
Algorithmic Aspects of Integral Designs

Abstract

Alan Hartman

Discrete Optimization Consulting Pty. Ltd.
1 Irene Place,

Prahran, VIC. 3181
Australia

IBM Israel Science and Technology
MATAM

Haifa, 31905
Israel

email: alan_hartman@vneUbm.com

June 1997

A t-design with parameters t - (v, k, A.) is a set X of cardinality v, together with a
collection of subsets of X of size k called blocks. The number of blocks containing any
particular t-subset of X is a constant A.. The simplest t-designs are regular multi-graphs
(t=1, k=2, v= number of vertices, A. = degree of regularity). Necessary conditions on the
four parameters for the existence of t-designs are simply obtained by counting the number

of blocks containing a particular i-subset of X for any 0 ::; i ::; t. In general these necessary
conditions are not sufficient for the existence of t-designs. However these simple counting
conditions are sufficient for the existence of so-called "integral designs" which are an
extension of the definition of t-designs, allowing blocks to have negative as well as
non-negative multiplicities. The sufficiency of the elementary necessary conditions for the
existence of integral designs was proved independently by Graver andJurkat, and Wilson
in the early 1970s.
The proof by Wilson is algorithmic in nature. We discuss implementations of his
construction algorithm which aim to both reduce the number of blocks with negative
multiplicities, and also reduce the absolute value of the most negative multiplicity - thus
hoping to produce integral designs which are "close" to designs.

The author wishes [0 thank Professor Lou Caccetta and the School of Mathematics and Statistics at Curtin University of
Technology for their hospitality and support during the preparation of this paper.

Australasian Journal of Combinatorics 18(1998), pp.173-182

introduction

We define a t-design with parameters t - (v, k, A) to be a set X of cardinality v, called the

set of points, together with a collection, B , of subsets of X of size k called blocks. The

number of blocks containing any particular t-subset of X is a constant A. We use the word

collection for B advisedly, since we wish to allow any block, b, to occur a positive

number, m(b), times in the design. The integer m(b) is called the multiplicity of b. We also

note that if A > 0, then we must have 0 :::; t :::; k :::; v' for the definition to make sense.

Let us denote the set of allk-subsets of X by (:} Our fonnal defini ti on of a t - (v, k, A)

design is then a vector of non -ne gati ve integers m ~ (m(b): b E (:) with the property

that I m(b) = A for all T E (X).
bT t

If we count the number, nJ , of blocks containing a particular subset of J of cardinality j

for anyO :::; i :::; t, then we observe that

n = A /
(

V - j) '(k - iJ
J t-j t-i

since the number of t-subsets containing J is (V - ~J ' each of which occurs A times, but
t-]

each block containing J is counted (: ~ :J times, Thus we have that a necessary

condition on the integers t, v, k, and A for the existence of a t - (v, k, A) design is that

(1)
(

V - iJ ((k - i)) A t _ j == 0 mod t _ i for all 0:::; i :::; t.

Graver and lurkat [1] and Wilson [2] proved that there exists a constant N(t, v,k) such

that for all A larger than N (t, v, k) the necessary conditions (1) are sufficient for the

174

existence of a t - (v, k, A) design. In doing so they proved a more general theorem on the

existence of so-called integral designs. LetX be a set of cardinality v. An integral design

(XJ
with positive integer parameters t, v, k, and target integer vector A = (ACT): T E It). is

an integer vector m = (m(b): bE (:J) with the property that I m(b) = ACT) for all
b:::;T

Clearly a design is just an integral design with a constant positive target vector, and where

each of the block multiplicities, m(b) , is non-negative.

Repeating the argument used above, we see that necessary conditions on the parameters

and target vector for the existence of an integral design are that:

(k - iJ (XJ (2) I A(T) == O(mod _.) for all subsets J E . ,and for all 0:::; j :::; t,
T:::;J t } }

since the left hand side over-counts the sum of the multiplicities of the blocks containing J

by a factor of (k -!J .
t-)

It will also be convenient for us to consider an integral design as an integer solution to a

matrix equation. Let us define A (t.k, v) to be the 0-1 matrix with (: J rows indexed by the

I-subsets of X, and (; J columns indexed by the k-subsets of X. The entry in the (T,K)-th

position will be 1 if T s;; K, and 0 otherwise. Now the definition of an integral design is

just an integer vector m, which is a solution to the matrix equation

(3) A(t,k,v)m = A.

Graver and lurkat's, and Wilson's result is then simply stated as: Equation (3) has an

integer solution if and only if the necessary conditions (2) hold. Their proof of this

175

theorem is by induction on v and t. Like all induction proofs, one can convert this proof

into a recursive function which constructs integral designs. This paper describes an

implementation of this recursive function, and the results obtained by exploiting the

freedom inherent in the implementation details of this algorithm.

The Induction Proof

The proof begins by noting that if v::; k + t , then the rows of A(t,k, v) are linearly

independent, and when v = k + t , then the matrix is invertible. We omit the details of the

proof that the solution to equation (3) is integral, but we note that it is a relatively simple

exercise to invert the matrix A and compute the resulting design m, in the case when

v = k + t . We also note that the solution is unique.

When t = ° then the target vector is just an integer A, and the matrix A(O,k, v) is all

ones, so a solution to equation (3) in this case is just any integer vector of length G J

whose sum is A. In this case there are many possible solutions.

In the case where v > k + t , and t > ° , we proceed by induction. Choose a point x EX,

and define a new target vector (called the derived target) AiT {xl) = (A(T)) on only

(
V -lJ those t-subsets of X which contain x. The new target vector is of length t _ 1 . It is not

difficult to check that A d satisfies the necessary conditions with parameters t - 1, k - 1 ,

and v - I . By induction we can solve equation (3) to obtain a derived design ITld of length

176

(~ = :) . We now extend m. to a vector M.. of length (~) by setting

Md(b) = md(b-{x}) for each block b such that XEb, and setting Md(b)=O otherwise.

The next step is to form a second new target vector (called the residual target) Ar defined by

Ar = A - A(t,k, v)M d • By construction, the residual target vector will be ° on all t-subsets

which contain x. Let us now shorten the residual target by deleting those zeroes

corresponding to f-subsets containing x. This shortened residual target now can be shown

to satisfy the necessary conditions with parameters t, k, and vI. Again, by induction,

there exists a design vector m, of length (V ~ I) which can be extended to a vector M, of

length (;) by setting M,(b) = m, (b) for each block b such that x" b , and setting

M r (b) = 0 otherwise.

We now have constructed a solution m = ~ + Mr to the original equation, since

A(t, k, v)m = AU, k, v)M d + AU, k, v)Mr = A - Ar + Ar = A

The Algorithm

We now give an algorithmic version of this induction proof using a recursive function

Design(t,k,v,A) which receives the integers t;::: 0, k;::: t, and v;::: k + t, and an integer

vector A., of length (;), satisfying the necessary conditions (2). The output of the

177

fun eti on is an integer vector m of length [~) w hi chis a solution to equation (3). To

remove ambiguities we will consider X to be the set [0,1, ... , v-I}, and assume that the

subsets which index the vectors and matrices are ordered lexicographically.

The pseudo code for this function is:

if t = ° then return(Integer_ Vector_OCSumO", v, k, .•.)) else

if v = k + t then return(A(t, k, v riA) else

begin
x = Choosepoint(v, ...)
Ad=ConstrucCDerived_ Vector(x, t, v, A)
Md= Extendl(x, Design(t-l, k-l, v-I, Ad»
Ar = Contract(x, A - A(t, k, v)Md)
Mr = Extend2(x, Design(t, k, v-I, Ar))
return(~ + Mr)

end

The functions Construct_Derived_ Vector, Extendl, Contract, and Extend2, are fully

described in the previous section and have obvious implementations. The functions

Integer_ Vector_OCSum, and Choosepoint are capable of many implementations.

The main focus of this research was on different implementations of these two functions,

with the aim of minimizing both the number of negative multiplicities in the design, and

the absolute value of the most negative multiplicity.

The function Choosepoint outputs a point in the set X of cardinality v, so a minimal input

requirement is the integer v. We experimented with five implementations of

178

Choosepoint:

ChoosepointO(v) which always returns the first member of the set,

ChoosepointV(v) which always returns the last member of the set,

ChoosepointR(v) which returns a random member of the set,

ChoosepointMin(v,A) which returns the first point x which minimizes IXET ACT),

ChoosepointMax(v,A) which returns the first point x that maximizes IXET ACT) .

We also experimented with five implementations of Integer_ Vector_OCSum (below

shortened to IVOS). This function outputs an integer vector of length (:) whose sum is

the integer A. The first three implementations are straightforward:

IVOS_AICTogether(A, v,k) outputs the vector [A,O,O, ... ,O].

IVOS_Lex_Order(A,v,k) outputs the vector with Is or -Is (depending on the sign of A)

in the first IAI positions, and 0 elsewhere.

IVOS_Random(A,v,k) starts with the zero vector, chooses IAI positions in the vector at

random, and increments each one by 1 or -1, depending on the sign ofA.

The initial runs with just these implementations yielded the depressing results that the best

pair of implementations involved choosing the A-minimal point to delete

(ChoosepointMin), then choosing blocks at random (IVOS_Random). This is

depressing since the choice of the A-minimal point is the choice which does the least

damage, and one would hope that human ingenuity was superior to simply choosing

blocks at random. To overcome our angst, we determined to find implementations of

Integer_ Vector_OCSum which utilised the information lost in the recursive

179

implementation of the Design function.

We introduced a new vector parameter to the design function entitled BS (for block

score). The vector BS is of length G)and is initialized by BS(b) ~ LTCh A(T) . When

making the call to Design to construct the derived design, we form the derived block

score vector by shortening it, just as the target vector is shortened. The residual block

score vector is constructed so as to discourage the use of blocks which have a large

intersection (of size k - I) with blocks in the derived design. This is achieved by setting

BSr(b) = BS(b) - LXEh md(b - {x})

This is a crude method of scoring the blocks, but the improvement in the results achieved

was significant. The function IVOS_FirsCHigh_Score outputs a vector with IAI Is or -Is

in the first positions with the highest block score, and the function

IVOS_Random_High_Score chooses a set of IAI positions of highest score at random to

increment by 1 or -1 depending on the sign of A.

Computational Results

The program was run with all twenty-five combinations of the five Choosepoint and

Integer_ Vector_OCSum implementations. Those implementations with a random

component were run three times each and the best result was recorded. The results of a

run were summarized in two integers, the absolute value of the most negative block

multiplicity in the solution, and the number of blocks with a negative multiplicity. Thus a

score of (0,0) is best possible. We summarize the results obtained for thirteen sets of

design parameters in the following table.

180

Hv,k,A) (most negative block multiplicity, number of negative blocks)

2-(6,3,2) 15 Algorithm combinations scored (0,0)

2-(7,3,1) 14 Algorithm combinations scored (0,0)

2-(7.3,2) 11 Algorithm combinations scored (0,0)

2-(9,3, I) 5 Algorithm combinations scored (0,0)

2-(13.3,1) 3 Algorithm combinations scored (0,0): CR-IFH, CV-IRH, and CLm-IRH

2-00,4.2) 2 Algorithm combinations scored (1,7): CV-IRH, and CLm-IRH

2 Algorithm combinations scored (2,6): CLm-IFH, and CR-IRH

2-(15,3,1) 4 Algorithm combinations scored (0,0): CO-IFH, CV-IFH, CLM-IFH, and CLm-IRH

2-(1 0,3,2) 5 Algorithm combinations scored (0,0)

2-(12.4.3) CLM-IRH scored (1,15), CR-IRH scored (2,12), and CLm-IRH scored (3,8)

2-(13,4, 1) CLm-IRH scored (0,0)

3-(8.4,1) 13 Algorithm combinations scored (0,0)

3-(I 0,4, I) 3 Algorithm combinations scored (0,0): CR-IRH, CO-IRH, and CR-IFH

3-(14.4,1) CLm-IRH scored (1,25)

The codes used to describe the algorithms are as follows:

Code Algorithm Code Algorithm

CO ChoosepointO IL IV OS _Lex_Order

CV Choose point V IA IVOS_Ale Together

CR ChoosepointR IR IVOS_Random

CLm ChoosepointMin IFH IVOS_First_High_Score

CLM ChoosepointMax IRH IVOS_Random_High_Score

181

Conclusions and Future Directions

It is apparent that the best combination of algorithms is currently ChoosepointMin and

IVOS_Random_High_Score. This is an improvement on the situation before a block

score vector was introduced to the Design routine. There is definitely room to improve the

scoring of the blocks, refining the computation of scores to a point where the best

performing algorithms will be ChoosepointMax and either of the High_Score

algorithms. There is probably also a case for experimenting with mixed strategies using

one algorithm in some circumstances, and another at a later stage in the building of the

design.

The application of this technique for the construction of t-designs is still in its infancy, but

I believe that it has great potential for constructing small designs of the m~ny types

needed for the recursive construc.tions used in design theory. It is readily applicable to the

construction of trades, group divisible designs, holey designs, and any other design whose

definition can be expressed in terms of a target vector of t-subsets

References

[1] Graver lE. and Jurkat W.B., The module structure of integral designs, Journal of

Combinatorial Theory 15A(l973), 75-90.

[2] Wilson R.M., The necessary conditions for t-designs are sufficient for something,

Utilitas Mathematica 4(1973),207-215.

(Received 1/9/97)

182

