$(3, \lambda)$-GROUP DIVISIBLE COVERING DESIGNS

J. Yin and J. Wang
Department of Mathematics
Suzhou University
Suzhou 215006, P. R. CHINA

Abstract Let $\mathrm{u}, \mathrm{g}, \mathrm{k}$ and λ be positive integers with $\mathrm{u} \geq \mathrm{k}$. A (k, λ)-group divisible covering design (k, λ)-GDCD) with type g^{u} is a λ-cover of pairs by k -tuples of a gu-set X with u holes of size g , which are disjoint and spanning. The covering number, $\mathrm{C}\left(\mathrm{k}, \lambda ; \mathrm{g}^{\mathrm{u}}\right)$, is the minimum number of blocks in a (k, λ)-GDCD of type g^{u}. In this paper, the determination of the function $C\left(3, \lambda ; \mathrm{g}^{\mathrm{u}}\right)$ begun by $[6]$ is completed.

1. Introduction

Let $\mathrm{u}, \mathrm{g}, \mathrm{k}$ and λ be positive integers with $\mathrm{u} \geq \mathrm{k}$..
Roughly speaking, $a(k, \lambda)$-group divisible covering design (k, λ)-GDCD) with type g^{u} is a λ-cover of pairs by k -tuples of a gu-set X with u holes of size g , which are disjoint and spanning. More formally, $\mathrm{a}(\mathrm{k}, \lambda)$-GDCD of type g^{u} is defined to be a triple (X, G, B) which satisfies the following properties:
(1) G is a partition of a set X (of points) into subsets called groups or holes,
(2) B is a set of k-subsets of X (called blocks) such that a group and a block contain at most one common point,
(3) every pair of points from distinct groups occurs in at least λ blocks.

The group-type (or type) of the GDCD is the multiset $\mathrm{T}=\{|\mathrm{G}|: \mathrm{G} \in G\}$, and it will be denoted by an "exponential" notation: a type $12^{2} 3^{k}$... denotes i occurrences of $1, \mathrm{r}$ occurrences of 2 , etc.

For any pair $\mathrm{e}=\{\mathrm{x}, \mathrm{y}\}$ of points in X , let $\mathrm{m}(\mathrm{e})$ be the number of blocks in B that cintain e. The excess of the GDCD is the multigraph spanned by all pairs e of points from distinct groups with multiplicity $m(e)-\lambda$.

The concept of a covering design with holes has played an important role in the discussion of various covering problems. As a general covering problem, the main problem here is to determine the values of the covering number $\mathrm{C}\left(\mathrm{k}, \lambda ; \mathrm{g}^{\mathrm{u}}\right)$, that is, the minimum number of blocks in $a(k, \lambda)$-GDCD of type g^{u}. Let

$$
\mathrm{L}\left(\mathrm{k}, \lambda ; \mathrm{g}^{\mathrm{u}}\right)=\lceil\mathrm{gu} / \mathrm{k}\lceil\lambda \mathrm{~g}(\mathrm{u}-1) /(\mathrm{k}-1)\rceil\rceil
$$

where $\lceil\mathrm{x}\rceil$ denotes the least integer not less than x . It is evident that

$$
\begin{equation*}
\mathrm{C}\left(\mathrm{k}, \lambda ; \mathrm{g}^{\mathrm{u}}\right) \geq \mathrm{L}\left(\mathrm{k}, \lambda ; \mathrm{g}^{\mathrm{u}}\right) \tag{1.1}
\end{equation*}
$$

The lower bound (1.1) for $\mathrm{C}\left(\mathrm{k}, \lambda ; \mathrm{g}^{\mathrm{u}}\right)$ is not always best possible. In particular, we have the following result, which is a modification of [2, Lemma 7.2].

Theorem 1.1 Suppose that $\lambda(u-1) g \equiv 0(\bmod k-1)$ and $\lambda u(u-1) g^{2} \equiv 1(\bmod k)$. Then $C(k$, $\left.\lambda ; \mathrm{g}^{\mathrm{u}}\right) \geq \mathrm{L}\left(\mathrm{k}, \lambda ; \mathrm{g}^{\mathrm{u}}\right)+1$.

Theorem 1.1 and the bound (1.1) together imply that

$$
\begin{equation*}
\mathrm{C}\left(\mathrm{k}, \lambda ; \mathrm{g}^{\mathrm{u}}\right) \geq \mathrm{B}\left(\mathrm{k}, \lambda ; \mathrm{g}^{\mathrm{u}}\right) \tag{1.2}
\end{equation*}
$$

where $\mathrm{B}\left(\mathrm{k}, \lambda ; \mathrm{g}^{\mathrm{u}}\right)$ is defined by $\mathrm{B}\left(\mathrm{k}, \lambda ; \mathrm{g}^{\mathrm{u}}\right)=\mathrm{L}\left(\mathrm{k}, \lambda ; \mathrm{g}^{\mathrm{u}}\right)+1$ if $\lambda(\mathrm{u}-1) \mathrm{g}=0(\bmod \mathrm{k}-1)$ and $\lambda u(u-1) g^{2} \equiv 1(\bmod k)$, and $B\left(k, \lambda ; g^{u}\right)=L\left(k, \lambda ; g^{u}\right)$ otherwise.

In view of (1.2), a (k, λ)-GDCD of type g^{u} with $\mathrm{B}\left(\mathrm{k}, \lambda ; \mathrm{g}^{\mathrm{u}}\right)$ blocks is said to be minimal. Upper bounds on $C\left(k, \lambda ; g^{u}\right)$ are generally given by construction of a minimal k GDCD of type g^{u}.

The first author [6] has proved that $C\left(3,1 ; g^{u}\right)=B\left(3,1 ; g^{u}\right)$ for all positive integers g and $u \geq 3$ with the possible exception of the pairs $(g, u) \in\{(7,8),(11,14)\}$. In this paper, we will remove these two exceptional pairs and show that $C\left(3, \lambda ; g^{\mathrm{u}}\right)=\mathrm{B}\left(3, \lambda ; \mathrm{g}^{\mathrm{u}}\right)$ for all positive integers $g, \lambda \geq 2$ and $u \geq 3$. Thus the determination of the function $C(3, \lambda ;$ g^{u}) is completed.

We use as our standard design theory reference Beth, Jungnickei and Lenz [1]. Following Hanani [2] we denote by $\mathrm{B}(\mathrm{K}, \lambda ; \mathrm{v})$ a pairwise balanced design (PBD) of order v with block sizes from K and index λ. By (K, λ)-GDD we mean a group divisible design (GDD) with block sizes from K and index λ. As usual, we use 'exponential' notation to describe the type of a GDD. We simply write k for K whenever $\mathrm{K}=\{\mathrm{k}\}$. Using this notation, a PBD $\mathrm{B}(\mathrm{k}, \lambda ; \mathrm{v})$ is a balanced incomplete block design (BIBD) with parameters v, k and λ. The notation $\mathrm{B}\left(\mathrm{K} \cup\left\{\mathrm{w}^{*}\right\}, 1 ; \mathrm{v}\right)$ stands for a PBD of order v and index unity having blocks of sizes from K, except for one block of size w when $w \notin K$. If $w \in K$, then $\mathrm{B}\left(\mathrm{K} \cup\left\{\mathrm{w}^{*}\right\}, 1 ; \mathrm{v}\right)$ is a PBD of order v and index unity having blocks of sizes from K containing at least one block of size w . A similar terminology applies to GDDs.

If we remove one or more subdesigns from a GDD, we obtain a holey GDD (HGDD). In the sequel, we write (k, λ)-HGDD for a structure ($\mathrm{X},\left\{\mathrm{Y}_{\mathrm{i}}\right\}_{1 \text { Sist }}, G, B$) where X is a gu-set (of points), $G=\left\{G_{1}, G_{2}, \ldots, G_{u}\right\}$ is a partition of X into u groups of g points each, $\left\{\mathrm{Y}_{1}, \mathrm{Y}_{2}, \ldots, \mathrm{Y}_{\mathrm{t}}\right\}$ is a partition of X into t holes, each hole $\mathrm{Y}_{\mathrm{i}}(1 \leq \mathrm{i} \leq \mathrm{t})$ is a set of uh_{i} points such that $\left|Y_{i} \cap G_{j}\right|=h_{i}$ for $1 \leq j \leq u$, and B is a collection of k-subsets of X (called blocks) such that no block contains two distinct points of any group or any hole, but any other pairset of points of X is contained in exactly λ blocks of B. The pair ($u, \mathrm{~T}$) is referred to as the type of the design where T is the multiset $\left\{\mathrm{h}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{t}\right\}$ and will be denoted by an "exponential" notation. In the case of one hole, say Y , the $\operatorname{HGDD}(\mathrm{X},\{\mathrm{Y}\}, G, B)$ is called an incomplete group divisible design (IGDD). We denote it (k, λ)-IGDD and write ($\mathrm{g}, \mathrm{h})^{\mathrm{u}}$ for its type where $|\mathrm{G} \cap \mathrm{Y}|=\mathrm{h}$ for any $\mathrm{G} \in G$. Note that if $\mathrm{Y}=\varnothing$, then the IGDD is a GDD.

For all practical purpose, we record the following existence results.
Theorem 1.2 [2] The necessary and sufficient condition for the existence of a $(3, \lambda)$-GDD of type g^{u} are
(1) $u \geq 3$;
(2) $\lambda(u-1) g \equiv 0(\bmod 2)$; and
(3) $\lambda u(u-1) g^{2} \equiv 0(\bmod 6)$.

Theorem 1.3 [4] The necessary and sufficient conditions for the existence of a $(3, \lambda)$ IGDD of type $(\mathrm{g}, \mathrm{h})^{\mathrm{u}}$ are
(1) $g \geq 2 h$;
(2) $\lambda \mathrm{g}(\mathrm{u}-1) \equiv 0(\bmod 2)$;
(3) $\lambda(g-h)(u-1) \equiv 0(\bmod 2)$; and
(4) $\lambda u(u-1)\left(g^{2}-h^{2}\right) \equiv 0(\bmod 6)$.

Theorem 1.4 [3] Let u and t be positive integers not less than 3. The necessary and sufficient conditions for the existence of a 3-HGDD of type (u, h^{\dagger}) are
(1) $\lambda(u-1)(t-1) h=0(\bmod 2) ;$ and
(2) $\lambda u h t(u-1)(t-1) h \equiv 0(\bmod 6)$.

Theorem $1.5[5]$ There exists a $B\left(\left\{3,5^{*}\right\}, 1 ; v\right)$ for any positive integer $v \equiv 5(\bmod 6)$.
It is worth mentioning that the notion of a GDCD is a natural generalization of standard packing designs and group divisible designs. A (u, k, λ) covering design is (k, λ) GDCD with type 1^{u}. When a (k, λ)-GDD exists, it is actually a minimal (k, λ)-GDCD.

2. The determination for $C\left(3,1 ; 7^{8}\right)$ and $C\left(3,1 ; 11^{14}\right)$

In this section, we deal with the two outstanding cases mentioned in Section 1. This completes the determination of the function $\mathrm{C}\left(3,1 ; \mathrm{g}^{\mathrm{u}}\right)$.

Lemma 2.1 There exists a minimal (3,1)-GDCD of type 7^{8}.
Proof In this case, $B\left(3,1 ; 7^{4}\right)=\mathbb{L}\left(3,1 ; 7^{4}\right)=467$. Let the point set be $X=Z_{56}$ and the group set be $\{\{j, j+8, j+16, j+24, j+32, j+40, j+48\}: j=0,1, \ldots, 7\}$. Then the required blocks are

$\{0,1,6\}$	$(\bmod 56)$	$\{0,3,7\}$	$(\bmod 56)$
$\{0,2,23\}$	$(\bmod 56)$	$\{0,11,26\}$	$(\bmod 56)$
$\{0,12,39\}(\bmod 56)$	$\{0,13,38\}$	$(\bmod 56)$	
$\{0,14,36\}(\bmod 56)$			
$\{0,27,55\}$			

$\{\mathrm{j}, \mathrm{j}+9, \mathrm{j}+46\}$	$(\mathrm{j}=9,10, \ldots, 55)$
$\{\mathrm{j}, \mathrm{j}+28, \mathrm{j}+46\}$	$(\mathrm{j}=0,1, \ldots, 8)$
$\{\mathrm{j}, \mathrm{j}+9, \mathrm{j}+37\}$	$(\mathrm{j}=0,1, \ldots, 8)$
$\{\mathrm{j}+9, \mathrm{j}+18, \mathrm{j}+46\}$	$(\mathrm{j}=0,1, \ldots, 8)$

The excess of this GDCD consists of the following 29 pairs:

$$
\{\mathfrak{j}, \mathfrak{j}+37\}\{\mathfrak{j}+9, \mathfrak{j}+18\}\{\mathfrak{j}+28, \mathfrak{j}+46\}\{0,55\}\{0,27\}
$$

where $\mathrm{j}=0,1, \ldots, 8$.
Lemma 2.2 There exists a minimal (3, 1)-GDCD of type 11^{14}.
Proof In this case, $B\left(3,1 ; 11^{14}\right)=\mathrm{L}\left(3,1 ; 11^{14}\right)=154 \times 24$. Let the point set be $\mathrm{X}=\mathrm{Z}_{154}$ and the group set be $\{\{j, j+14, j+28, j+42, \ldots, j+140\}: j=0,1, \ldots, 13\}$. Let H_{0} be the subgroup of order 77 in Z_{154}. Then the blocks of required design are given below.

The excess of this GDCD consists of the following 77 pairs:
$\{j, j+77\}(j=0,1, \ldots, 76)$.
As an immediate consequence of (1.2) and the above lemmas, we obtain the following.

Corollary 2.3 If $(\mathrm{g}, \mathrm{u}) \in\{(7,8),(11,14)\}$, then $\mathrm{C}\left(3,1 ; \mathrm{g}^{\mathrm{u}}\right)=\mathrm{B}\left(3,1 ; \mathrm{g}^{\mathrm{u}}\right)$.

Combining the results in [6] and Corollary 2.3 gives the following theorem.
Theorem 2.4 Let g and $u \geq 3$ be positive integers. Then $C\left(3,1 ; g^{u}\right)=B\left(3,1 ; g^{u}\right)$ where $\mathrm{B}\left(3,1 ; \mathrm{g}^{\mathrm{u}}\right)=\lceil\mathrm{gu} / 3\lceil\mathrm{~g}(\mathrm{u}-1) / 2\rceil\rceil$.

3. Covering numbers for $2 \leq \lambda \leq 5$

In this section, we determine completely the covering number $\mathrm{C}\left(3, \lambda ; \mathrm{g}^{\mathrm{u}}\right)$ for $2 \leq \lambda$ ≤ 5. We shall prove that the lower bound (1.2) on the function $\mathrm{C}\left(3, \lambda ; \mathrm{g}^{4}\right)$ is achieved for all positive integer $\mathrm{g}, \mathrm{u} \geq 3$ and $2 \leq \lambda \leq 5$. More specifically, we show the following.

Theorem 3.1 Let g, λ and u be positive integers satisfying $\mathrm{u} \geq 3$ and $2 \leq \lambda \leq 5$. Then $\mathrm{C}\left(3, \lambda ; \mathrm{g}^{\mathrm{u}}\right)=\mathrm{B}\left(3, \lambda ; \mathrm{g}^{\mathrm{u}}\right)$, in which $\mathrm{B}\left(3, \lambda ; \mathrm{g}^{\mathrm{u}}\right)=\lceil\mathrm{gu} / 3\lceil\lambda \mathrm{~g}(\mathrm{u}-1) / 2\rceil\rceil+1$ whenever
(1) $\lambda=2, g \equiv 1$ or $2(\bmod 3)$ and $u \equiv 2(\bmod 3)$;
(2) $\lambda=5, \mathrm{~g} \equiv 2$ or $4(\bmod 6)$ and $u \equiv 2(\bmod 3)$;
(3) $\lambda=5, \mathrm{~g} \equiv 1$ or $5(\bmod 6)$ and $\mathrm{u} \equiv 5(\bmod 6)$,
and $\mathrm{B}\left(3, \lambda ; \mathrm{g}^{\mathrm{u}}\right)=\lceil\mathrm{gu} / 3\lceil\lambda \mathrm{~g}(\mathrm{u}-1) / 2\rceil\rceil$ otherwise.
As already mentioned earlier, in order to prove Theorem 3.1 we need only to construct a minimal GDCD for each statede values of g, u and λ. Note that the result for g $=1$ in Theorem 3.1 has been proved by Hanani [2]. So, we may also assume that $\mathrm{g} \geq 2$ below.

We now present our constructions for the required $(3, \lambda)$-GDCDs, which split into four lemmas depending on the values of λ.

Lemma 3.2 For all integers $\mathrm{g} \geq 2$ and $\mathrm{u} \geq 3, \mathrm{C}\left(3,2 ; \mathrm{g}^{\mathrm{u}}\right)=\mathrm{B}\left(3,2 ; \mathrm{g}^{\mathrm{u}}\right)$.
Proof For the case where $g \equiv 1,2(\bmod 3)$ and $u \equiv 0,1(\bmod 3)$ or $g \equiv 0(\bmod 3)$ and $u \geq$ 3, the results follows from Theorem 1.2 where the GDCD is exact.

For the remaining case where $g \equiv 1,2(\bmod 3)$ and $u \equiv 2(\bmod 3)$, first note that $\mathrm{B}\left(3,2 ; \mathrm{g}^{\mathrm{u}}\right)=\lceil\mathrm{gu} / 3\lceil 2 \mathrm{~g}(\mathrm{u}-1) / 2\rceil\rceil+1$. The construction then is as follows.

Start with a B($\left.\left\{3,5^{*}\right\}, 1 ; 2 u+1\right)$ which exists by Theorem 1.5. Delete one point not belonging to the block of size 5 to create $a\left(\left\{3,5^{*}\right\}, 1\right)$-GDD of type 2^{4}. Replace the
distinguished block by a minimal $(3,2)$-GDCD of type 1^{5} and take two copies of all blocks of size 3 from the GDD. This gives a minimal (3,2)-GDCD of type 2^{u} whose excess consists of four pairs. Now we take a (3, 2)-IGDD of type (g, 2) from Theorem 1.3 and fill in its hole by the above minimal $(3,2)$-GDCD of type 2^{u} to obtain the required minimal $(3,2)$-GDCD of type g^{u}.

Lemma 3.3 For all integers $g \geq 2$ and $u \geq 3, C\left(3,3 ; g^{u}\right)=B\left(3,3 ; g^{u}\right)$.
Proof Theorem 1.2 takes care of the case where $g \equiv 0(\bmod 2)$ and $u \geq 3$ or $g \equiv 1(\bmod 2)$ and $u \equiv 1(\bmod 2)$.

For the case where $g \equiv 1(\bmod 2)$ and $u \equiv 0(\bmod 6)$, note that $a(3,3)$-HGDD of type ($u, 1 \mathrm{~g}$) exists by Theorem 1.4. Replacing each of holes in a (3,3)-HGDD of type (u, 1^{g}) by a copy of a minimal $(3,3)$-GDCD of type 1^{u} produces the result.

For the case where $g \equiv 1(\bmod 2)$ and $u \equiv 4(\bmod 6)$, a minimal $(3,3)-G D C D$ of type g^{u} is obtained by taking a minimal $(3,1)$-GDCD and a (3,2)-GDD with type g^{u}.

It remains to treat the case where $g \equiv 1(\bmod 2)$ and $u \equiv 2(\bmod 6)$. We distinguish the constructions into three cases according the values of $g(\bmod 6)$.

Case $1 \mathrm{~g} \equiv 1(\bmod 6)$
In this case, the excess of a minimal (3, 3)-GDCD of type g^{u} consists of (gu / 2) + 2 pairs and the construction is as follows.
(1) Take a minimal (3,1 -GDCD of type g^{u} from Theorem 2.4. According to the construction of the design, we can know that its excess contains (gu / 2) +1 pairs. We may also assume that two disjoint pairs $\{b, c\}$ and $\{d, e\}$ are contained in the excess.
(2) Take a minimal (3,2)-GDCD of type g^{u} constructed in Lemma 3.2, which contains a sub-GDCD of type 1^{5}. Assume that the sub-GDCD is based on $\{a, b, c, d, e\}$. Replace the sub-GDCD by the following 7 blocks:

$$
(a, b, e\}\{a, c, d\}\{a, c, e\}\{a, b, d\}\{b, d, e\}\{b, c, e\}\{c, d, e\}
$$

It is readily checked that the above two steps yield a minimal $(3,3)$-GDCD of type g^{u}.
Case $2 \mathrm{~g} \equiv 3(\bmod 6)$

In this case, a minimal (3, 3)-GDCD of type g^{u} is obtained by taking a minimal (3 , 1)-GDCD and a (3,2)-GDD with type g^{u}.

Case $3 \mathrm{~g} \equiv 5(\bmod 6)$
In this case, the procedure is the same as the above Case 1.
Lemma 3.4 For all integers $\mathrm{g} \geq 2$ and $\mathrm{u} \geq 3, \mathrm{C}\left(3,4 ; \mathrm{g}^{\mathrm{u}}\right)=\mathrm{B}\left(3,4 ; \mathrm{g}^{\mathrm{u}}\right)$.
Proof The case where $g \equiv 1,2(\bmod 3)$ and $u \equiv 0,1(\bmod 3)$ or $g \equiv 0(\bmod 3)$ and $u \geq 3$, are covered by Theorem 1.2 where the GDCD is exact.

For the case where $\mathrm{g} \equiv 1,2(\bmod 3)$ and $\mathrm{u} \equiv 2(\bmod 3)$, the construction is similar to that of Lemma 3.2, with a minor modification. A minimal (3, 4)-GDCD of type 2^{u} is formed by taking four copies of all blocks of size 3 from a ($\left\{3,5^{*}\right\}, 1$)-GDD of type 2^{u} and then replacing the distinguished block by a minimal (3,4)-GDCD of type 1^{5}. Then we take a $(3,4)-\mathrm{IGDD}$ of type $(\mathrm{g}, 2)^{\mathrm{u}}$ from Theorem 1.3 and fill in its hole by the above minimal (3,4)-GDCD of type 2^{u} to obtain the required minimal (3,4)-GDCD of type g^{u}. This completes the proof.

Lemma 3.5 For all integers $\mathrm{g} \geq 2$ and $\mathrm{u} \geq 3, \mathrm{C}\left(3,5 ; \mathrm{g}^{\mathrm{u}}\right)=\mathrm{B}\left(3,5 ; \mathrm{g}^{\mathrm{u}}\right)$.
Proof If one of the following congruences is satisfied:
(1) $\mathrm{g}=1,5(\bmod 6)$ and $\mathrm{u} \equiv 1,3(\bmod 6)$;
(2) $\mathrm{g} \equiv 2,4(\bmod 6)$ and $u \equiv 0,1(\bmod 3)$;
(3) $g \equiv 3(\bmod 6)$ and $u \equiv 1(\bmod 2)$;
(4) $g \equiv 0(\bmod 6)$ and $u \geq 3$,
the results follows from Theorem 1.2 where the GDCD is exact.
For the case where $\mathrm{g} \equiv 1,5(\bmod 6)$ and $\mathrm{u} \equiv 0$ or $4(\bmod 6)$, the required minimal $(3,5)$-GDCD of type g^{u} is given by taking a minimal (3,1)-GDCD and a (3,4)-GDD with the same type g^{u}.

For the case where $\mathrm{g} \equiv 1(\bmod 6)$ and $\mathrm{u} \equiv 2(\bmod 6)$, it was shown in Theorem 1.4 that a (3,5)-HGDD of type ($u, 19$) exists. Filling in each hole of such HGDD by a minimal (3,5)-GDCD of type 1^{u} produces the desired GDCD.

For the case where $\mathrm{g} \equiv 5(\bmod 6)$ and $\mathrm{u} \equiv 2(\bmod 6)$, the required minimal $(3,5)$ GDCD of type g^{u} is given by taking a minimal (3,1)-GDCD and a minimal (3,4)-GDCD with the same type g^{u}.

For the case where $\mathrm{g} \equiv 1,5(\bmod 6)$ and $\mathrm{u} \equiv 5(\bmod 6)$, or $\mathrm{g} \equiv 2,4(\bmod 6)$ and u $\equiv 2(\bmod 3), \mathrm{B}\left(3,2 ; \mathrm{g}^{\mathrm{u}}\right)=\lceil\mathrm{gu} / 3\lceil 2 \mathrm{~g}(\mathrm{u}-1) / 2\rceil\rceil+1$. The required minimal $(3,5)-$ GDCD of type g^{u} is given by taking a minimal (3,2)-GDCD and a (3, 3)-GDD with the same type g^{u}.

Finally, for the case where $\mathrm{g} \equiv 3(\bmod 6)$ and $\mathrm{u} \equiv 0(\bmod 2)$, the required minimal $(3,5)$-GDCD of type g^{u} is obtained by taking a minimal (3,1)-GDCD and a (3,4)-GDD with the same type g^{u}.

4. Conclusion

As a consequence of Theorems 2.4 and 3.1, we have
Theorem 4.1 Let g, λ and u be positive integers satisfying $\mathrm{u} \geq 3$. Then $\mathrm{C}\left(3, \lambda ; \mathrm{g}^{\mathrm{u}}\right)=\mathrm{B}(3$, $\lambda ; \mathrm{g}^{\mathrm{u}}$, in which $\mathrm{B}\left(3, \lambda ; \mathrm{g}^{\mathrm{u}}\right)=\lceil\mathrm{gu} / 3\lceil\lambda \mathrm{~g}(\mathrm{u}-1) / 2\rceil\rceil+1$ when one of the following congruences is satisfied:
(1) $\lambda \equiv 2(\bmod 6), \mathrm{g} \equiv 1$ or $2(\bmod 3)$ and $u \equiv 2(\bmod 3)$;
(2) $\lambda \equiv 5(\bmod 6), \mathrm{g} \equiv 2$ or $4(\bmod 6)$ and $u \equiv 2(\bmod 3)$;
(3) $\lambda \equiv 5(\bmod 6), g \equiv 1$ or $5(\bmod 6)$ and $u \equiv 5(\bmod 6)$, and $\mathrm{B}\left(3, \lambda ; \mathrm{gu}^{\mathrm{u}}\right)=\lceil\mathrm{gu} / 3\lceil\lambda \mathrm{~g}(\mathrm{u}-1) / 2\rceil\rceil$ otherwise.

Proof The result for $\lambda \leq 5$ was established in Theorems 2.4 and 3.1. For $\lambda \geq 6$, let $\lambda=6 \mathrm{~m}$ $+\lambda^{\prime}$. In this case, a minimal ($3, \lambda$)-GDCD of type g^{u} is obtained by taking a minimal (3 , λ^{\prime})-GDCD of type g^{u} and m times a $(3,6)$-GDD of type g^{u} (for the existence of this see Theorem 1.2). The conclusion then follows from (1.2).

References

[1] T. Beth, D. Jungnickel and H. Lenz, "Design Theory", Bibliographisches Institut, Zurich, 1985.
[2] H. Hanani, Balanced incomplete block designs and related designs, Discrete Math. 11 (1975), 255-369.
[3] R. Wei, Group divisible designs with equal-sized holes, Ars Combin. 35 (1993), 315 323.
[4] D. Wu and R. Wei, A note on IGDDs, J. of Suzhou Univ. 8 (1992), 142-145.
[5] R.M.Wilson, Some partition of all triples into Steiner triple systems, Hypergraph seminar, Lecture Notes in Math. 411 (1974), 267 - 277, Springer-Verlag.
[6] J. Yin, On group divisible covering designs, submitted.

