gamma_{1}(6,0)=\Gamma_{1}(8,0) \\
& \Gamma_{1}(0,1)=\Gamma_{1}(2,1)=\Gamma_{1}(4,1)=\Gamma_{1}(6,1)=\Gamma_{1}(8,1) \\
& \Gamma_{1}(0,2)=\Gamma_{1}(2,2)=\Gamma_{1}(4,2)=\Gamma_{1}(6,2)=\Gamma_{1}(8,0) .
\end{aligned}
$$

So it is easy to check that Γ is isomorphic to $3 K_{5,5}$.
Similarly we have the following
Lemma 4.8 Let K act on B_{i} simply primitively. Assume that the block graph $\Sigma \cong$ $G(2 \cdot 5,4)$ and $\Gamma \neq G(2 \cdot 5,4)\left[3 K_{1}\right]$. Then $\Gamma \cong 3 G(2 \cdot 5,4)$.

Lemma 4.9 Let K act on B_{i} simply primitively. Assume that the block graph $\Sigma \cong$ C_{10} and $\Gamma \neq C_{10}\left[3 K_{1}\right]$. Then $\Gamma \cong C_{30}$.

Proof Since $\Sigma \cong C_{10}$ and $\bar{A} \cong D_{20}$, then $M \cong \bar{A} \cong D_{20}$. Take $\rho \in M$ such that $\bar{\rho}=\rho K \in \bar{A}$ and $o(\bar{\rho})=10$. So $\rho^{10} \in K \cap M=1$ and $o(\rho)=10$. Let $C=C_{A}(K)$ so that $1 \leq A / C \leq Z_{2}$ and hence $C \geq A^{\prime}$. Since ρ^{2} is an element of order $5, \rho^{2} \in C$. Now we consider the two cases (a) $\rho \in C$ and (b) $\rho \notin C$ separately.
(a) $\rho \in C$: Then $R=\langle\rho, \pi\rangle \cong Z_{30}$ is a regular subgroup of A and thus Γ is a Cayley graph of R. So to determine the graph Γ it suffices to determine the neighbourhood of $v=(0,0)$. If $v \sim(1,0)$, acting by ρ it easy to check that $\Gamma \cong 3 C_{10}$. If $v \sim(1,1)$ or $(1,2)$ then $\Gamma \cong C_{30}$.
(b) $\rho \notin C$: In this case we can check the that graph Γ is isomorphic to $3 C_{10}$.

$4.2 \quad K=1$

In this case A and \bar{A} are isomorphic as abstract groups. But as permutation groups, \bar{A} is a group of degree 10 and A is of degree 30 . Since $A \cong \bar{A}, A$ is a transitive representation of degree 30 of \bar{A}. Then the one point stabilizer of \bar{A} must have a subgroup of index 3 .

Lemma 4.10 Let \bar{A} be a group of degree 10 which has a transitive representation of degree 30. Then $\bar{A}=A_{5}$, and hence $A_{\{B\}}=S_{3}, A_{v}=Z_{2}$. In this case Γ is not a symmetric graph and hence there is no new graph occurring.
Proof Checking \bar{A} in Lemma 4.1, the only possibility is $\bar{A} \cong A_{5}$ and $\Sigma \cong O_{3}$ or O_{3}^{c}. In this case the one block stabilizer $A_{\{B\}}=S_{3}$ and the one vertex stabilizer $A_{v} \cong Z_{2}$ in Γ. Since the length of suborbits of Z_{2} is 1 or 2 , this contradicts that the degree of the block graph O_{3} or O_{3}^{c} is 3 or 6 .

Summarizing the result obtained in this section, we have

Theorem 5 If A has a block of length 3 and K acts on it simply-primitively, then there is no new graph occuring.

5 A has a block of length $\mathbf{r}=2$

In this section we assume that $\Sigma=\left\{B_{i} \mid i \in Z_{15}\right\}$ is a complete block system of A, and that K is the kernel of the action of A on Σ. Set $\bar{A}=A / K$. We also use Σ to denote the corresponding block graph. Then Σ is \bar{A}-symmetric.

We may assume that Γ is not isomorphic to $\Sigma\left[2 K_{1}\right]$ and K acts on B_{i} faithfully. We distinguish the following two subcases: $1 .|K|=2 ; 2 . K=1$.

$5.1 \quad|K|=2$

In this case the transformation of exchanging the two vertices in all blocks simultaneously is an automorphism of Γ.

Now we define the graph $\Sigma \cdot \mathbb{Z}_{2}^{\prime}$ by

$$
\begin{aligned}
& V\left(\Sigma \cdot \mathbb{Z}_{2}^{\prime}\right)=\left\{(u, x) \mid i \in \Sigma, x \in Z_{2}\right\} \\
& E\left(\Sigma \cdot \mathbb{Z}_{2}^{\prime}\right)=\{((u, x),(v, y)) \mid u v \in E(\Sigma), y-x=0\}
\end{aligned}
$$

and define the graph $\Sigma \cdot \mathbb{Z}_{2}$ by

$$
\begin{aligned}
& V\left(\Sigma \cdot \mathbb{Z}_{2}\right)=\left\{(u, x) \mid u \in \Sigma, x \in Z_{2}\right\}, \\
& E\left(\Sigma \cdot \mathbb{Z}_{2}\right)=\{((u, x),(v, y)) \mid u v \in \Sigma, y-x=1\} .
\end{aligned}
$$

We shall prove that Γ is isomorphic to one of these two graphs. It is clear that $\Sigma \cdot \mathbb{Z}_{2}^{\prime} \cong 2 \Sigma$. The following lemma is from [6].

Lemma 5.1 The covering graph $\Gamma=\Sigma(K, \phi)$ of Σ can be produced as follows. Since K acts on B_{i} simply-primitively and faithfully, The vertex set of Γ is $V(\Gamma) \times K$, and two vertices $\left(v_{1}, k_{1}\right),\left(v_{2}, k_{2}\right)$ are adjacent if and only if $v_{1} v_{2} \in \Sigma$ and $k_{2}=k_{1} \phi\left(v_{1}, v_{2}\right)$, where $\phi: E(\Sigma) \rightarrow K$ is such that $\phi(u v)=(\phi(v u))^{-1}$ for all $u v \in E(\Sigma)$.

Let $K=\{1, \pi\}$ so that $\pi^{2}=1$. By virtue of this lemma, if we define that $\phi(u v)=1$, then $\Gamma=\Sigma(K, \phi) \cong \Sigma \cdot \mathbb{Z}_{2}^{\prime} \cong 2 \Sigma$; if we define that $\phi(u v)=\pi$, then $\Gamma=\Sigma(K, \phi) \cong \Sigma \cdot \mathbb{Z}_{2}$, for all $u v \in E(\Sigma)$. The following lemma is also from [6].

Lemma 5.2 The double covering graph $\Sigma \cdot \mathbb{Z}_{2}$ is connected if and only if Σ is not bipartite.

Since none of the Σ in Lemma 5.1 are bipartite, we have
Lemma 5.3 If K acts on Σ faithfully and $|K|=2$, then $\Gamma \cong 2 \Sigma$ or $\Gamma \cong \Sigma \cdot \mathbb{Z}_{2}$.
$5.2 K=1$
In this case A and \bar{A} are isomorphic as abstract groups. But as permutation groups, \bar{A} is a group of degree 10 and A is of degree 30 . Since $A \cong \bar{A}, A$ is transitive representation of degree 30 of \bar{A}. Then the one point stabilizer of \bar{A} must have a subgroup of index 3 and the valency of Σ must divide that of Γ or equivalently, the size of orbit of one point in Σ must divide that of Γ. We denote a one point stabilizer of \bar{A} in Σ by $A_{\{B\}}$, and a one point stabilizer A in Γ by A_{v}. We will run through the list of possibilities given in Lemma 2.1 to see whether or not they satisfy the above condition.

Case $\Sigma=G(15,2)$ and $\bar{A}=\left(Z_{5} \cdot H_{2}\right) \cdot S_{5}$. Since $A_{\{B\}}=H_{2} \cdot Z_{2}$ and $A_{v}=H_{2}$, hence the valency of Σ does not divide that of Γ which is $\left|H_{2}\right|$. So this cannot occur.

Case $\Sigma=C_{15}$ and $\bar{A}=D_{15}$. Here $A_{\{B\}}=Z_{2}$ and $A_{v}=1$. Hence this cannot occur.

Case $\Sigma=F^{\prime}(1)$ and $\bar{A}=P \Gamma L(2,4)$. Since $A_{\{B\}}=Z_{2}^{2} \cdot Z_{2}$ and $A_{v}=Z_{2}^{2}$ and valency of Σ is 8 , the size of orbit of a one point stabilizer of Σ does not divide that of Γ.

Case $\Sigma=G(15,4)$ and $\bar{A}=S_{5} \times S_{3}$. Here $A_{\{B\}}=S_{4} \times Z_{2}$ and $A_{v}=S_{4}$. Since the valency of Σ is 8 , it follows that Γ is a double cover of Σ. Thus no new graph occurs.

Case $\Sigma=K_{5}\left[3 K_{1}\right], C_{5}\left[3 K_{1}\right]$ or $K_{3}\left[5 K_{1}\right]$. In all cases, we assume that $B_{i} \sim B_{j}$ and $v \in B_{i}$. Since $A_{\left\{B_{i}\right\}}$ is not a normal subgroup and $A_{\left\{B_{i}\right\}}$ acts on B_{i} as an involution, when it interchanges two vertics in B_{i}, it does not exchanges the two vertices in all blocks simultaneously. This shows that $\Gamma=\Sigma\left[2 K_{1}\right]$ and hence no new graph occurs.

Case $\Sigma=T_{6}$ or T_{6}^{c} and $\bar{A}=S_{6}$. Here $A_{\{B\}}=S_{4}$ and $A_{v}=A_{4}$. Since the valency of T_{6}, T_{6}^{c} are 8,6 respectively, and only 6 divides $\left|A_{4}\right|$, this forces that Γ is isomorphic to a double cover of T_{6}^{c}. Thus no new graph occurs.

Finally we discuss the case $\Sigma=K_{15}$ in the following
Lemma 5.4 If $\Sigma=K_{15}$, then the graphs Γ are known.
Proof Since $A \cong \bar{A}$ (as abstract groups), so as permutation groups, \bar{A} is doubly transitive and of degree 15 , and A is transitive and of degree 30 .

Let π and $\bar{\pi}$ be the permutation characters of A and \bar{A}, respectively. Since \bar{G} is 2 -transitive, $\bar{\pi}=1+\chi$, where χ is an irreducible character of \bar{G} of degree 14. Since A is transitive, $\langle\pi, 1\rangle=1$; so we may assume that $\pi=1+k \chi+\gamma$, where $k=\langle\pi, \chi\rangle$ and γ is a character of A. For π degree 30 , we have $k=1$ or 2 . If $k=2$, then γ is a non-principal linear character of A. Let N be the kernel of γ. Then N is intransitive as the restriction of π on N contains the principal character of N at least twice, and $N \geq A^{\prime}$. By the classification of 2 -transitive groups of degree $15, A / N$ must be a 2 -group. So N has 2 orbits in $V(\Gamma)$; and N acts on each block doubly-transitively. We shall determine such graphs in section 7 , we can exclude the case $k=2$; so we have $k=1$, and then $\langle\pi, \bar{\pi}\rangle=2$. Assume $S=A_{\left\{B_{i}\right\}}$ is the setwise stabilizer of B_{i} in A. Then $\bar{\pi}$ is the induced character of the principal character 1_{S} of S to A. By Frobenius reciprocity we have

$$
\langle\pi, \bar{\pi}\rangle_{A}=\left\langle\pi,\left(1_{S}\right)^{G}\right\rangle_{A}=\left\langle\left.\pi\right|_{S}, 1_{S}\right\rangle_{S}=2,
$$

so S has exactly 2 orbits on $V(\Gamma)$, one of which is the block B_{i} itself. Now it is easy to see that if B_{i} and B_{j} are adjacent in Σ, then $\Gamma\left(B_{i}, B_{j}\right) \cong 2 K_{2}$. Hence the transformation of exchanging the two vertices in all blocks simultaneously is an automorphism of Γ. So the graphs are contained in the case $|K|=2$.

Summarizing the result obtained in this section, we have
Theorem 6 If A has a block of length 2 and K acts on it simply-primitively, then Γ is isomorphic one of the graph in following
(1) $\left(K_{5}\left[3 K_{1}\right]\right) \cdot \mathbb{Z}_{2}$;
(2) $C_{15} \cdot \mathbb{Z}_{2}$;
(3) $T_{6}^{c} \cdot \mathbb{Z}_{2}$; (4) $T_{6} \cdot \mathbb{Z}_{2}$;
(5) $G(15,2) \cdot \mathbb{Z}_{2} ;(6)$ $F^{\prime}(1) \cdot \mathbb{Z}_{2} ;(7) K_{5,5,5} \cdot \mathbb{Z}_{2} ;(8)\left(C_{5}\left[3 K_{1}\right]\right) \cdot \mathbb{Z}_{2} ;(9)\left(K_{3}\left[5 K_{1}\right]\right) \cdot \mathbb{Z}_{2}$.

6 has a block of length $2 p=6$ and A acts on this block primitively

In this case $\Sigma=\left\{B_{0}, B_{1} \cdots B_{4}\right\}$ is a complete block system of A, and $\Sigma \cong K_{5}$ or C_{5} and K acts on B_{i} simply-primitively as well. Since there is no simply-primitive representation of degree 6 , it suffices to consider the following.

$$
K=1
$$

In this case $\bar{A} \cong A$ as abstract groups. So \bar{A} has a transitive representation of degree 30 , and then the stabilizer of one point in \bar{G} has a subgroup of index 6 .

If $\Sigma \cong C_{5}$, then $\bar{A} \cong D_{10}$ and hence the stabilizer of one point in \bar{A} has no subgroup of index 6 .

If $\Sigma \cong K_{5}$, then $\bar{A} \cong A_{5}$ or S_{5}. If $\bar{A} \cong A_{5}$, then the stabilizer of one point in Σ is A_{4} which has subgroup Z_{2} of index 6 . But this contradicts the valency of K_{5} being 4.

If $\Sigma \cong K_{5}$ and $\bar{A} \cong S_{5}$, the stabilizer of one point in Σ is S_{4} which has a subgroup $W_{4} \cong\langle(12)(34),(14)(23)\rangle$ of index 6 . In this case $A_{v}=W_{4}$ and hence W_{4} has orbitlength 4 in Γ which implies Γ is a 6 -fold cover of K_{5}. Let $D=H(45) H$, where $H=W_{4}$. Then $A=\langle D\rangle=\left\langle(45), W_{4}\right\rangle$ and it follows that Γ is connected. Since $W_{4}^{(45)} \cap W_{4}=1$, it follows that the valency of Γ is 4 . We denote this graph by $K_{5} \cdot \mathbb{Z}_{6}$.

Summarizing the results in this section we have
Theorem 7 If A has a block of length 6 and K acts on it simply-primitively, then $\Gamma \cong K_{5} \cdot \mathbb{Z}_{6}$.

$7 \quad A$ has a block of length 15 and A acts on this block primitively

In this case Γ is bipartite with a bipartition $V(\Gamma)=B_{1} \cup B_{2}$ and K acts on B_{1} and B_{2} primitively and faithfully as well. We distinguish the following two subcases.

Subcase 7.1. K acts on B_{i} doubly-transitively.
In this case $K^{B_{i}} \cong K$ is a doubly-transitive group of degree 15. By the classification of doubly-transitive groups, $K^{B_{i}}$ has at most two nonequivalent 2 -transitive
representations of degree 15 . How one of two cases will happen: (1) $K^{B_{1}}$ and $K^{B_{2}}$ are equivalent, (2) $K^{B_{1}}$ and $K^{B_{2}}$ are not equivalent.
(1) In this case, for any vertex $v \in B_{1}, K_{v}$ fixes exactly one vertex u in B_{2} and acts transitively on $B_{2}-\{u\}$. If for any $w \in B_{2}-\{u\},(v, w)$ is an edge of Γ, then $(v, x) \in E(\Gamma)$ for all $x \in B_{2}-\{u\}$. It follows that Γ is isomorphic to $2 p K_{2}$ or $K_{2 p, 2 p}$ minus a 1 -factor. But $2 p K_{2}$ is not connected, so we have proved that $\Gamma \cong K_{15,15}$.
(2) If $K^{B_{1}}$ and $K^{B_{2}}$ are not equivalent, then $K \cong A_{7}$. There is a design $P G(3,2)$ with $\lambda=1$ admitting the automorphism group A_{7} on points and in this situation A_{7} has two representations. This is because there are two different 2 -transitive permutation representations of degree 15 , and these are interchanged by the outer automorphisms of A_{7}. So if the induced graph by B_{i} has edges, then they are not isomorphic by A_{7} but by A and this graph is not connected. We denote this graph by $2 P G(3,2)$.

Subcase 7.2. K acts on B_{i} simply-primitively and faithfully.
First we define the bipartite square $\Gamma^{(2)}$ of a graph $\Gamma=(V, E)$. Take another graph $\Gamma^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ which is isomorphic to Γ with $V \cap V^{\prime}=\emptyset$. Then $\Gamma^{(2)}$ is defined by

$$
\begin{aligned}
& V\left(\Gamma^{(2)}\right)=V \cup V^{\prime} \\
& E\left(\Gamma^{(2)}\right)=\left\{u v^{\prime}, u^{\prime} v \mid u, v \in V, u^{\prime}, v^{\prime} \in V^{\prime}, u v \in E\right\}
\end{aligned}
$$

Now we can determine the graphs in this subcase. By [3] the only simplyprimitive groups of order 30 are S_{6} acting on unordered pairs of a 6 -element set, so the group is of degree 15 and rank 3. We label the vertices of B_{1} with (12), $(13),(14),(15),(16),(23),(24),(25),(26),(34),(35),(36),(45),(46)$, and (56); and label the vertices of B_{2} with $(12)^{\prime},(13)^{\prime},(14)^{\prime},(15)^{\prime},(16)^{\prime},(23)^{\prime},(24)^{\prime},(25)^{\prime}$, $(26)^{\prime},(34)^{\prime},(35)^{\prime}(36)^{\prime},(45)^{\prime},(46)^{\prime}$ and $(56)^{\prime}$. Then the stabilizer $K_{(12)}$ of (12) in K has three orbits in B_{1}, that is $\{(12)\},\{(34),(35),(36),(45),(46),(56)\}$ and $\{(13),(14),(15),(16),(23),(24),(25),(26)\}$. Since K acts on B_{i} faithfully, $K_{(12)}$ must fix one vertex in B_{2}. Without loss of generality, we may assume that this vertex is $(12)^{\prime}$; hence the orbits of K in B_{2} are quite similar to those in B_{1}, but adding a prime to each vertex. Since Γ is symmetric, the vertices adjacent to (12) form an orbit of $K_{(12)}$ in B_{2}. So Γ must be isomorphic to $3 p K_{2}$, or the bipartite square of T_{6} or T_{6}^{c}. But $3 p K_{2}$ is not connected, so we have proved the following

Theorem 8 If K acts on B_{i} simply primitively and faithfully, then Γ is isomorphic to the bipartite square of T_{6} or T_{6}^{c}.

8 A has a block of length $2 p=10$ and A acts on this block primitively

In this section we deal with the case where A has a block of length 10 .
In this case $\Sigma=B_{1} \cup B_{2} \cup B_{3}$ is a complete block system of A, and K acts on B_{i} primitively as well. We also use Σ to denote the corresponding block graph, and then $\Sigma \cong K_{3}$ and $Z_{3} \leq A / K \leq S_{3}$. It is obvious that $K \neq 1$. First we prove the following.

In the rest of this section assume K_{i}^{B} is faithful and simply-primitive. By the classification of primitive group of degree $2 p$, the only simply-primitive graphs of degree 10 are A_{5} and S_{5}. So $K \cong K_{i}^{B}=A_{5}$ or S_{5}. It acts on unordered pairs of the set $\{1,2,3,4,5\}$, that is $\{(12),(13),(14),(15),(23),(24),(25),(34),(35),(45)\}$.

1. Consider when $A / K=S_{3}, K=A_{5}$. Suppose that

$$
A / K=\left\langle\alpha, \beta \mid \alpha^{3}=\bar{\beta}^{2}=1, \beta^{-1} \alpha \beta=\alpha^{-1}\right\rangle
$$

Let $\bar{\tau}$ be τ acting on K by conjugation, for $\tau \in A$. Let $\phi: A \rightarrow$ Aut $K \cong S_{5}$ be defined by $\phi: \tau \rightarrow \bar{\tau}, \tau \in A$. Then ϕ is a homomorphism. Since $K=A_{5} \cong \operatorname{Inn} A_{5}$, $A_{5} \leq \operatorname{Im} \phi \leq S_{5}$.
(a). If $\bar{\phi}$ is not surjective, then $A / \operatorname{Ker} \phi \cong A_{5}$. It follows that $|\operatorname{Ker} \phi|=6$ by comparing the order as above. However $K \cap \operatorname{Ker} \phi \triangleleft K$, so $K \cap \operatorname{Ker} \phi=1$. Therefore $A=K \times \operatorname{Ker} \phi$ and hence $\operatorname{Ker} \phi \cong S_{3}$. So we can suppose that $\langle\alpha, \beta| \alpha^{3}=\beta^{2}=$ $\left.1, \beta^{-1} \alpha \beta=\alpha^{-1}\right\rangle$. As $\operatorname{Ker} \phi \triangleleft A$, the orbits which $\operatorname{Ker} \phi$ acts on $V(\Gamma)$ are A-imprimitive blocks $C_{i},(i=1,2, \cdots)$. Assume that $\bar{A}_{B_{0}}=\langle\bar{\beta}\rangle$. Then $A_{B_{0}}=\langle\beta, K\rangle=\langle\beta\rangle \times K$.

Since K acts on B_{0} primitively, so does $A_{B_{0}}$ on B_{0}. As $\langle\beta\rangle \triangleleft A_{B_{0}},\langle\beta\rangle$ has orbits of length 1 on B_{0}. Thus β fixes every point of B_{0} and interchanges B_{1} and B_{2}. It shows β is not a regular element and hence $\operatorname{Ker} \phi$ acts on $V(\Gamma)$ unregularly. So $\operatorname{Ker} \phi$ has blocks of length 3. Let Δ be a complete block system of $\operatorname{Ker} \phi$. Thus $A / \operatorname{Ker} \phi \cong K$, and $\Delta \cong O_{3}$ or O_{3}^{c}. We have discussed this in section 4.
(b) If ϕ is surjective, then $A / \operatorname{Ker} \phi \cong S_{5}$. It follows that $\operatorname{Ker} \phi=Z_{3}$ by comparing the order as above. Also $K \cap \operatorname{Ker} \phi=1$. Therefore $\langle K, \operatorname{Ker} \phi\rangle / K \cong Z_{3}$ and hence $\langle\alpha, K\rangle=\langle\operatorname{Ker} \phi, K\rangle$. So without loss of generality we can suppose that $\operatorname{Ker} \phi=\langle\alpha\rangle$. Then it is obvious that

$$
A / \operatorname{Ker} \phi=\langle\beta, K\rangle\langle\alpha\rangle /\langle\alpha\rangle \cong\langle\beta, K\rangle /\langle\beta, K\rangle \cap\langle\alpha\rangle=\langle\beta, K\rangle
$$

Thus $\langle\beta, K\rangle \cong S_{5}$. Hence $A=\langle\alpha\rangle \cdot\langle\beta, K\rangle=\langle\alpha\rangle \cdot S_{5}$. For $\langle\beta, K\rangle$, without loss of generality, suppose that $\beta=(45)$. So $\left\langle\alpha, \beta \mid \alpha^{3}=\beta^{2}=1 ; \beta^{-1} \alpha \beta=\alpha^{-1}\right\rangle \cong S_{3}$. Since $\langle\alpha\rangle \triangleleft A$, the orbits which $\langle\alpha\rangle$ acts on $V(\mathrm{I})$ are A-imprimitive blocks of length 3 . Denotes its complete block system by $\Delta=\left\{C_{i}\right\},(i=1,2, \cdots)$. Since $A / \operatorname{Ker} \phi \cong K$, so $\Delta \cong O_{3}$ or O_{3}^{c}. These have been discussed in section 4 .
2. Case $A / K=S_{3}$ and $K=S_{5}$. Then $|A|=720$. Define $\phi: A \rightarrow$ Aut $K \cong S_{5}$ by $\phi: \tau \rightarrow \bar{\tau}, \tau \in A$. Then $A / \operatorname{ker} \phi=S_{5}$ and thus $|\operatorname{Ker} \phi|=12$. Since $K \cap \operatorname{Ker} \phi \triangleleft K$, it follows that $K \cap \operatorname{Ker} \phi=A_{5}$ or 1 . If $K \cap \operatorname{Ker} \phi=A_{5}$, then $K \cap \operatorname{Ker} \phi \triangleleft \operatorname{Ker} \phi$ and this contradicts $|\operatorname{ker} \phi|=12$. So we have that $K \cap \operatorname{ker} \phi=1$ and hence $A=S_{5} \times S_{3}$. Let $G=A_{5} \times S_{3}$ so that Γ is a G-symmetric graph. It is the same as the case $K=A_{5}$.

Summarizing our results in this section, we have
Theorem 9 If G has a block of length 10 and acts on it simply-primitively, then there is no new graph occuring.

Summarizing the main result obtained in this paper, we have
Theorem 10 The connected symmetric graphs of order 30 are (1) K_{30}; (2) the lexicographic product graphs as in Theorem 2; (3) deleted lexicographic product graphs as in Theorem 3; (4) the covering graphs as in Theorem 6; (5) $K_{5} \cdot \mathbb{Z}_{6}$; (6) C_{30}; (7) $T_{6}^{(2)}$ or $T_{6}^{c(2)} ;(8) C_{6}(5,2)$ or $C_{6}(5,2)^{\prime} ;(9) C_{3}\left[2 K_{1}\right](5,2)^{\prime} ;(10) K_{6}(5,2)$.

References

[1] C.Y. Chao, On the classification of symmetric graphs with a prime number of vertices, Trans. Amer. Math. Soc. 158(1971), 247-256.
[2] Y. Cheng and J. Oxley, On weakly symmetric graphs of order twice a prime, J. Combin. Theory Ser. B 42(1987), 196-211.
[3] Ru-Ji Wang and Ming-Yao Xu, A classification of symmetric graphs of order $3 p$, J. Combin. Theory Ser. B, 2(1993), 197-216.
[4] C.E. Praeger, Ru-Ji Wang and Ming-Yao Xu, A classification of symmetric graphs of order $k p, k$ and p are distinct primes, J. Combin. Theory Ser. B, 2(1993), 299-318.
[5] C.E. Praeger, Imprimitive symmetric graphs, Ars Combin. 19A(1985), 149-163.
[6] N. Biggs, Algebraic Graph Theory, Cambridge University Press (1974).
[7] A. Gardiner and C.E. Praeger, On 4 -valent symmetric graphs, Europ. J. Combin. 15 (1994), 375-381.

[^0]: *This paper was prepared while author was visiting the Peking University. The author thanks Professor M.Y. Xu, his tutor, for his guidance.

