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Abstract 

Requiring the reader's participation, this article provides a cautionary 
tale on the use of combinatoric counting procedures for solving problems 
in probability. While their value is incontrovertible, it is crucial to pay 
attention to what is being counted. In standard cases, too much is typi
cally presumed, and this limits unduly the size of the coherent solution. 
The operational subjective theory of probability requires that the entire 
range of solutions to a problem cohering with the assertions it specifies 
be admitted as "the solution." This article is presented as a tribute to 
the late Derrick Breach, who had proposed the problem it assesses for 
discussion in our Department Newsletter. 

The Problem. A bag contains 16 billiard balls, some white and the remainder 
red. Two balls are drawn at the same time. It is equally likely that the two balls 
will be of the same colour as it is that they are of different colours. How many of 
each colour are there? 

Before continuing with this article, the reader is requested to solve this problem, 
precisely as it is posed, for yourself. The content of this article concerns three 
solutions to the problem: a meritorious high school level solution, with a concluding 
deliberation posed by a thoughtful student at this level; a second-year university level 
solution by an honours student of physics; and a second-year honours solution by a 
student of probability as it is conceived within the operational subjective tradition 
developed by Bruno de Finetti (1937) and his followers. 

My motivation in this presentation of university level concepts is to encourage 
serious thinking into the mathematical formulation of probability as it has been 
produced by constructive subjectivism. In many applied problems of science and 
commerce, practitioners are unable to assess completely the vast array of probabilities 
required to specify precisely a joint distribution over all the unknown quantities it 
concerns. Rather than completing the distribution uniquely by an arbitrary extension 
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of "assumptions," the subjectivist approach allows a computation of the bounds 
on any probability assertions that would cohere with the limited array that has 
been specified. Thus, a second motivation for this article is my desire to extend 
the audience of mathematicians who are familiar with the "fundamental theorem of 
prevision," which formalises this computational procedure and its logic. I shall close 
this introduction with a relevant quotation from de Finetti (1974, Section 6.3.3): 

Whether one solution is more useful than another depends on further 
analysis, which should be done case by case, motivated by issues of sub
stance, and not - as I confess to having the impression by a preconceived 
preference for that which yields a unique and elegant answer even when 
the exact answer should instead be 'any value lying between specifiable 
limits.' 

Have you completed your solution? Let's address the Problem as it has been posed. 

The High School Level Solution. When two balls are selected from 
a bag containing 16 balls, the observable quantity W2 , defined as the number of 
white balls among two balls withdrawn, is distributed Hypergeometric, specifically 
with the parameters N = 2 draws, W white balls in the bag, and R = (16 - W) 
red balls in the bag. We can write that W2 f'.I H(N = 2, W, R = 16 - W). Us
ing the notation xCy to denote the combinatorial expression X!/[Y!(X - Y)!], 
it is clear that the probability that only one of the selected balls is white equals 
P(W2 = 1) = w 0 1 (16-W)C1 / 16C2, whereas the probability that both selected balls 
are the same colour equals P(W2 = 0 or W2 = 2) = [ W C2 + (16-W)C2] / 16C2. 
Equating these two probabilities as the Problem prescribes yields a quadratic equa
tion in W of the form W(16- W) = (1/2) [W(W -1) + (16-W)(15- W)], which has 
the solutions W = 6 and W = 10. A precocious high school student might conclude 
this answer with the comment, "Thus, P(W = 6) = P(W = 10) = 1/2 is the correct 
solution." Upon further consideration, the student may reflect that "In fact, any 
probability distribution of the form P(W = 6) ::::= q and P(W 10) = 1 q satisfies 
the conditions of the problem. Thus, the solution to the problem is the interval of 
points on the closed line segment (P(W = 6), P(W = 10)) E { (q,l - q) I q E [0,1] }, 
a rather BIG solution!" 

The BIG Mistake. While any teacher would be thrilled to read such a 
solution from a high school student, further reflection would allow that it actually 
partakes in the BIG mistake that has plagued probabilistic and statistical thinking 
throughout this century. Did you make the mistake yourself? The source of the 
mistake is that the specification of the problem does not identify the distribution 
of W2 as Hypergeometric, but rather the conditional distribution of W21W = w 
as Hypergeometric. After all, W is unknown. Its unknown value is, in fact, the 
question that the Problem poses for us! Recognising that the assertive statement 
W2 1W = W rv H(N = 2, w, R = 16 - w) is a specification of 17 different conditional 
distributions for W2 given W = 0,1, ... , 16, we need to rely on the Theorem of 
Total Probability to represent assertions regarding the unconditional probabilities 
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P(W2 = 1) and P(W2 = 0 or W2 = 2). That theorem, remember, tells us that if 
HI, H2 , ... , HN are events constituting a partition, then for any event D, 

N 

P(D) = LP(DIHi)P(HJ 
i=1 

Let us follow the thinking of a university student to see where these considerations 
lead us. 

The University Level Honours Physics Solution. Since any num
ber of white balls from 0 through 16 is a possible state of the bag, the solution will 
not be merely a number, but a probability distribution over these possibilities. Sup
pose we write f(w) == P(W = w) for w = 0,1, ... , 16 to represent an unconditional 
probability mass function for W; the equality specified in the Problem can then be 
represented as 

16 16 

L [WC2 + (16-w)C2] f(w) L [WC1 (16-W)Cd f(w), 
w=o w=o 

which is derived by applying the Theorem of Total Probability to the specified con
ditional distributions for W2 1W = wand the unspecified unconditional distribution 
for W identified by f(-). The denominator 16C2 has been eliminated from both sides 
of this expression. Algebraically, this summation equality can be reduced to the 
condition that 

16 16 

L w2 f(w) 16 Lwf(w) + 60 = 0, 
W=o W=o 

which is a linear condition on the first two moments of the unspecified distribution 
for W: M 2 (W) 16 M 1 (W) + 60 = O. Thus, the physics student concludes 
this solution with the statement: "Any probability distribution representable by a 
mass function vector [P(W = 0), P(W = 1), ... , P(W 16)] lying within the 16-
dimensional unit-simplex, 8 16

, for which this moment condition holds is a solution 
to the Problem." 

Our creditable physics student's solution is clearly much BIGGER than the high 
school solution. This solution is a 15-dimensional convex subset of the 16-dimensional 
unit-simplex, a BIG solution indeed. This student would surely make the teacher 
proud and even happy to enjoy a last minute intriguing waffle scribbled into the 
margin of the solution paper, saying "Maybe P(W = 0) and P(W = 16) must equal 
O. I don't know." 

The University Level Honours Mathematical Probability So
lution. Reading the Problem as posed, carefully, the student realises that no 
statement has been made regarding how the two balls defining the quantity W 2 

have been drawn from the bag, other than that they "are drawn at the same time." 
The only probabilistic assertion formally specified in the Problem statement is that 
P(W2 = 1) P(W2 = 0 or W2 = 2). There are many procedures of "drawing two 
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balls at the same time" that would allow this as a reasonable assertion. The physics 
student's assertion of the conditional hypergeometric distributions would be merited 
automatically as input to the problem only if it were specified further that the balls 
in the bag are scrambled in such a way that equal probabilities are also asserted for 
each of the 16C2 events defined by the draw of two specific balls from the bag. 

The following scenario can provide for you one simple alternative which would 
also merit the assertion of the only probability that has been formally admitted in 
the Problem statement. Into a bag of 14 balls, some white and the remainder red, the 
person drawing the two balls at the same time might insert a hand containing a white 
and a red ball, and then exchange (unseen, inside the bag) one of these with one of 
the balls already in the bag, and draw out the two balls so determined. Nothing in 
the Problem statement precludes this as the procedure by which the two balls were 
drawn at the same time. You might imagine other possibilities now as well. The 
"solution" to the problem for which we shall search is the largest possible array of 
solutions that would cohere with the assertions formally specified in the Problem as 
it has been posed. Any further restriction on the solution must be regarded as an 
arbitrary imposition onto the problem that is not required by its formal statement. 

The following solution relies on the constructive logic of subjective probability 
in the tradition begun by Bruno de Finetti, which is described in the sophisticated 
undergraduate and graduate level text of Lad (1996), undoubtedly new to many a 
reader. I invite your examination of that text and solicit your thoughts about it. 
The presentation of the solution here is couched in the language of "the fundamen
tal theorem of prevision" which can be studied specifically in the text, but whose 
operation hopefully will be understandable in its direct application to our Problem 
in the remainder of this article. 

As a prelude to your understanding the direction we follow, let me describe some
what informally, de Finetti's theory of coherent prevision and its fundamental theo
rem, in the context of quantities whose measurement value possibilities are discrete 
and finite. To begin, a prevision assertion is a numerically specified expectation for 
a quantity. Since probabilities are merely expectations of events (quantities that 
must equal either 0 or 1), the coherent (non-contradictory) operation of the previ
sion symbol, P, unifies the theory of expectation and probability. The fundamental 
theorem states that if you assert your previsions (expectations) for any N quanti
ties whatsoever, then a cohering prevision for any further quantity must lie within 
a specified interval whose endpoints are calculable by a linear programming routine. 
For a coherent prevision vector must lie within the convex hull of the vectors of 
possible values for the unknown quantities in question. Asserted previsions for some 
of the quantities place linear reductions on the subset of cohering assertions within 
this hull. Without further discussion, let us turn to an application of this theorem 
to our Problem. 

Three observable but unknown quantities are involved in the statement of the 
Problem: W, R = 16 - W, and W2 . The realm matrix of possibilities for this vector 
of quantities along with a fourth quantity which I shall denote for the moment by the 
symbol D, and which I shall define shortly, is a 4 x 45 matrix, R(W, R, W2 , D)T = 
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( 
1~ 
-1 

1 1 
15 15 
o 1 

-1 1 

2 2 2 3 
14 14 14 13 
o 1 2 0 

-1 1 -1 -1 

3 
13 
1 
1 

3 14 14 14 
13 .. , 2 2 2 
2 0 1 2 

-1 ... -1 1 -1 

15 15 
1 1 
1 2 
1 -1 

The columns of this matrix exhaustively list the possible values of the unknown 
quantity vector, (W, R, W2 , D)T. Ignoring the role of the quantity D for the moment, 
it is important to recognise that the actual quantity vector (W, R, W2 , D)T, unknown 
though it may be, is representable algebraically. in the form 

where QO is a 45 x 1 vector of events constituting the partition generated by the 
vector of unknown quantities, (W, R, W2)T. Its ith component is the event of the 
form Qi == ((W, R, W2 , D)T = column i of the realm matrix R). 

Whereas the matrix R in this representation is a known matrix of numbers, 
defined by the operational definitions of the measurements described in the Problem, 
the vector Q is an unknown vector of events. Since it constitutes a partition, however, 
the sum of its components must equal 1. We know that one of its components must 
equal 1, and the remainder must equal 0, but we do not know which component is the 
1, since we avowedly do not know the values of W, R, and W2 . Thus, any coherent 
uncertainty regarding these three quantities must specify a prevision (expectation) 
vector that lies within a linear transformation of the 44-dimensional unit-simplex, 
for coherent prevision assertions must be linear: P(W, R, W2)T = R P(Q). Since 
your prevision for the sum of the components of Q must equal the sum of your 
previsions (probabilities in this case) for its components, the vector P(Q) must lie 
within 8 44 • Without specifying a particular vector of such probabilities, we would 
say that your uncertainty about the possibilities for (W, R, W2 ) is represented by this 
entire simplex. 

Now although a complete probability distribution has not been asserted in our 
Problem, one specific probability assertion has been admitted: P(W2 = 1) = P(W2 = 
o or W2 = 2). In the arithmetic notation used here, the linearity of coherent prevision 
again requires that this condition is equivalent to the assertion P[(W2 = 1) - (W2 = 
0) - (W2 = 2)] = O. You should notice that whereas each of the events denoted 
by parenthetical expressions within this bracketed argument, are just that, events 
(numbers equal to either 0 or 1) the entire bracketed expression is not an event. 
For its possible numerical values are -1 and 1.. Nonetheless, in the mathematics of 
coherent prevision assertion such quantities are not treated in any way differently 
than are' events. Prevision for a linear combination of quantities must as always 
equal the same linear combination of previsions for the quantities in question. 

At any rate, the numerical value of the bracketed expression, [(W2 = 1) - (W2 = 
0) - (W2 = 2)], is defined by a function of the numerical value of W2• Thus, the value 
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of this quantity has been denoted by D in our notation to this point. Moreover, it 
has been appended to the vector of quantities considered, yielding (W, R, W2 , Df; 
and its possible values have been appropriately represented as another row in the 
realm matrix R we have described. We shall denote this row vector by r(D) in the 
solution statement below. 

Now what are the cohering prevision (probability) assertions P(W 17) == P[(W = 
0), (W = 1), (W = 2), ... , (W = 16)] that could possibly support this one single as
sertion that has been admitted in the Problem? The answer is straightforward, and 
relies only on the linearity of coherent prevision which is fundamental to the opera
tional subjective characterisation of coherent probability. "The coherent solution to 
this problem is 

P(W17 ) E {R(W 17 )q45 I q45 E 8 44
, and r(D) q45 = O}, 

where R(W 17) is the matrix whose each row is determined by applying the event 
functions (W = i) for i = 0,1, ... , 16 to the columns of the displayed realm matrix 
R, and 8 44 denotes the 44-dimensional unit-simplex." (Furthermore, the coherent 
bounds on the probability of any specific event that is defined by a linear combination 
of the partition of events, Q45, say E == C

T Q45, are specified by the linear program
ming solutions that minimise and maximise CT Q45 subject to the linear restrictions 
that q45 E 8 44

, and r(D) q45 = 0.) 
This solution is actually a 16-dimensional convex and proper subset of 8 16 which 

properly contains the 15-dimensional subspace that was the physics student's solu
tion. Thus, this solution is the BIGGEST of the three we have considered. The only 
mass function vectors in 8 16 that would not be allowed would be those that give too 
much probability to the events (W = 0) and (W = 16). 

Thinking about this solution, this student too scribbles a last minute waffle into 
the margin. "Perhaps the statement in the Problem posed that 'some of them are 
white' is meant to preclude the possiblity that W = 0, I don't know, since zero white 
balls might not be considered to constitute 'some'. But W = 16 must surely be 
allowed since the number 0 is valid as a 'remainder'." 

This quibble covers fine points of language usage, which could only be resolved by 
clarification. Notice that it would be another matter entirely to assert additionally 
in the Problem that P(W2 = llW = w) = P[(W2 = 0) + (W2 = 2)IW = w] for 
conditioning values of w = 1,2, ... , 15. (This assertion would be incoherent for w = 0 
or w = 16, since P(W2 = llW = 0) = P(W2 = llW = 16) = 0, whereas P(W2 = 
0IW = 0) = P(W2 = 21W = 16) = 1.) Without showing all the algebraic detail here, 
these assertions would put 15 more independent linear restrictions on q45. Their 
implications would be that q2 = q3, q43 = q44, q4 + q6 = q5, q7 + qg = q8, qlQ + q12 = qll, 
... , and q40 + q42 = q41· Interestingly, the resulting polytope of cohering vectors for 
P(W17 ) would be unaffected by this restriction. 

However, in the context of the physicist's solution (which adds 28 more lin
ear restrictions to the problem based on unmotivated conditionally hypergeometric 
specifications) these 15 assertions would be sufficient to reduce all the components 
of q45 to 0 except for q15 + q17 = q16 and q27 + q29 = q28. These are the components 
corresponding to the events (W = 6) and (W = 10), whose probabilities then need 
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only sum to 1. Thus, these are the assertions, unrequired by the problem as stated, 
that would reduce the physics student's solution to the high school solution. 

Concluding Comments. The setup of the problem we have discussed is 
admittedly contrived, but the issues arising in its resolution are central to contempo
rary developments in computational mathematics applied to problems of uncertainty. 
In many instances when someone is faced with making a decision, the myriad details 
of the unknowns are so complex that a complete distribution over the entire space 
of possibilities is virtually impossible to assess. Two different strategies can lead one 
out of this impasse. The one, followed routinely in the past, involves doing your best 
to conjur up a joint distribution that approximates your personal joint probabilities 
as well as you can imagine them. If the approximating distribution is tractable for 
computing the required expected utilities in the problem, an appropriate decision can 
be made. An alternative strategy with increasingly viable applicability has emerged 
from recent developments in speedy and large computers. Its logic is grounded in the 
operational subjective theory of probability, as encoded in the fundamental theorem 
of prevision, and has been exemplified in the BIGGEST solution to the Problem 
posed in the present exposition. 

This second approach allows a practitioner to specify your assertions in whatever 
form is most accessible to your intuitions, as minimally or extensively as you are able. 
You may then compute the tightest bounds on a further assertion regarding any other 
quantity that is logically consistent with (coheres with) your assertions. Rather than 
force the reporting of a "unique solution" that is achieved by introducing unmotivated 
arbitrary assumptions into a problem, the spirit of this minimalist mathematics is 
to express the entire range of coherent options that are available to you when you 
express your uncertainties in the limited realistic fashion that you typically do. 

The freedom allowed by this solution is what underlies the abstract and some
times abstruse arguments in the mathematical foundations of probability concerning 
the requirement merely of finite additivity, as opposed to complete additivity, as the 
requisite property of coherent probability functions in their axiomatic construction. 
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