# On Hadamard 2-groups

### Noboru Ito

Department of Mathematics, Meijo University Nagoya, Tenpaku, 468 Japan

#### Abstract

For any given 2-group H there exists an Hadamard 2-group G containing a subgroup isomorphic to H.

§1. Introduction. Let G be a finite group of order 4n containing a central involution  $e^*$ , and T a transversal of G with respect to  $\langle e^* \rangle$ . If T and Tr, where r is any element of G outside  $\langle e^* \rangle$ , intersect in n elements, then T and G are called an Hadamard subset and an Hadamard group (with respect to  $\langle e^* \rangle$ ) respectively. A cyclic group of order 4 is an Hadamard group, and n is even for other Hadamard groups. See [3]. In this paper we are interested in Hadamard 2-groups.

§2. One-stepped 2-groups. Let G be a 2-group of order  $2^n$ . Then G is called one-stepped if there exist n involutions  $r_1, r_2, \ldots, r_n$  of G such that  $\langle r_1 \rangle \langle r_2 \rangle \ldots \langle r_i \rangle$  is a subgroup of order  $2^i$  for  $i = 1, 2, \ldots, n$ .

**Lemma 1.** A 2-group G is one-stepped if and only if G is generated by involutions.

**Proof.** It is obvious that if G is one-stepped, then G is generated by involutions. Now assume that G is generated by involutions and let H be a maximal onestepped subgroup of G. If G = H, then we are done. Otherwise, let M be a maximal subgroup of G containing H. If M is generated by involutions, then, by using induction on the order, we have that M = H. Since G is generated by involutions, there exists an involution r of G outside H. Since  $G = H\langle r \rangle$ , this contradicts the maximality of H. If M is not generated by involutions, then the subgroup of M generated by all the involutions of M equals H. Then clearly H is normal in G. Take an involution r of G outside H and consider the subgroup  $H\langle r \rangle$ which is one-stepped. This contradicts the maximality of H.

**Lemma 2.** A Sylow 2-subgroup S(n) of the symmetric group  $Sym(2^n)$  of degree  $2^n$  has order  $2^{2^n-1}$  and it is generated by involutions.

*Proof.* See [2], p.378.

Australasian Journal of Combinatorics 18(1998), pp.133-137

**Lemma 3.** A 2-group G of order  $2^n$  is isomorphic to a subgroup of S(n).

*Proof.* Consider a regular permutation representation of G and use Sylow's theorem. See [2], p.29 and p.34.

By Lemmas 1, 2 and 3 we see that any 2-group can be a subgroup of a one-stepped 2-group.

## §3. Construction of Hadamard 2-groups.

**Lemma 4.** Let a 2-group G of order 8n contain an Hadamard maximal subgroup H with respect to a central involution  $e^*$ . If G contains an element r outside H such that  $r^2 = e^*$ , then G is also Hadamard.

Proof. Clearly,  $e^*$  is central in G. Let E be an Hadamard subset of H and put  $D = Ee^* + Er$ . We show that D is an Hadamard subset of G. Let s be an element of H outside  $\langle e^* \rangle$ . Then  $rs = rsr^{-1}r$  and  $rsr^{-1}$  is an element of H outside  $\langle e^* \rangle$ . So we have that  $|Ee^* \cap Es| + |Ersr^{-1} \cap Er| = 2n$ . Now any element of G outside H is of the form tr, where t is an element of H. If t = e, where e denotes the identity element of G, then  $Dtr = Dr = Ee^* + Ee^*r$ . Since  $Ee^*r$  and Er are disjoint, we have that  $|D \cap Dr| = |Ee^*| = 2n$ . If  $t = e^*$ , then  $Dtr = De^*r = E + Er$ . Obviously we have that  $|D \cap De^*r| = |Ee^*| = 2n$ . If t is outside  $\langle e^* \rangle$ , then  $rtr = rtr^{-1}e^*$  and  $rtr^{-1}$  is an element of H outside  $\langle e^* \rangle$ . So we have that  $Dtr = Ertr^{-1}e^* + Ete^*r$  and that

 $|D \cap Dtr| = |Ee^* \cap Ertr^{-1}e^*| + |Er \cap Ete^*r| = n + n = 2n.$ 

See also [1] and [6].

**Lemma 5.** Let G be an Hadamard 2-group with respect to  $\langle e^* \rangle$  such that  $e^* = r^2$  for some element r of G and H a one-stepped 2-group. Then their direct product is Hadamard with respect to  $\langle e^* \rangle$ .

*Proof.* Let H be of order  $2^n$  and  $r_1, r_2, \ldots, r_n$  n involutions which define H. Then we have that  $(rr_i)^2 = e^*$  for each  $i = 1, 2, \ldots, n$ . So using Lemma 4 we may adjoin  $rr_1, rr_2, \ldots, rr_n$  successively to G.

Now by Lemmas 3 and 5 we have the following proposition.

Proposition 1. Every 2-group is a subgroup of an Hadamard 2-group.

§4. Remarks about Proposition 1. Let G be a 2-group of order  $2^n$ , and H a one-stepped 2-group of the least order containing G. Then the index [H:G] will be called the 1-index of G and be denoted by 1(G). Moreover let K be an Hadamard 2-group of the least order containing G. Then the index [K:G] will be called the h-index of G and be denoted by h(G). Now by Lemma 2 and 3 we have that  $1(G) \leq 2^{2^n-1-n}$  and since a cyclic group of order 4 is Hadamard, by Lemma 5 we have that  $h(G) \leq 2^{2^n+1-n}$ . These bounds for 1(G) and h(G) will be too crude. However, if G is Abelian, things are easy.

**Lemma 6.** If G is an Abelian but not elementary Abelian 2-group, then we have that  $\mathbf{1}(G) \leq 2$  and hence that  $h(G) \leq 2^3$ .

*Proof.* Since G is Abelian, there exists an automorphism  $\tau$  of G which inverts every element of G.  $\tau$  has order two. So consider the holomorph  $H = G\langle \tau \rangle$  of G by  $\tau$ . Since  $(r\tau)^2 = e$  for any element r of G, H is one-stepped.

Further, in the case of the h-index we realize that if a central involution is prescribed, the situation is much more complicated.

§5. Two infinite families of non-Hadamard 2-groups. It is known that there exist five non-isomorphic 2-groups of order  $2^{n+1}$  and exponent  $2^n$ , where  $n \ge 3$ . See [2], p.91:1) the Abelian group of type (n, 1), 2) the dihedral group, 3) the generalized quaternion group, 4) the group G presented by

$$G(n) = \langle r, s \mid r^{2^n} = s^2 = e, \ srs = r^{1+2^{n-1}} \rangle$$

and 5) the group G presented by

$$G(n) = \langle r, s \mid r^{2^n} = s^2 = e, \ srs = r^{-1+2^{n-1}} \rangle.$$

The Hadamard property of groups of types 1, 2 and 3 has been investigated in [3], [4] and [7].

**Proposition 2.** Groups of type 4 are not Hadamard.

*Proof.* Assume that a group G of type 4 is Hadamard and that D is an Hadamard subset of G. Let  $\alpha$  be a primitive  $2^n$ -th root of unity and put  $m = 2^{n-1}$ . Then we have that  $r^m = e^*$ . Further  $x^m + 1 = 0$  is the defining equation for  $\alpha$ . Now we consider an irreducible representation F of G of degree two defined by

$$F(r) = \begin{pmatrix} \alpha & 0\\ 0 & -\alpha \end{pmatrix}$$

 $F(s) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$ 

Then we have that

$$F(sr) = \begin{pmatrix} 0 & -\alpha \\ \alpha & 0 \end{pmatrix}$$

and we may put

$$F(D) = \begin{pmatrix} \sum c_i \alpha^i & \sum (-1)^i d_i \alpha^i \\ \sum d_i \alpha^i & \sum (-1)^i c_i \alpha^i \end{pmatrix},$$

where  $c_i = 1$  or -1 according as  $r^i$  or  $r^i e^*$  belongs to D,  $d_i = 1$  or -1 according as  $sr^i$  or  $sr^i e^*$  belongs to D, and in each summation i runs from 0 to m-1. Then we have that

$$F(D)^* = \begin{pmatrix} \sum c_i \alpha^{-i} & \sum d_i \alpha^{-i} \\ \sum (-1)^i d_i \alpha^{-i} & \sum (-1)^i c_i \alpha^{-i} \end{pmatrix},$$

 $\operatorname{and}$ 

where the matrix operation \* is the composition of complex-conjugation and transposition. Now it is known that  $F(D)^*F(D) = F(D)F(D)^* = 2mI$ , where I denotes the identity matrix of degree two. For this see [5]. Equating (1, 1)-entries of  $F(D)^*F(D)$  and  $F(D)F(D)^*$  we have that

$$(\sum c_i \alpha^{-i})(\sum c_i \alpha^i) + (\sum d_i \alpha^{-i})(\sum d_i \alpha^i)$$
$$= (\sum c_i \alpha^i)(\sum c_i \alpha^{-i}) + (\sum (-1)^i d_i \alpha^i)(\sum (-1)^i d_i \alpha^{-i}).$$

Thus we obtain that

(1) 
$$(\sum d_i \alpha^{-i})(\sum d_i \alpha^i) = (\sum (-1)^i d_i \alpha^i)(\sum (-1)^i d_i \alpha^{-i}).$$

We multiply out both sides of (1). Then, using the defining equation  $x^m + 1 = 0$ we reduce both sides to polynomials in  $\alpha$  of degree at most m - 1. Now equating the coefficients of  $\alpha$  on either side we obtain that

(2) 
$$d_0d_1 + d_1d_2 + \dots + d_{m-3}d_{m-2} + d_{m-2}d_{m-1} - d_{m-1}d_0 = 0.$$

(2) says that the vector  $d = (d_0, d_1, \ldots, d_{m-1})$  is orthogonal to its nega-cyclic shift  $(-d_{m-1}, d_0, \ldots, d_{m-2})$ . On the other hand, in order to estimate the inner product of a vector with its nega-cyclic shift, we may asume that  $d_0 = d_{m-1} = 1$ . Then we rewrite d as follows:  $d = (e_1, -e_2, e_3, -e_4, \ldots, e_u)$ , where each subvector  $e_i$  is an all-one vector  $(i = 1, 2, \ldots, u)$ . Here we notice that u is odd. Now we see that the inner product of d with its nega-cyclic shift is equal to m - 2u. Since u is odd and m is a multiple of 4, m - 2u is congruent to 2 mod 4. This contradicts (2).

### Proposition 3. Groups of type 5 are not Hadamard.

*Proof.* Assume that a group G of type 5 is Hadamard and that D is an Hadamard subset of G.  $\alpha$  and m are the same as in the proof of Proposition 2. Now we consider an irreducible representation F of G of degree two defined by

$$F(r) = \begin{pmatrix} \alpha & 0\\ 0 & -\alpha^{-1} \end{pmatrix}$$

and

$$F(s) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Then we have that

$$F(sr) = \begin{pmatrix} 0 & -\alpha^{-1} \\ \alpha & 0 \end{pmatrix}$$

and we may put

$$F(D) = \left( \begin{array}{cc} \sum c_i \alpha^i & \sum (-1)^i d_i \alpha^{-i} \\ \sum d_i \alpha^i & \sum (-1)^i c_i \alpha^{-i} \end{array} \right),$$

where  $c_i$ ,  $d_i$  and the summation are the same as in Proposition 2. Then we have that

$$F(D)^* = \begin{pmatrix} \sum c_i \alpha^{-i} & \sum d_i \alpha^{-i} \\ \sum (-1)^i d_i \alpha^i & \sum (-1)^i c_i \alpha^i \end{pmatrix}.$$

Now equating (1, 1)-entries of  $F(D)^*F(D)$  and  $F(D)F(D)^*$  we have that

$$(\sum c_i \alpha^{-i})(\sum c_i \alpha^i) + (\sum d_i \alpha^{-i})(\sum d_i \alpha^i)$$
$$= (\sum c_i \alpha^i)(\sum c_i \alpha^{-i}) + (\sum (-1)^i d_i \alpha^{-i})(\sum (-1)^i d_i \alpha^i).$$

Thus we obtain that

(3) 
$$(\sum d_i \alpha^{-i})(\sum d_i \alpha^i) = (\sum (-1)^i d_i \alpha^{-i})(\sum (-1)^i d_i \alpha^i).$$

Comparing (3) with (1) we see that we may proceed in the same way as in the proof of Proposition 2.

#### References

- 1. J.R. Cho, N. Ito, P.S. Kim and H.S. Sim, Hadamard 2-groups with arbitarily large derived length, Australas. J. Combin. 16 (1997), 83-86.
- 2. B. Huppert, Endliche Gruppen I, Springer-Verlag, 1967.
- 3. N. Ito, On Hadamard groups, Journal of Algebra 168 (1994), 981-987.
- 4. N. Ito, Some results on Hadamard groups, Proc. Groups-Korea '94, de Gruyter, 1995, pp. 149-155..
- N. Ito, Note on Hadamard groups and difference sets, Australas. J. Combin. 11 (1995), 135-138.
- 6. N. Ito, Remarks on Hadamard groups, Kyushu J. Math. 50 (1996), 83-91.
- 7. N. Ito, On Hadamard groups III, Kyushu J. Math. 51 (1997), 1-11.

(Received 26/8/97)

