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Abstract 

In this paper, we investigate problems about isomorphisms and auto­
morphism groups of Cayley digraphs. A class of Cayley digraphs, cor­
responding to the so-called CDI-subsets, for which the isomorphisms are 
uniquely determined by the group automorphisms is characterized. Their 
automorphism groups are also characterized. 

1. Introduction 

The groups considered in this paper are finite abelian groups with the operation 
+ and identity denoted O. Let G be a group and for each 5 C G (0 rf:. 5), the Cayley 
digraph C ( G, 5) on G with the arc symbol set 5 is defined as follows: Its vertices are 
the elements of G, and (u, v) is an arc if and only if v - u E 5. Commonly, C ( G, S) 
is said to be a Cayley graph if 5 = -5 = {-s I s E 5}. Since a Cayley graph is 
a special Cayley digraph, normally we don't distinguish them. When G is a cyclic 
group Zn, we call C (G, S) a circulant digraph. In this case, we use Cn (5) instead of 
C(Zn, 5). 

Denote by AutG the automorphism group of G. For 7 E AutG and 5 c G, set 
7(S) = {7(S) Is E 5}. We call two subsets Sand T of G equivalent if there exists 
7 E AutG such that 7(S) = T. It is easy to see that C( G, S) ~ C( G, T) if Sand 
T are equivalent. But the converse is not true. We call 5 a CDI-subset of G if for 
any C(G, T) isomorphic to C(G, 5),5 and T are equivalent. CDI-subset of G is an 
abbreviation for "Cayley digraph isomorphism" which follows the terminology due 
to Babai [2]. Similarly, a CDI-subset 5 is said to be a CI-subset if 5 = -So 

Characterizing the CDI-subsets is a topic on circulant digraphs arising from 
Adam's conjecture [1] that Cn(5) ~ Cn(T) if and only if there exists an integer 
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A relatively prime to n such that T = AS = {AS I s E S}. Although this con­
jecture was disproved by a counterexample due to Elspas and Turner [3], there is 
considerable work in this area [2-10]. This is because Adam's conjecture suggests an 
interrelation between isomorphisms on groups and graphs. 

In [3] Elspas and Turner posed the problem of characterizing those circulant 
digraphs for which isomorphism is equivalent to having equivalent arc symbol sets. 
It natually suggests a similar problem on Cayley digraphs, that is, to characterize 
the CDI-subsets. Sun Liang [11] proved Boesch's conjecture [12] that every subset 
S with lSI = 4 and S = -S is a CI-subset of Zn. Delorme et al. [13] obtained the 
same result as above for abelian groups. 

It seems difficult to determine fully the CDI-subsets for a given group G. But we 
believe that most subsets of G are CDI-subsets. 

It is well-known that G can be decomposed into a direct product of cyclic groups. 
Let 

(1) 

be such a decomposition. For each element a of Zni' we use the residue modulo ni 
satisfying O:S; a < ni. Let Si C Zn; (i = 1,2, ... ,k). Define 

It is clear that 0 :::; D(Si) < ni. We select a generating subset Si of Zni with 
D(Si) < rT 1, and then define a subset So of G as follows: 

So = Sl X S2 x .. · x Sk\{(?'O,,,,,,,~}, 
k 

Our object in this work is to prove the following. 

Main Result: Let S ~ So. Then S is a CD I-subset of G jf and only if S generates 
G. 

In addition, we also give a characterization of the automorphism group for such 
a C(G, S). 

2. Main result 

First, we introduce some notation. Let AutC(G, S) denote the automorphism 
group of C(G, S) and L(G) = {O"g I 9 E G}, where O"g(a) = 9 + a for all a E G. It 
is easy to check that L( G) is a subgroup of AutC( G, S) for each S C G and acts 
transitively on the vertices of C( G, S). Suppose C( G, S) ~ C( G, T). Then there 
exists some isomorphism 7 from C(G,S) to C(G,T) with 7(0) = O. Let D(S -t T) 
be the set consisting of all the isomorphisms from C(G, S) to C(G, T) with 7(0) = 0 
and AutG(S -t T) = {7 E AutG I 7(S) = T}. Clearly, AutG(S -t T) ~ D(S -t T). 
Thus S is a CDI-subset of G if and only if AutG(S -t T) :f. 0. 

The following lemma is familiar to us and simple to prove. 

Lemma 1 [14]. C(G, S) is strongly connected if and only if S generates G. 
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The following lemma provides a necessary and sufficient condition for a Cayley 
digraph to satisfy n(5 -+ T) = Auta(5 -+ T). This is true of a large number of 
Cayley digraphs and plays, as will be seen later, an important role in the proof of 
our main result. 

Lemma 2. Let C(G, 5) be strongly connected and C(G, T) be isomorphic to C( G, S). 
Then n(5 -+ T) = Auta(5 -+ T) if and only if 7(a + b) = 7(a) + 7(b) for a, bE 5 
and 7 E n(5 -+ T). 
Proof. The necessity is obvious. 

Let 7 E n(5 -+ T) and U E G. Since 0"_r(u)70"u(0) = -7(U) + 7(U) 0, 

0"_r(u)70"u E n(S -+ T). By assumption, 

That is, 
7(U + a + b) = 7(U + a) - 7(U) + 7(U + b). (2) 

Set U = Li=l Si, where the Si are elements of 5 (not necessarily distinct). In terms of 
(1), it is not difficult to show by induction that 7(Li=1 Si) = Ei=17(Si). By Lemma 
1, S generates G. Hence 7 E Auta(S -+ T). This completes our proof. 

Taking U = b = a in (2), we have 7(3a) = 37(a). Similarly, by setting b = a and 
U = a, 2a, 3a, ... respectively, we immediately get the following. 

CQrollary 1. Let a E S. If7(2a) = 27(a) for 7 E n(5 -+ T)) then 7(ia) = i7(a) 
for every integer i. 

In the following, we prove several lemmas which together achieve our object. 
Let g, U E G. Let (g) denote the subgroup generated by 9 so that U + (g) is a 

coset of (g). Let ~(5) = {s + (g) I S E 5 and g( -I 0) E G} be the collection of cosets 
with respect to S. Saying that 5 contains no element of ~(5) means S + (g) Cf:. S for 
each s + (g) E ~(S). We have the following. 

Lemma 3. Let (5) = G, a E 5 and assume 5 contains no element of ~(S). If 
7(2a) = 27(a) for 7 E n(5 -+ T)) then 7(a + b) = 7(a) + 7(b) for 7 E n(S -+ T) and 
bE 5. 
Proof. For 7 E n(S -+ T), let 7(a) = t and 7(b) = t'. Then t, t' E T. Let 7-1 be the 
inverse of 7. By our assumption 

Thus from Corollary 1, for each 7-1 E n(T -+ 5) and integer i we have 

Since a_r -1(tl)7-10"tl E n(T -+ 5), we have for every integer i 

0"_r-1(tl)7-
1
atl(it) = i· 0"_r-1(tl)7-10"tl(t). 
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That is, 

r-1(t' + it) = r-l(t') + i( -r-1(t') + r-1(t' + t)) 
r-l(t' + t) + (i - l)(r-l(t' + t) r-l(t')). 

Hence 

r- 1(t' + it) - r-l(it) = r-l(t' + t) - r-l(t) + (i - l)(r- l (t' + t) r-l(t') - r-l(t)). 

Note that since (it, t' + it) is an arc of C( G, T), (r- l
( it), r- 1

( t' + it)) is then an arc 
of C(G, 5). Thus 

r-l(t' + t) - r-l(t) + (i - l)(r- l(t + t') - r-1(t') - r-1(t)) E 5. 

Let r-l(t'+t)-r-1(t) = sand r-l(t'+t) T-l(t')-r-1(t) g. Then s+(i l)g E 5 
for every integer i and hence s + (g) ~ S. Clearly s E 5, we deduce 9 = 0 ( since 
otherwise s + (g) is an element of lR(5), which contracts our assumption). That is, 
r-1(t' + t) r- 1 (t') + r- l (t). By applying T to both sides of this equation we obtain 
T( a + b) = r( a) + r(b). This completes the proof. 

According to (1), for each 9 E G, 9 can be rewritten as 9 = (gl, g2, ... , gk), where 
gi E Zn; and 0 S gi < ni (1 SiS k). Set Igl = gi· Then Igi is an integer. 
Let u = (Ul' U2, ... , Uk), v (VI, V2, ... , Vk) E G. We say V is behind U if lui = Ivi and 
there exists some t (1 S t S k) such that Ut < Vt and Uz = Vz if l < t. Now we define 
an ordering, also denoted by <, on the elements of G. 

For each pair of elements U and v in G, U < v if lui < Ivi or V is behi~d u. 
Obviously, if U < v and V < w, then U < w. 

Let 5i and So be as specified in section 1. Let a = (aI, a2, ... , ak), b = (b1 , b2, ... , bk), 
and c = (Cl' C2, ••• , Ck) be three elements in 50. We have 

Lemma 4. If 2a = b + c) then b < a or C < a. 
Proof. For a contradiction, suppose b > a and C > a. Select Si = min{ s E Si}, 
i = 1,2, ... , k. Take s = (S1' S2, ..• , Sk) E So. Then 

n· n· 
o < a' - s· < r~l 0 < b· - s· < r~l and 0 < c· _22

2
,_22

2 
_2 r nil . k Si < 2' z = 1,2, ... , . 

By assumption 
2(a-s)=(b-s)+(c s). (3) 

In addition, it is easy to see from the definition that 

b - s > a - sand c s > a s. (4) 

If one of Ib - sl or Ic sl is greater than la - sl, then 

12(a - s)1 < Ib - sl + Ic - sl = I(b - s) + (c - s)l· 
Since 0 S 2(ai - Si) < ni and 0 S (bi - Si) + (Ci Si) < ni (1 SiS k), we deduce 
that 2(a - s) < (b- s) + (c- s). This is impossible due to (3). Thus we may further 
assume that 

Ib - sl = Ic sl = la - sl· 
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According to (4), there exist tl and t2 (1:::; tt, t2 :::; k) such that 

btl - Stl > atl - Stl and b z - Sz = az - Sz if I < tl 
Ct2 - St2 > at2 - St2 and Cl - Sl = az - Sl if I < t 2n. 

Set t = min{tl , t2}' We have 

On the other hand, 

I(b - s) + (c - s)1 = Ib - sl + Ie - sl = 12(a - c)l· 

Then by definition, (b - s) + (c - s) is behind 2( a - s). Hence 

(b - s) + (c - s) > 2( a - s). 

This again leads a contradiction with (3). It completes our proof. 

Let S = {di = (dibdi2, ... ,dik) 1 dij E Znj (1:::; j:::; k) and i = 1,2, ... ,n} be a 
subset of So. In the ordering of G defined above, we can assume that 

(5) 

Lemma 5. Let C(G,T) be any Cayley digraph isomorphic to C(G,S). Then 
T(2dr) = 2T(dl ) for every T E f!(S ~ T). 

Proof. Since (d1 ,2dd is an arc of C(G,S), (T(dr),T(2dr)) is an arc of C(G,T). 
Thus there is d~ E S such that T(2dl ) = T( dl ) + T( di). 

If d~ = dl, our proof has finished. Otherwise, d~ =I dl. Then T(2d1 ) has two com­
mon in-adjacency vertices T(dr) and T(di) in T, and therefore 2dl has two common 
in-adjacency vertices in S of which at least one is different from dl. Thus there are 
two elements di and dj in S such that 2dl = di + dj . But from Lemma 4, we have 
di < dl or d j < dl. This contradicts (5). 

Lemma 6. Let S ~ So. Then S contains no element of 'iR( S). 
Proof. For a contradiction, suppose there is a = (al, a2, .. . ak) E Sand g = 
(gl, g2, ... , gk) E G such that a + (g) ~ S. Let o(g) denote the order of gin G. Then, 
for 0:::; n < o(g), a + ng E S ==} ai + ngi E Si C Zn; (1 :::; i:::; k). If gcd(gi,ni) = 1, 
then Si = Zni' This is impossible since D( Sd < r T 1- Suppose gcd(gi, ni) = (Xi =1= 1. 
Then «Xi) = (gi). Therefore D(Si) 2 (Xi(~ - 1) + ai) - ai 2 ni - (Xi 2 T' This 
leads a contradiction with the choice of Si. 

Lemma 7. Let S = {di = (dil,di2, ... ,dik) 1 dl < d2 < ... < dn } ~ So and let 
C(G,T) be any Cayley digraph isomorphic to C(G,S). Then T(2di) = 2T(di) for 
every T E f!(S ~ T) and di E S. 
Proof. We prove our result by induction on the index of di E S. According to Lemma 
5, T(2dd = 2T(dl ). Suppose we have established that 

T(2dz) = 2T(dz) for dl < di, where i :2: 2. 
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Since 2dj =f. 2djl for j =f. j', it is easy to see that there is an odd number of vertices, 
say 2m+ 1 vertices, of 5 which are out-adjacent to 2di, and di is clearly such a vertex. 
Let dil , djl (I 1, 2, ... , m) be all these vertices other than di such that 

Because of Lemma 4, one can further assume that 

Thus by the induction hypothesis, we have r(2dil ) = 2r(dil ) for r E n(5 --+ T). 
Then by combining Lemma 6 and Lemma 3, for every r E n(5 --+ T) , we have 

Now we consider r(2di ). It is clear that there exists di E 5 such that r(2di) 
r( di ) + r( dD. In view of 

r(di) + r(dD = r(2di) = r(dil ) + r(djl ), 1= 1,2, ... , m. 

we deduce that di 1:. {dil , djl II = 1,2, ... , m}. This means, by our assumption, that 
di = di, i.e., r(2di) = 2r(di). Thus, by induction, we complete our proof. 

Theorem 1. Let 5 be a subset of So such that (S) = G. Then 5 is a CDI-subset of 
G. 

Proof. Let C( G, T) be any Cayley digraph isomorphic to C( G, S). Set 5 = 
{di(i = 1,2, ... , n) I d1 < d2 < ... dn }. By Lemma 7 and Lemma 3, we have 

r(di + dj ) = r(di) + r(dj ) for r E n(S --+ T) and di,dj E S. 

By Lemma 2, for each r E n(5 --+ T), we have r E Auta(S --+ T). The result follows 
readily. 

Let 5 be a subset of 50 which generates G and let C (G, T) be any Cayley digraph 
isomorphic to C (G, S). Then n( S --+ T) =f. 0. It is worth mentioning that each 
isomorphism in n(S --+ T) is a group isomorphism on G. 

Corollary 2. Let 5 ~ 50, (5) = G and C(G, S) e:! C(G, T). Then n(5 --+ T) = 
Auta(S --+ T). 

In particular, when k = 1, G = Znl is the cyclic group of integers modulo nl. 
Theorem 1 includes the following result about isomorphisms of circulant digraphs. 

Corollary 3. Let 5 be a subset of Zn with D(S) < r~l. Then Cn(5) satisfies 
Adam's conjecture. 
Proof. It is not difficult to see that Cn(S) satisfies Adam's conjecture if and only 
if its components satisfy Adam's conjecture and the components of Cn(S) are some 
copies of another strongly connected circulant digraph. Thus our result follows im­
mediately by Theorem 1. 
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In the following, we give an example to illustrate that the condition D(S) < r~l 
is necessary and in some sense is best possible. 
Example 1. Let m be a positive integer divisible by 4 and put n = 2m. Set 
S = {I, m + 1, 2} C Zn. Then Cn(S) does not satisfies Adam's conjecture. 

In fact, set T = {I, m + 1, m + 2}. For u E Zn, define 

T(U) = U + im, where u E {2i, 2i + I} (0::; i < my. 
It is not difficult to verify that 7 is an isomorphism from Cn(S) to Cn(T). But there 
is no integer A relatively prime to n such that T = AS. 

3. Automorphism Group of C(G, S) 

Let S be a subset of G. Then S generates a subgroup of G. It is not difficult 
to show that C((S),S) is a component of C(G,S). In other words, C(G,S) consists 
of r copies of C((S), S), where r = [G : (S)]. In this case, the automorphism group 
of C( G, S) is the wreath product of these r's AutC( (S), S). Thus, without loss of 
generality, we assume in this section that (S) = G. 

Regarding C ( G, T) as C ( G, S), the isomorphism TEn (S -t T) is the au tomor­
phism of C (G, S) with 7(0) = O. In this case, n( S -t T) is refered to as n( S) = {7 E 
AutC(G, S) I T(O) = O} and AutG(S -t T) as AutG(8) = {T E AutG I 7(S) = S}. 
Based on the results in the last section, we give a characterization of AutC( G, S) for 
S ~ So. 

First we cite a well-known result. 

Lemma 8 [15J. AutC(G,S) = L(G)n(S). 

From Corollary 3 and Lemma 8, we have 

Theorem 2. Let 8 ~ So and (8) = G. Then AutC(G, S) = L(G)AutG(S). 

Generally speaking, AutG(S) is a subgroup of AutG. To the best of our knowl­
edge, AutG is not known yet. So we can not give an explicit expression for AutG(S). 
But given an 8 C So, it is not too difficult to determine AutC( G, 8) in terms of 
Theorem 2. 

Let 8i and 80 be as specified in section 1. If G is a direct product 

Go = Znl X Zn2 X ••• X Znk' 

where nI, n2, ... , nk are integers relatively prime to each other, we can describe 
C ( Go, So) in detail. 

The following lemma is familiar to us from group theory. 

Lemma 9. AutGo = AutZn1 x AutZn2 x ... x AutZnk ! where ni (i = 1,2, ... , k) are 
relatively prime to each other. 
Then by Lemma 9, we have 

AutGo(So) = Autzn1 (Sd x Autzn2 (82 ) x ... x Autznk (8k ). 

Combining with Lemma 8, we derive the following. 
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Notice that AutZni ~ {,\ E Zni I gcd(,\, nd = I} = Z~, so we have 

AutZni(Si) ~ {'\ E Z~i I ,\Si = Si} i = 1,2, ... ,k. 

Thus we can easily obtain AutC( Go, So) from Theorem 3. 
Let m 2': 2 and a 2': 2 be two positive integers and n = rna - 1. Set Sm,a 

{I, m, rn2
, ••• , rna-I} C Zn. Then D(Sm,a) < fIl and 

Autzn(Sm,a) ~ {,\ E Z~ I '\Sm,a = Sm,a} 
= {I, m, m 2

, ••• , rna}. 

Thus Autzn(Sm,a) is isomorphic to the group {I, m, m 2
, ••• , ma} under multiplication, 

that is, the cyclic group Zk. So we have 
Example 2. AutCn(Sm,a) ~ Zn x Za. 

Since Za acting on Sm,a is vertex transitive, it is not difficult to see that Cn(Sm,a) 
is a type of arc-transitive circulant digraph. 
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