Induced Stars in Trees

David M. Berman, Jiannong Liu, Hong Wang and Larry Wargo
Department of Mathematics University of New Orleans
New Orleans, Louisiana, USA 70148

Abstract

We show that for $n \geq 2$, every n-vertex tree has a star forest of order exceeding $n / 2$.

There are many theorems in graph theory in which a graph is required to have a particular subgraph. A stronger requirement, however, is that it be an induced subgraph: i.e. a subgraph in which two vertices must be adjacent if they are adjacent in the big graph.

A common problem of Ramsey theory, for instance, is to show that for a particular graph H, any graph G having enough vertices must have as a subgraph a copy of H or its complement H^{c}. Typically, the copy of H (or H^{c}) will contain extraneous edges, and thus will not be an induced subgraph of G.

It is trivial to partition the vertices of a tree into stars. (A star, $K_{1, n}$ is graph with a vertex of degree $n \geq 1$ and all its neighbors of degree one.) But this might not give an induced subgraph in which each component is a star.

For instance consider the double-star $S_{m, n}$, the graph with a vertex of degree m adjacent to a vertex of degree n, and all its other vertices of degree one. The vertices of $S_{3,3}$ can be partitioned into two disjoint copies of the star $K_{1,2}$. But this is not an induced subgraph. The largest induced subgraph consisting of disjoint stars is the single star $K_{1,3}$.

We define a star-forest in a graph to be an induced subgraph in which each component is a star. In this note we show that within any tree we can find a large star-forest. Extending this result to graphs other than trees seems surprisingly resistant to easy solution.

THEOREM. Every n-vertex tree has a star-forest of order strictly greater than $n / 2$ (for $n \geq 2$).

The double-stars $S_{n, n}$ and $S_{n+1, n}$ show this bound is best possible.
We will refer to a vertex of degree one as an end-vertex, and any other vertex as an interior vertex.

To prove the theorem, let T be a counter-example with as few vertices as possible, say n vertices. First we claim that every interior vertex of T must have at least one neighbor that is an end-vertex.

If not, let v be an interior vertex none of whose neighbors are end-vertices. Then each component of $T-v$ has at least two vertices, so by the minimality of T the theorem is true for each component. Say component T_{i} has n_{i} vertices ($i=1$ to p), and thus has a star forest with s_{i} vertices where $s_{i}>n_{i} / 2$. Note that $\sum_{i=1}^{p} n_{i}=n-1$, and since s_{i} is an integer we have $s_{i} \geq\left(n_{i}+1\right) / 2$.

The union of the star-forests for the components gives a star-forest in T, as vertices in different components cannot be adjacent in T. But the number of vertices in the union is at least $\sum_{i=1}^{p} s_{i} \geq \sum_{i=1}^{p}\left(n_{i}+1\right) / 2 \geq\left(\sum_{i=1}^{p} n_{i}\right) / 2+1=(n-1) / 2+1>$ $n / 2$. Thus the theorem is true for T, proving the claim that each interior vertex has at least one neighbor that is an end-vertex.

Now, we can partition the vertices of T into disjoint stars by taking each interior vertex v to be the center of a star whose other vertices are the end-vertices adjacent to it.

To get a star-forest, consider a two-coloring of the vertices of T. Let T_{i} be the forest induced by the stars whose centers are colored i (for $i=1$ or 2). Since T_{1} and T_{2} partition the vertices of T, one of them has at least $n / 2$ vertices.

If each has exactly $n / 2$ vertices, let v be an interior vertex whose neighbors include exactly one interior vertex. (I.e. v is an end-vertex in the subgraph of T obtained by deleting all its end-vertices.) Choose the forest T_{i} that does not include v, and thus does include the star centered at v^{\prime}, the one interior vertex adjacent to v. Then $T_{i}+v$ is a star-forest with v added to the star centered at v^{\prime} and thus having more than $n / 2$ vertices, as desired.

How does this problem generalize to graphs in general? Is there a positive constant c such that every n-vertex graph G (without isolated vertices) must have a star-forest with at least $c n$ vertices?

If so there would be constant c^{\prime} such that G has an induced subgraph H with at least $c^{\prime} n$ vertices in which each vertex has odd degree. (This would be achicved by deleting one end vertex from each of the even stars.)

But this is an old conjecture [2] which has received some attention recently with quite limited success. It has been proved for trees [3] and for graphs of maximum degree three [1]; for general graphs it is known only that the constant, if it exists, is no greater than $2 / 7$.

REFERENCES

[1] D.M. Berman, H. Wang, and L. Wargo, Odd induced subgraphs in graphs of maximum degree three, Submitted.
[2] Y. Caro, On induced subgraphs with odd degrees, Discrete Math., 132 (1994), 23-28.
[3] J. Radcliffe and A. Scott, Every tree contains a large induced subgraph with all degrees odd, Discrete Math., 140 (1994), 275-279.

