Odd induced subgraphs in graphs of maximum degree three

David M. Berman, Hong Wang, and Larry Wargo
Department of Mathematics
University of New Orleans
New Orleans, Louisiana, USA 70148

Abstract

A long-standing conjecture asserts the existence of a positive constant c such that every simple graph of order n without isolated vertices contains an induced subgraph of order at least $c n$ such that all degrees in this induced subgraph are odd. Radcliffe and Scott have proved the conjecture for trees, essentially with the constant $c=2 / 3$. Scott proved a bound for c depending on the chromatic number. For general graphs it is known only that c, if it exists, is at most $2 / 7$.

In this paper, we prove that for graphs of maximum degree three, the theorem is true with $c=2 / 5$, and that this bound is best possible.

Gallai proved that in any graph there is a partition of the vertices into two sets so that the subgraph induced by each set has each vertex of even degree; also there is a partition so that one induced subgraph has all degrees even and the other has degrees odd. (See [3] problem 17.) Clearly we can not assure a partition in which each subgraph has all degrees odd. The weaker question then arises whether every simple graph contains a "large" induced subgraph with all degrees odd.

We say that an odd subgraph of G is an induced subgraph H such that every vertex of H has odd degree in H. We use $f(G)$ to denote the maximum order of an odd subgraph of G. (To avoid trivial cases, we will restrict G to be without isolated vertices.) We may thus state the conjecture in the form that there exists a positive constant c such that for an n-vertex graph G, $f(G) \geq c n$. (This conjecture is cited by Caro [2] as "part of the graph theory folklore".)

Caro [2] proved a weaker conjecture of Alon that for an n-vertex graph G, $f(G) \geq$ $c \sqrt{n}$. Scott [5] improved this, proving that $f(G) \geq c n / \log (n)$. Radcliffe and Scott [4] have proved the original conjecture for trees, essentially with the constant $c=2 / 3$. In general it is known [2] only that c, if it exists, is at most 2/7. In [5] Scott proves a bound for c based on the chromatic number of G. It follows immediately from this bound that for a graph of maximum degree three $f(G) \geq n / 3$.

In this paper, we prove the best possible bound for graphs of maximum degree three.
THEOREM. Every simple graph G of order n without isolated vertices and with maximum degree at most three has an induced subgraph H of order at least $2 n / 5$ in which all vertices are of odd degree in H.

Since an odd subgraph must have an even number of vertices, for general n we could write $f(g) \geq 2\lceil n / 5\rceil$. This bound is then sharp for any cycle of length up to nine. For a larger value of n we may get a graph achieving this bound by taking the disjoint union of such cycles. We do not have examples with connected graphs, and make the following strengthening of the original conjecture:
CONJECTURE. Every connected simple graph G of order n (irrespective of its maximum degree) has an induced subgraph H of order at least $2\lfloor n / 4\rfloor$ in which all vertices are of odd degree in H.

We will refer to an odd subgraph having at least two fifths of the vertices of a graph as a big odd subgraph. Let $\langle u, v\rangle$ denote the subgraph induced by the vertices u, v; let the claw at v denote the induced subgraph consisting of a vertex v of degree three and its neighbors of degree one. Otherwise, our notation follows [1].

To prove the theorem, suppose it is false, and let G be a counter-example with as few vertices as possible. Clearly G is connected. We will obtain a contradiction by showing that it must be 3 -regular. We do this in a sequence of three lemmas.
Lemma 1. G has no vertex of degree one.
Proof of Lemma 1. Suppose instead that G has a vertex p of degree one, and let x be its neighbor. Clearly, if x has degree one we are done.

If x has only one other neighbor, call it y, we consider $G^{\prime}=G-\{p, x, y\}$. But G^{\prime} can have at most two isolated vertices (the neighbors of y) so deleting them we get a graph $G^{\prime \prime}$ with $\left|G^{\prime \prime}\right| \geq|G|-5$ and no isolated vertices. By induction, $G^{\prime \prime}$ has a big odd subgraph H. Then H together with $\langle p, x\rangle$ gives a big subgraph of G.

If x has two additional neighbors y_{1} and y_{2} adjacent to each other, then let $G^{\prime}=G-\left\{p, x, y_{1}, y_{2}\right\}$. If G^{\prime} has at most one isolated vertex, then deleting it (if it exists) gives a graph $G^{\prime \prime}$ which by induction has a big odd subgraph. This subgraph together with $\langle p, x\rangle$ is a big odd subgraph of G and we are done.

Thus G^{\prime} has two isolated vertices, say z_{1} and z_{2} adjacent to y_{1} and y_{2} respectively. If both are isolated then $\left\{p, x, y_{1}, y_{2}, z_{1}, z_{2}\right\}$ is all of G, as G is connected, and this has all degrees odd, so we are done.

That leaves the case that x has additional neighbors y_{1} and y_{2} which are not adjacent. Let $G^{\prime}=G-\left\{p, x, y_{1}, y_{2}\right\}$. Suppose G^{\prime} has at most one isolated vertex. Delete the isolated vertex (if there is one) to get G" with no isolated vertices. So by induction, $G^{\prime \prime}$ has a big odd subgraph which together with $\langle p, x\rangle$ is a big odd subgraph of G. (Note that the vertices of $\langle p, x\rangle$ are not adjacent to any vertices of $G^{\prime \prime}$.) Therefore G^{\prime} must have at least two isolated vertices, or we are done. Since G is connected, each isolated vertex of G^{\prime} must be adjacent in G to at least one of y_{1} or y_{2}.

We must consider two cases here:
Case 1. y_{1} or y_{2} has two neighbors (in G) that are isolated in G^{\prime}. Say y_{1} is adjacent (in G) to z_{1} and z_{2}, isolated vertices of G^{\prime}.

Now $G-\left\{p, x, y_{1}, y_{2}, z_{1}, z_{2}\right\}$ has at most two isolated vertices. Delete these; then by induction the resulting graph has a big odd subgraph. This odd subgraph together with the claw at y_{1} gives a big odd subgraph of G.
Case 2. Each of y_{1} and y_{2} has one neighbor (in G) that is isolated in G^{\prime}, say z_{1} and z_{2}, respectively.

We may assume that $d\left(y_{i}\right)=3$ for $i=1,2$; otherwise we may use z_{i} in place of p, and have a vertex of degree one whose neighbor has degree two, a case we already dealt with. Let $G_{1}=G-\left\{p, x, z_{1}, z_{2}\right\}$. This has no isolated vertices so by induction it has a big odd subgraph H. We get a big odd subgraph of G in one of three ways:
i. If neither y_{1} nor y_{2} is in H, then take H together with $\langle p, x\rangle$.
ii. If both y_{1} and y_{2} are in H, then take the subgraph induced by the vertices of H together with the vertices $\left\{p, x, z_{1}, z_{2}\right\}$.
iii. If y_{1} but not y_{2} is in H, then take H together with $\left\langle x, z_{1}\right\rangle$.

This completes the proof of Lemma 1.
Lemma 2. G has no vertex of degree two whose neighbors are adjacent.
Proof of Lemma 2. Suppose to the contrary that G has a vertex p of degree two with adjacent neighbors x_{1} and x_{2}.

Then, since $\Delta(G) \leq 3$, for each $i \in\{1,2\}, x_{i}$ has at most one additional neighbor in G, call it y_{i} (if it exists).

Let $G_{1}=G-\left\{p, x_{i}, y_{i}:(i=1,2)\right\}$. If G_{1} has no isolated vertices, then by induction it has a big odd subgraph, which together with $\left\langle p, x_{1}\right\rangle$ is a big odd subgraph of G. Thus G_{1} has at least one isolated vertex. Each isolated vertex of G_{1} must be adjacent to both y_{1} and y_{2} (which must therefore be distinct) as by Lemma $1 G$ has no vertex of degree one. Let $G_{2}=G-\left\{p, x_{1}, x_{2}, y_{1}\right\} . G_{2}$ has no isolated vertex, so by induction, it has a big odd subgraph, which together with $\langle p, x\rangle$ is a big odd subgraph of G, completing the proof of Lemma 2.
Lemma 3. G has no vertex of degree two.
Proof of Lemma 3. Suppose to the contrary that G has a vertex p with nonadjacent neighbors x_{1} and x_{2}.

Since G has minimum degree two, let y_{1} and y_{2} (not necessarily distinct) be the other neighbors (in G) of x_{1}. Let $G^{\prime}=G-\left\{p, x_{i}, y_{i}:(i=1,2)\right\}$. If G^{\prime} has no isolated vertex, then by induction it has a big odd subgraph, which together with $\left\langle p, x_{1}\right\rangle$ is a big odd subgraph of G, a contradiction. Thus G^{\prime} must have at least one isolated vertex.

Note that G^{\prime} has at most three isolated vertices, as each must be adjacent, in G, to at least two of the vertices x_{2}, y_{1}, y_{2}. But each of these can have at most two edges to vertices other than p and x_{1}, thus allowing no more than three isolated vertices in G^{\prime}.

In fact we claim that G^{\prime} must have exactly one isolated vertex. If there are as
many as two, then by the pigeon-hole principle one of x_{2}, y_{1}, y_{2} must be adjacent to two of them. Say y_{1} is adjacent to z_{1} and z_{2}, where z_{1} and z_{2} are isolated vertices in G^{\prime}. (The proof proceeds similarly if y_{1} is replaced by y_{2} or x_{2}.)

So let $G_{2}=G^{\prime}-\left\{z_{1}, z_{2}, z_{3}\right\}$ where z_{3} is an isolated vertex in G^{\prime} (possibly the same as z_{1} or z_{2}). Then G_{2} has no isolated vertices, so by induction it has a big odd subgraph, which together with the claw at y_{1} is a big odd subgraph of G, a contradiction. At this point we have in G the vertex p, its neighbors x_{1} and x_{2}, and vertices y_{1} and y_{2} adjacent to x_{1}. We have shown that in $G-\left\{p, x_{i}, y_{i}:(i=1,2)\right\}$ there is exactly one isolated vertex, say z.

We now must consider three cases, depending on which of the vertices x_{2}, y_{1}, y_{2} are adjacent to z.
Case 1. z is adjacent to x_{2} and to exactly one of y_{1} or y_{2}, say without loss of generality to y_{2}.

Consider the case $d\left(x_{2}\right)=2$. Then $G-\left\{p, x_{2}, y_{2}, z\right\}$ has no isolated vertices so by induction it has a big odd subgraph which together with $\left\langle x_{2}, z\right\rangle$ is a big odd subgraph of G and we are done.

So we may assume $d\left(x_{2}\right)=3$. Let w be the third neighbor of x_{2} and let $G_{2}=$ $G-\left\{p, x_{2}, y_{2}, z, w\right\}$. If G_{2} has no isolated vertices, then it has a big odd subgraph which together with $\left\langle x_{2}, z\right\rangle$ is a big odd subgraph of G, a contradiction. So G_{2} must have at least one isolated vertex, which could arise in one of two ways: either $w=y_{1}$, isolating x_{1}; or there is a vertex w^{\prime} in G_{2} which is adjacent (in G) to w and y_{2}.

In the latter case, let $G_{3}=G-\left\{x_{2}, y_{2}, z, w, w^{\prime}\right\}$. Then G_{3} has no isolated vertex, so it has a big odd subgraph H_{3}. If $p \notin v\left(H_{3}\right)$, let $H=H_{3} \cup\left\langle x_{2}, z\right\rangle$. If instead $p \in v\left(H_{3}\right)$, then $\left\langle p, x_{1}\right\rangle$ is a component of H_{3}. So $y_{1} \notin v\left(H_{3}\right)$, as x_{1} can not have degree two in the odd subgraph H_{3}. Then let H be $H_{3}-p$ together with the claw at y_{2}. Either way, H is a big odd subgraph of G, a contradiction.

Now consider the case that $w=y_{1}$. We may assume that y_{1} and y_{2} are not adjacent and that at least one of them has degree three in G. Otherwise we are done immediately.

In fact, each has degree three in G. Say y_{1} has degree two; let y be the third neighbor of y_{2}. (The proof is the same if y_{2} has degree two.). Let $G_{4}=G-$ $\left\{p, x_{1}, x_{2}, y_{1}, y_{2}, y, z\right\}$. This has no isolated vertex, as G has no vertex of degree one. So it has a big odd subgraph, which together with the claw at x_{2} is a big subgraph of G and we are done.

Thus $d\left(y_{1}\right)=d\left(y_{2}\right)=3$ in G.
If there is a vertex w adjacent to both y_{1} and y_{2} then $G-\left\{p, x_{i}, y_{i}, z, w:(i=1,2)\right\}$ has no isolated vertex. So it has a big odd subgraph, which together with the claw at x_{2} gives a big odd subgraph of G.

Consequently, let w_{1} and w_{2} be the remaining neighbors in G of y_{1} and y_{2}, respectively. Now let $G_{5}=G-\left\{p, x_{i}, y_{i}, z, w_{i}:(i=1,2)\right\}$. Since G has no vertex of degree one, G_{5} has at most two isolated vertices which must be adjacent to both w_{1} and w_{2}. Deleting from G_{5} the isolated vertices (if they exist) thus yields a subgraph G_{5}^{\prime} of G of order at least $n-10$. By induction, this has a big odd subgraph which together with the claw at x_{2} gives a big odd subgraph of G, a contradiction.

Case 2. z is adjacent just to y_{1} and y_{2}.
Let $G_{6}=G-\left\{x_{1}, y_{1}, y_{2}, z, u_{1}\right\}$ where u_{1} is the remaining neighbor in G of y_{1}, if any. Then G_{6} must have an isolated vertex, or else by induction it has a big odd subgraph which together with $\left\langle y_{1}, z\right\rangle$ is a big odd subgraph of G, a contradiction. However, by the same argument used before, G_{6} has at most one isolated vertex, say u_{2}, which must be adjacent to y_{1} and y_{2}. Then $G_{6}-\left\{u_{2}, p\right\}$ has no isolated vertices, and therefore has a big odd subgraph, which together with the claw at y_{2} is a big odd subgraph of G, and we are done.
Case 3. z is adjacent to y_{1}, y_{2} and x_{2}.
Let $G_{7}=G-\left\{p, x_{i}, y_{i}, z, u_{i}:(i=1,2)\right\}$, where u_{1} and u_{2} are the (possible) remaining neighbors (in G) of y_{1} and y_{2}, respectively.

There can be at most two isolated vertices of G_{7}, as each must be adjacent, in G, to at least two of the vertices u_{1}, u_{2}, and x_{2}, which among them have at most five available edges. Deleting the isolated vertices (if any) from G_{7} yields a connected graph of order at least $n-10$. By induction this has a big odd subgraph which together with the claw at x_{1} is a big odd subgraph of G and we are done.

ACKNOWLEDGMENT

The authors thank the referee for several helpful suggestions.

REFERENCES

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, North-Holland, New York (1976).
[2] Y. Caro, On induced subgraphs with odd degrees, Discrete Math., 132 (1994), 23-28.
[3] L. Lovasz, Combinatorial Problems and Exercises, North-Holland, 1979.
[4] J. Radcliffe and A.D. Scott, Every tree contains a large induced subgraph with all degrees odd, Discrete Math., 140 (1994), 275-279.
[5] A.D. Scott, Large induced subgraphs with all degrees odd, Combin. Probab. Comput. (1992), 335-349.

