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Abstract 

An in-tournament is an oriented graph such that the in-neighborhood 
of every vertex induces a tournament. Therefore, in-tournaments are a 
generalization of local tournaments where, for every vertex, the set of in
neighbors as well as the set of out-neighbors induce a tournament. While 
local tournaments have been intensively studied very little is known about 
in-tournaments. It is the purpose of this paper to give more information 
about in-tournaments where we will focus mainly on the cycle structure 
of these digraphs. We will investigate the extendability of cycles and the 
influence of the minimum indegree on the cycle structure. In particu
lar, we show that every strong in-tournament of order n with minimum 
indegree at least ~ is pancyclic. 

1 Terminology and Introduction 

Throughout this paper we will consider digraphs that contain no multiple arcs, no 
loops and no cycles of length 2. We call these digraphs oriented graphs. An in
tournament is an oriented graph such that the set of negative neighbors of every 
vertex induces a tournament, i.e. every pair of distinct vertices that have a common 
positive neighbor are connected by exactly one arc. 

A digraph D is determined by its set of vertices and its set of arcs, denoted 
by V(D) and E(D), respectively. We call D a connected digraph if the underlying 
graph is connected. For xy E E(D) where x, y E V(D), we write x -t y and we say 
that x dominates y or y i8 dominated by x. Furthermore, y is a positive neighbor or 
out-neighbor of x and x is a negative neighbor or in-neighbor of y. Let 51 and 52 be 
disjoint subsets of V(D). If 81 -t 82 for every 81 E 51 and 82 E 52 we denote this by 
51 -t 52' If 52 = {y} then we use 51 -t y instead of 8 1 -t {y}. 

For 5 ~ V(D), the digraph which is induced by the vertices of 5 is denoted by 
D[8]. The outdegree d+(x, 8) and indegree d-(x, 8) with respect to 5 of a vertex 
x E V(D) are defined to be the number of positive and negative neighbors of x 
in 8, respectively. In the case when 8 = V (D), we also write d+ (x) and d- (x). 
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The minimum outdegree 5+(D) and the minimum indegree 5-(D) of D are given 
by min { d+ (x) I x E V (D)} and min { d- (x) I x E V (D)}, respectively. Furthermore, 
5(D) = min{ 5+(D), 5-(D)} is the minimum degree of D. Analogously, the maximum 
outdegree of D is defined as ,6.+ (D) = max { d+ (x) I x E V (D)}. If d+ (x) = d- (x) = p 
for every x E V (D), then D is called p-regular. 

All cycles and paths mentioned here are oriented cycles and oriented paths. A 
Hamiltonian path of a digraph D is a path that consists of all the vertices of D. 
Analogously, a if amiltonian cycle is a cycle containing all the vertices of D. Tha-
length of a shortest cycle in a digraph D is called the girth of D, denoted by g(D). 
A cycle C in D is extendable if D contains a cycle C f such that V (G) c V (G f

) and 
IV(Cf)1 = IV(G)I + 1. We call C to be a k-cycle if C consists of k vertices. A digraph 
D of order n is called pancyclic if D contains a k-cycle for every 3 :::; k :::; n. If every 
vertex of D belongs to a cycle of length k for every 3 ~ k ~ n, then D is called 
vertex pan cyclic. 

The study of tournaments and their different generalizations is one of the most 
attractive subjects in the work on digraphs. One type of generalization transfers the 
adjacency between every pair of distinct vertices in tournaments to only those pairs 
where both vertices belong either to the positive or to the negative neighborhood of 
some vertex of the digraph. This leads to the class of local tournaments, or more 
generally, to the class of locally semi complete digraphs where adjacent vertices may 
be connected by two mutually opposite arcs. The research about the structure of 
these digraphs evolved into a very productive area. In particular, the Ph. D. theses 
of Y. Guo (5] and J. Huang (8] have been devoted to this subject. 

As a generalization of local tournaments, J. Bang-Jensen, J. Huang, and E. Pris
ner [1] studied the class of in-tournaments, where only the set of in-neighbors of 
every vertex induces a tournament. But very lIttle work has been done concerning 
in-tournaments and it is the purpose of this paper to give more information about 
the properties of this family of digraphs. We focus on the cycle structure of in
tournaments where we consider the extendability of cycles and the influence of the 
minimum indegree on the cycle structure. In particular, we show that every strong 
in-tournament of order n with minimum in degree at least ~ is pancyclic. 

2 Preliminary results 

In this section we will state some known results which either will be useful in our 
investigations or will be generalized later on. The first two are due to Redei [10] and 
Moon [9], respectively, and deal with the structure of tournaments. 

Theorem 2.1 Every tournament contains a Hamiltonian path. 

Theorem 2.2 Every strong tournament is vertex pancyclic. 

The next two results on long cycles in strong in-tournaments were found by Bang
Jensen, Huang, and Prisner [1]. 
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Theorem 2.3 An in-tournament is Hamiltonian if and only if it is strong. 

Theorem 2.4 Let D be a strong in-tournament of order n that contains a k-cycle 
for some k ?: %. Then D has cycles of length k,k + 1, ... , n. 

In the following, we continue the investigation of long cycles and we present some 
sufficient conditions for the existence of short cycles in in-tournaments. In particular, 
a generalization of Theorem 2.4 is given in Section 4. 

3 Extending cycles 

Given a cycle C of length k in an in-tournament D, we consider conditions for the 
existence of cycle lengths in D that are related to k. In two cases we show the 
extendability of C, i.e. there is a (k + I)-cycle in D containing all the vertices of C. 

The first result was already mentioned in [1]. Since the authors of [1] made 
a minor slip in the statement of the hypothesis, we restate it here with a slightly 
different proof. 

Theorem 3.1 Let D be a strong in-tourname'nt of order n containing a k-cycle, 
k < n, that is not extendable. Then D has cycles of length l + 1, 1 + 2, ... , 1 + k for 
some 2 ::; 1 ::; n - k. 

Proof. Let C = XIX2 ... XkXl be a cycle of length k < n which is not extendable. Since 
D is strong, there exists a vertex u E V(D - C) such that u has a positive neighbor 
on C. Without loss of generality, u -+ Xk. Obviously, u and Xk-l are adjacent, and 
since C is not extendable, we have u -+ Xk-l' Gradually, this implies u -+ C. Hence, 
there is a path P of length l, 2 ::; 1 ::; n - k, in D leading from C to u. Since u -+ C, 
this implies the existence of the desired cycles. 0 

The argumentation in the proof of Theorem 3.1 leads to the following corollary. 

Corollary 3.2 Let D be strong in-tournament of order n such that ~+(D) ::; k-l. 
If D has a k-cycle Ck then D contains cycles Ck+1, Ck+2, ... , Cn of length k + 1, k + 
2, ... , n, respectively, such that V(Ck) c V(Ck+d C '" C V(Cn ). 

By considering the diameter, it is possible to give more precise information about 
the cycle lengths in Theorem 3.1. 

Theorem 3.3 A strong in-tournament D of order n with diameter diam(D) = p 
contains cycles of length p + l,p + 2, ... , n. 

Proof. We proceed by induction on the cycle length. Let uv be an arbitrary arc in 
D. Since D contains a path from v to u of length k ~ p, there exists a (k + 1 )-cycle 
C in D. If k < p and C is not extendable then, by following the proof of Theorem 
3.1, we deduce that there are cycles of length 1 + 1, 1 + 2, ... , l + k for some 2 ::; l ::; p 
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in D. Hence D contains a cycle of length k' where k + 1 ::; k' ::; p + 1, and ind ucti vely 
we obtain a (p + 1 )-cycle in D. Clearly, the same holds if C is extendable or if k = p. 

Now let D contain cycles of length p+ l,p+2, ... ,p+s for some 1 ::; s ::; n - p-l. 
Either the (p + s )-cycle is extendable or analogously to the case above, D contains 
cycles of length l + 1, l + 2, ... , l + P + s for some 2 ::; l ::; p. Since l + 1 ::; p + 1 and 
l + P + s 2:: p + s + 2, the second alternative leads to a (p + s + I)-cycle, too. D 

The following example shows that Theorem 3.3 is best possible. Consider the 
in-tournament D with the vertex set V(D) = {Xl, X2, ... , X3k+1}, where k 2::: 3. For 
every 1 ::; i ::; 3k + 1, let Xi -t {Xi+l, Xi+2, Xi+3} (all indices modulo 3k + 1). Then 
diam(D) = k and there is no cycle of length k in D. 

Next we present a sufficient condition for cycle extendability in connected in
tournaments that is based on the minimum degree. 

Theorem 3.4 Let D be a connected in-tournament of order n such that 6(D) 2::: p > 
O. Then every k-cycle with n - L 4Pi1 J ::; k < n is extendable. 

Proof. Let C be a cycle of length k and suppose to the contrary that C is not 
extendable. Let R ~ V(D - C) such that v E R if and only if d-(v, C) > 0 
and assume, without loss of generality, that R =I- 0. Furthermore, define Q = 

V(D-C)\R. It follows that k+ IRI + IQI = n ::; k+ l ¥ J and therefore, IRI + IQI ::; 
l ¥ J. By definition, d- (u, C) = 0 for every u E Q and since C is not extendable, 
we have d+(v, C) = 0 for every v E R. Let Vo E R such that d+(vo, R) ::; IR~-l. 

If Q = 0, then d+(vo, D) = d+(vo,R). Since IRI ::; l¥J, it follows that p::; 
d+(vo D) < IRI-l < ! L~J - ! < 2p-1 which is clearly a contradiction. 

, - 2 -2 3 2- 3 

For Q =I- 0, let Uo E Q such that d- (uo, Q) ::; IQ~-I. The contradiction 2p ::; 

d+(vo, D) + d-(uo, D) ::; IR~-I + IQI + IQ~-I + IRI ::; ~(IRI + IQI) -1 ::; ~ L 4Pil J -1 :::; 
2p - ~ completes the proof. D 

The lower bound n -l 4Pi l J for the cycle lengths in Theorem 3.4 is best possible. 
To see this consider for example the case when p = 3t + 1 for some t 2::: O. Let D be 
a tournament of odd order n 2::: 6t + 3 2::: 5 with the vertex set V(D) = VI U V2 u Va 
where 1V21 Ivai = 2t + 1. Let D[Vd, D[V2] and D[Va] be regular tournaments and 
let VI -7 V2 -t V3 -7 VI. It is easy to see that 6(D) 3t + 1 = p. Furthermore, 
the Hamiltonian cycle of D[VI ] has length k = n - (4t + 2) = n - r4Pi I l and is not 
extendable. 

Analogously, examples can be constructed for the cases p = 3t and p = 3t + 2. 

4 Pancyclic in-tournaments 

In this section we show that every strong in-to~rnament of order n with minimum 
indegree ~ is pancyclic. In the first two steps we consider long and short cycles in 
strong in-tournaments with arbitrary minimum indegree p. The following result is a 
generalization of Theorem 2.4 which represents the case p = 1. 
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Theorem 4.1 Let D be a strong in-tournament of order n such that b-(D) 2: p. If 
D contains a k-cycle for some n > k > min{H2n - 3p + 1), Hn - 2p) + D then D 
has a cycle of length k + 1. 

Proof. Let C be a cycle of length k, where k satisfies the desired inequality. Suppose 
to the contrary that D does not contain a cycle of length k + 1. Since D is strong, 
there is a vertex x E V(D - C) such that x has a positive neighbor in C. By the 
assumption, C is not extendable and hence this implies analogously to the proof of 
Theorem 3.1 that x -t C. Let N denote the set of negative neighbors of x. It follows 
that N n V(C) = 0, INI 2: p and D[N] is a tournament. Furthermore, let P be a 
shortest path leading from C to x. Clearly, IV(P) n NI = 1. For IV(P)I ::; k + 1, the 
path P and k+1-IV(P)1 further vertices from C form a (k+1)-cycle, a contradiction. 
Therefore, let IV(P)I 2: k + 2 2: 5. This, together with the minimality of P, implies 
that d-(y, C) = 0 and d-(y, P - N) ::; 1 for every YEN. 

Let YI E N such that d-(YI,N) ::; IN~-I. Then YI has at least p - (IN~-I + 1) 
negative neighbors in D (C U{x} U N UP). Therefore, we obtain 

n 2 IY(C)I + l{x}1 + INI + (IV(P)I- 3) + p - CNI
2
- 1 + 1) 

> 2k + P + ~ > 2k + 3p - 1 
2 - 2 . 

which implies k ::; i'(2n - 3p + 1). 
To obtain the second upper bound for k consider the strong component of D[NJ, 

say Db such that there is no arc leading from D[N] - DI to D 1 • By Theorem 2.2, we 
derive a contradiction to the assumption if DI contains more than k vertices. Hence 
let ID11 ::; k, and let Y2 E D1 such that d-(Y2, N) = d-(Y2, D I ) ~ ID ld-1 ::; k;1. This 
implies that d-(Y2, D - (C U {x} uN UP)) 2:: p - (k;l + 1), which yields 

n 2 IY(C)I+I{X}I+INI+(IV(P)I-3)+P-C 21+1) 
> 2k + 2p ( k ~ 1 + 1) . 

It follows that k ::; ~ (n - 2p) + !. Since k ::; i (2n - 3p + 1), we derive a contradiction. 
o 

For every p there exists an in-tournament with minimum indegree p that is not 
strong and that contains a cycle of length k, where k satisfies the condition of The
orem 4.1, but no cycle of length k + 1. Therefore, we cannot drop the condition on 
the strong connectivity in Theorem 4.1. To see this, let p 2: 1 be an arbitrary integer 
and consider the digraph D of order n where 2p + 1 < n < 11~+3. Let D consist of 
the vertex set V(D) = V1 UV2 U ... UVr, r 2: 2, where IVII = ... = IVr-11 = 2p+1 and 
IVrI ::; 2p+1. For 1 ::; i ::; r-1, let D[Vi] induce ap-regular tournament, and let D[Vr] 
be a set of independent vertices. Furthermore, let Vi -t Yj for every 1 ::; i < j ::; r. 
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Then D is an in-tournament with minimum in degree p, and since D[Vd is Hamilton
ian, D contains a cycle of length k = 2p + 1. Since 2p + 1 < n < 11~+3 it follows that 
n> k > H2n - 3p + 1), but clearly D has no (k + I)-cycle. 

In 1970, Behzad, Chartrand, and Wall [2] conjectured that a d-regular oriented 
graph of order n has girth at most rJl This conjecture, and even a stronger one 
of Caccetta and Haggkvist [4] that the same is valid when the minimum indegree is 
at least d, has been verified in particular cases: d = 2 by Caccetta and Haggkvist 
[4], d = 3 by Hamidoune [6], and d = 4,5 by Hoang and Reed [7]. For further 
information, we refer the reader to a recent article of Bondy [3]. Next we shall show 
that the conjecture of Behzad, Chartrand, and Wall is valid for the special family of 
in-tournaments. 

Theorem 4.2 Let D be an in-tournament of order n with 8-(D) 2: p > O. Then 
g(D) ::; r~l 

Proof. Let x E V(D) be an arbitrary vertex of D and let Nl denote the set of negative 
neighbors of x. By the hypothesis, D[NI ] is a tournament and INII 2: p. We may 
assume that D[NI ] is transitive, since if it contains any cycle, it follows by Theorem 
2.2 that g(D) = 3. Note that p ::; n;1 and hence, r~l 2: 3. Let YI E NI such that 
d- (Yl, N1) = 0 and define N2 to be the set of negative neighbors of YI. Clearly, D[N2] 
is a tournament, (NI U {x}) n N2 = 0 and IN212: p. Again assume that D[N2] is 
transitive and let Y2 E N2 such that d- (Y2, N2) = O. Let c = l!! J. Analogously, for p 
2 ::; j < c, we define the vertex sets Nj +1 to be the set of negative neighbors of the 
unique vertex Yj E Nj , where d-(Yj, N j ) = O. Such a vertex exists for every j since 
D[Nj] is a tournament which we suppose to be transitive. Clearly, INj+l1 2: p for 
every 2 ::; j < c. If Yj has a negative neighbor Zi E Ni for some 1 ::; i < j (possibly, 
Zi = Yi), then the cycle ZiYjYj-I ... YiZi has length t for some 3 ::; t ::; c, and the same 
holds if x -+ Yj. Therefore, we may assume that (N1 U '" U Nj U {x}) n N j+1 0 
for every 2 :::; j < c. If n is divisible by p, then, for j = c - 1, we obtain the 
contradiction n 2: I {x} I + 2:f=1 I Ni I 2: 1 + P . ~ ~ n + 1. Otherwise let Yc E Nc such 
that d-(Yc,Nc) = O. It follows that n -1{x}l- 2:f=IINi l ::; n -1- p 'l~J :::; p - 2, 

which implies that Yc has at least one negative neighbor in Uf::t N i . Clearly, this 
leads to a t-cycle in D for some 3 :::; t :::; c + 1 = r~ 1. 0 

The digraph that illustrates the sharpness of Theorem 3.3 can be varied to show 
that the conjecture of Behzad, Chartrand, and Wall [2] is best possible even for 
in-tournaments. For the integers p 2: 2 and k 2: 3, let D be the digraph with 
the vertex set V(D) = {Xl, X2, ... , xp.k+d. For every 1 ::; i :::; p. k + 1, let Xi -+ 
{Xi+l,Xi+2, ... ,Xi+p}' Then D is a p-regular in-tournament that contains no t-cycle 
for every 3 ::; t :::; k = l P'~+1 J . 

Since we will deal with the case p = ~ from now on, we state the following 
corollaries from Theorem 4.1 and Theorem 4.2, respectively. 

Corollary 4.3 Let D be a strong in-tournamen,t of order n such that 8-(D) 2: ~. If 
D contains a k-cycle for some n > k > ~ + ~ then D has a cycle of length k + 1. 
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Corollary 4.4 Every in-tournament of order n with 6- (D) 2:: ~ contains a 3-cycle. 

Now we consider short cycles in in-tournaments with the desired minimum in
degree of ~. In this situation we do not need to restrict ourselves to strong in
tournaments. The following result fills the gap of cycle lengths between 3 and ~ + ~. 

Theorem 4.5 Let D be an in-tournament of order n such that 6-(D) 2:: ~. If D 
contains a k-cycle for some 3 :::; k :::; ~ + 1 then D has a cycle of length k + 1. 

Proof. Let C be a cycle of length k for some 3 :::; k :::; ~ + 1 and suppose to 
the contrary that D does not contain a (k + 1 )-cycle. Let Xo E V (C) such that 
d- (xo, C) :::; !V(~)!-l = k;l, and let NI denote the set of negative neighbors of Xo 
in D - C. By the hypothesis, D[NI] is a tournament and INII 2:: ~ - k;l. Note 
that k :::; 2; + 1 implies that ~ - k;l 2:: k 1 2:: 2. By the assumption, C is 
not extendable and therefore NI -t Xo leads to Nl -+ C. Let DI be the strong 
component of D[Nd such that there is no arc leading from D[Nd - DI to DI. 
Since DI is a strong tournament, we derive a contradiction to the assumption if 
DI contains more than k vertices. Hence let IDII ~ k, and let Xl E V(DI ) such 
that d-(XI,NI ) d-(XI,DI ):::; !Dl~-l ~ k;l. Since d-(Xl, C) = 0, we obtain 
d-(XllD - (V(C) u NI )) 2:: ~ - k;l. 

Let N2 be the set of negative neighbors of Xl in D (V(C) U NI ). As above, 
n2 = IN21 2:: k 1. Analogously, let D2 with ID21 :::; k denote the strong component 
of D[N2] that has no negative neighbors in D[1V2] D21 and let X2 E D2 such that 
d- (X2' N2) :::; By Theorem 2.1, there exists a Hamiltonian path UIU2,,,Un2 of 
D[N2] such that UI X2. Assume now that y -+ X2 for some y E V(C) U Nl . Since 
n2 2:: k - 1, D contains the (k + I)-cycle UIU2 ... Uk-IXIYUI if Y E V(C) U NI \ V(DI ), 
a contradiction. For y E V(DI ), let P denote a path from Xl to y in D I . Obviously, 
2 ~ IV(P)I :::; IDll :::; k and we obtain the cycle UIU2 ... Uk+1-!V(P)!PUI of length k + 1 
in D. Hence, altogether we deduce that d-(X2, V(C) U NI U N2) ~ k;l which leads 
to IN31 2:: ~ k;1 2:: k - 1 2:: 2, where N3 denotes the negative neighborhood of X2 
in D - (V (C) U NI U N2)' 

Again, let D3 be the strong component of D[N3] such that there is no arc leading 
from D[N3] D3 to D3, and let X3 E D3 such that d-(X3, N3) ~ k;l. Since X3 -t 
X2 -+ Xl -+ C, the vertex X3 has no negative neighbor in V (C). Analogously to 
the argumentation for X2 and NI , we see that d-(X3, N 2 ) = O. Furthermore, X3 has 
no negative neighbor y E NI \ V(DI ) since otherwise k 2 vertices of N3 and the 
vertices X2, Xl and y form a cycle of length k + 1. Assume that y -t X3 for some 
y E V(DI ), and let P be a shortest path fro~ Xl to y in Dl . If IV(P)I :::; k - 1 
then again P, X2 and k - IV(P)I vertices of N3 build up a (k + I)-cycle. The 
remaining case IV(P)I = k can occur at most once because Dl is Hamiltonian. Hence, 
d- (X3, D l ) :::; 1 and we summarize that d- (X3, V( C) U U N2 U N3) :::; k;l + 1. This 
implies n4 = d-(X3, D (V(C) U NI U N2 U N3)) 2:: ~ - 1. 

Finally, it follows that 

(
n k -1) 

n2::IV(C)I+INII+IN21+IN31+n42::k+4 3--2- -1 
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which leads to k ~ ~ + 1, a contradiction. o 

Corollary 4.4, Theorem 4.5 and Corollary 4.3 can be summarized to obtain the 
desired result. 

Corollary 4.6 Let D be a strong in-tournament of order n with 8- (D) 2: ~. Then 
D is pancyclic. 

Now we vary the example showing the sharpness of Theorem 3.3 such that Xi -+ 
{XHl,XH2, ... ,XHd for every 1:::; i:::; 3k+ 1, to underline that Corollary 4.6 is best 
possible. Having order 3k + 1 and minimum indegree k, the digraph contains no 
cycle of length 3. 

Moreover, the following example shows that Corollary 4.6 cannot be extended to 
vertex pancyclicity. Let D be the digraph of order 3k, k ~ 3, with the vertex set 
V(D) {x} UN U P U Z. Let D[N] be a strong tournament on k vertices, and 
let D[P] and D[Z] be arbitrary tournaments op. k and k - 1 vertices, respectively. 
Furthermore, let Z -+ N -+ x -+ P -+ Z and N -+ P. Then D is a strong in
tournament with 8-(D) 2: k and the vertex x is not contained in a cycle of length 
3. 
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