More on the Linear k-arboricity of Regular Graphs

R. E. L. Aldred
Department of Mathematics and Statistics
University of Otago
P.O. Box 56, Dunedin, New Zealand

Nicholas C. Wormald

Department of Mathematics
University of Melbourne
Parkville, VIC 3052, Australia

Abstract

Bermond et al. [5] conjectured that the edge set of a cubic graph G can be partitioned into two linear k-forests, that is to say two forests whose connected components are paths of length at most k, for all $k \geq 5$. That the statement is valid for all $k \geq 18$ was shown in [8] by Jackson and Wormald. Here we improve this bound to $$
k \geq \begin{cases}7 & \text { if } \chi^{\prime}(G)=3 \\ 9 & \text { otherwise }\end{cases}
$$

The result is also extended to d-regular graphs for $d>3$, at the expense of increasing the number of forests to $d-1$.

All graphs considered will be finite. We shall refer to graphs which may contain loops or multiple edges as multigraphs and reserve the term graph for those which do not. A linear forest is a forest each of whose components is a path. The linear arboricity of a graph G, defined by Harary [7], is the minimum number of linear forests required to partition $E(G)$ and is denoted by $l a(G)$. It was shown by Akiyama, Exoo and Harary [1] that $l a(G)=2$ when G is cubic. A linear k-forest is a forest consisting of paths of length at most k. The linear k-arboricity of G, introduced by Bermond et al. [5], is the minimum number of linear k-forests required to partition $E(G)$, and is denoted by $l a_{k}(G)$. When such a partition of $E(G)$ has been imposed, we say that G has been factored into linear k-forests. We refer to each linear forest in such a partition of $E(G)$ as a factor of G and the partition itself is called a factorization.

It is conjectured in [5] that if G is cubic then $l a_{5}(G) \leq 2$. A partial result is obtained by Delamarre et al. [6] who show that $l a_{k}(G) \leq 2$ when $k \geq \frac{1}{2}|V(G)| \geq 4$.

Jackson and Wormald [8] improved this result when $|V(G)| \geq 36$, showing that, for $k \geq 18$, an integer, $l a_{k}(G)=2$. Here we shall improve on this further to show the following.
Theorem 1. Let G be a cubic graph and let k be an integer. Then $l a_{k}(G)=2$ for all

$$
k \geq \begin{cases}7 & \text { if } \chi^{\prime}(G)=3 \\ 9 & \text { otherwise }\end{cases}
$$

In [9], Lindquester and Wormald considered the following variation of linear arboricity for r-regular graphs. An r-regular graph G is said to be (l, k)-linear arborific if it can be factored into l linear k-forests. In this setting, we are able to prove the following.

Theorem 2. Let G be an r-regular graph, $r \geq 3$, and let k be an integer. Then G is ($r-1, k$)-linear arborific for all

$$
k \geq \begin{cases}7 & \text { if } \chi^{\prime}(G)=r \\ 9 & \text { otherwise }\end{cases}
$$

While Theorems 1 and 2 are proved here for finite graphs, the results also apply for infinite graphs using a standard method (by Tihonov's theorem - see for example the application on page 57 of [2]).

Before we prove the theorems, we shall present some preliminary results which indicate some restrictions we can demand of factorizations of cubic graphs. These will be most useful in the proof of the theorem.

For our first result we introduce the following terminology. An odd linear forest is a linear forest in which each component is a path of odd length. Also, we use $\chi^{\prime}(G)$ to denote the chromatic index of G (i.e. the minimum number of colours required to colour the edges of G so that no two edges of the same colour are incident with the same vertex).
Lemma. Let G be a cubic graph. Then G can be factored into two odd linear forests if and only if $\chi^{\prime}(G)=3$.

Proof. Suppose first that G is a cubic graph with a factorization, $\left(F_{1}, F_{2}\right)$ into odd linear forests F_{1} and F_{2}. Colour the edges of the paths in F_{1} alternately red and blue so that each path in F_{1} has its first and last edges coloured red. Similarly, colour the edges of the paths in F_{2} alternately green and blue so that each path in F_{2} has its first and last edges coloured green. This yields a proper 3-edge-colouring of G giving $\chi^{\prime}(G)=3$.

Conversely, let us suppose that $\chi^{\prime}(G)=3$ and that we have a proper 3 -edgecolouring imposed on G using the colours blue, green and red. Let F_{1}^{\prime} and F_{2}^{\prime} be factors of G induced by the blue and green edges and by the red edges respectively. Thus F_{1}^{\prime} consists of disjoint even cycles, while F_{2}^{\prime} is a set of disjoint edges covering the vertices of G. Form new factors F_{1} and F_{2} where F_{2} is the subgraph of G induced by the edges in F_{2}^{\prime} together with at most one edge from each cycle in F_{1}^{\prime} chosen so that F_{2} is acyclic and such that the paths in F_{2} have maximum possible total length. The factor F_{1} consists of F_{1}^{\prime} with the edges in F_{2} removed.

Claim: F_{2} contains an edge from each cycle in F_{1}^{\prime}. To see this, assume to the contrary that there is a cycle $C=v_{1} v_{2} \ldots v_{k} v_{1}$ in F_{1}. Then v_{1} and v_{2} are both ends of the one path in F_{2}, while v_{2} and v_{3} are both ends of the one path in F_{2} (by the maximality of total length of paths in F_{2}). Since G is a graph, $v_{1} \neq v_{3}$ and no path has three ends so the claim follows.

Thus each path in F_{1} has odd length and each path in F_{2} has odd length (these paths must begin and end with red edges and have every second edge red throughout their lengths).
Corollary. Let G be an r-regular graph. If $\chi^{\prime}(G)=r$, then G can be factored into $r-1$ odd linear forests.
Proof. Since $\chi^{\prime}(G)=r$, the edges of G can be partitioned into $r 1$-factors. choose $r-3$ of these to form factors in our factorization, the remaining 31 -factors inducing a cubic spanning subgraph of G which has chromatic index 3 . By the lemma, this subgraph can be factored into two odd linear forests, completing the desired factorization and the proof of the corollary.
Proposition. Let G be a cubic graph. Then there is a factorization of G into two linear forests, F_{1} and F_{2} such that no component in F_{i} isomorphic to P_{3} has its end vertices adjacent in G via an internal edge of a path in F_{j}, where $\{i, j\}=\{1,2\}$. (Such a factorization is to have the spread- P_{3} property.)
Proof. The proposition is certainly true for $G=K_{4}$. So assume that G is a cubic graph of smallest order which does not admit a factorization with the spread- P_{3} property. Clearly, G cannot be triangle-free. But if we have a triangle T, with each edge of T belonging to precisely one triangle, then contracting T to a vertex yields a cubic graph, G^{\prime}, of smaller order than than G. By the minimality of G, G^{\prime} admits a factorization with the spread- P_{3} property. This factorization easily lifts to a factorization of G with the spread- P_{3} property.

Consequently, we may assume that all triangles in G are paired. By [1] we can let G be factored into two linear forests. Assume this is done so that there are as few unspread- P_{3} 's as possible. (By unspread $-P_{3}$ we mean a path of length two in one factor whose endvertices are adjacent in G via an internal edge in the other factor.) As G was chosen not to admit a factorization with the spread- P_{3} property, we must have an unspread- P_{3} in one of the paired triangles. Figure 1 indicates how this factorization may be altered to reduce the number of unspread- $-P_{3}$'s. This contradiction establishes the result.

Figure 1.

Proof of Theorem 1. Define $\mathcal{F}=\mathcal{F}(G)$ to be the set of $\left(F_{1}, F_{2}\right)$ such that F_{1} and F_{2} form a factorization of G with the spread- P_{3} property. Then \mathcal{F} is nonempty by the proposition. For $\left(F_{1}, F_{2}\right) \in \mathcal{F}$, let $l\left(F_{1}, F_{2}\right)$ denote the length of the longest path in F_{1} or F_{2}. Let t be the minimum number such that there exists $\left(F_{1}, F_{2}\right) \in \mathcal{F}$ with $l\left(F_{1}, F_{2}\right)=t$.

Choose $\left(F_{1}, F_{2}\right) \in \mathcal{F}$ with $l\left(F_{1}, F_{2}\right)=t$ and such that, subject to this condition, the total number $m\left(F_{1}, F_{2}\right)$, of paths of length t in F_{1} and F_{2} is as small as possible. By symmetry, we may assume that F_{1} has a path P of length t.

Suppose, contrary to Theorem 1 , that $t \geq 10$. We will use the structure of this factorization to produce distinct edges, e_{i} of G for each integer $i \geq 0$, thereby contradicting the finiteness of G. To assist in this process we define an i-improvement.

Given path sets S_{0}, \ldots, S_{i}, define $R_{i}=R_{i}\left(S_{0}, \ldots, S_{i}\right)$ to be the set of all edges of G which are either contained in or incident with any of the paths in S_{0}, \ldots, S_{i}.

Given $\left(F_{1}, F_{2}\right) \in \mathcal{F}$ and path sets S_{0}, \ldots, S_{i}, we say that $\left(F_{1}^{\prime}, F_{2}^{\prime}\right) \in \mathcal{F}$ is an i-improvement of $\left(F_{1}, F_{2}\right)$ if there exists an edge e of a path in S_{i} such that
(i) all edges in $R_{i} \backslash e$ are in F_{1}^{\prime} iff they are in F_{1},
(ii) e is in F_{1}^{\prime} iff it is not in F_{1}, and
(iii) each path in F_{j}^{\prime} of length at least t is also a path in $F_{j}, j=1$ and 2 .

The algorithm below selects paths from the factors F_{1} and F_{2} by first taking an edge e from a special set of edges in the paths already chosen. The edges in this set are specifically determined so that the endvertices of each one are also the end vertices of paths (in one of the factors F_{1} or F_{2}) not yet selected in the algorithm. After e is selected, the paths which emanate from its endvertices in turn contain new edges which go into the special set of edges, thus providing more edges with which to continue the process. We refer to these special edges as live edges as, at each iteration, they indicate paths which may be chosen to extend our set of selected paths. The endvertex of a newly selected path not incident with e may also be incident with another live edge, f. Such an edge f no longer indicates two unchosen paths, and thus we do not consider it to be live any more. We say that such an edge f has been killed by the end vertices of the chosen path.

We show that the number of live edges does not decrease as the algorithm proceeds if t, the length of a longest path in the factorization, is at least 10 . Consequently, our set of chosen paths grows without bound contradicting the finiteness of G.

Initially we set:
$S_{0}:=\{P\}$ (our first chosen path);
$T_{0}:=$ a maximum set of independent internal edges in P excluding those third from either end (live edges which are available to use in Step 2 to determine new paths with which to extend our chosen set);
$W_{0}:=\{$ end vertices of $P\}$ (these vertices may kill live edges at some later stage).

Note that when $t \geq 5,\left|T_{0}\right|=\left\lceil\frac{t-2}{2}\right\rceil$. So for $t \geq 7$ we have have $\left|T_{0}\right|>\left|W_{0}\right|$.
For $i>0$ carry out the following three steps.

1. Choose $e_{i-1} \in T_{i-1}$.
2. Repeat (a) and (b) consecutively until (b) requires no action because its condition fails:
(a) Define S_{i} to be the set of paths in the factorization $\left(F_{1}, F_{2}\right)$ which terminate at the endvertices of e_{i-1}. (If e_{i-1} belongs to a path in $F_{1}\left(F_{2}\right)$, then $S_{i} \subseteq$ $F_{2}\left(F_{1}\right)$.)
(b) If there is an i-improvement $\left(F_{1}^{\prime}, F_{2}^{\prime}\right)$ of $\left(F_{1}, F_{2}\right)$ then reset $\left(F_{1}, F_{2}\right)$ to be equal to $\left(F_{1}^{\prime}, F_{2}^{\prime}\right)$.
3. Determine the sets T_{i} and W_{i} by the following method. Set:
$V_{i}:=\left\{\right.$ endvertices of paths in $\left.S_{i}\right\} \backslash\left\{\right.$ endvertices of $\left.e_{i-1}\right\} ;$
$N_{i}:=$ a maximum set of independent internal edges of paths in S_{i} other than those third along from a vertex in V_{i};
$T_{i}^{\prime}:=\left(T_{i-1} \backslash\left\{e_{i-1}\right\}\right) \cup N_{i}$ (adding edges in N_{i} to the set of live edges, and deleting e_{i-1}, which has just been killed);
$W_{i}^{\prime}:=W_{i-1} \cup V_{i}\left(V_{i}\right.$ contains new vertices with the potential to kill live edges); $T_{i}:=T_{i}^{\prime} \backslash\left\{e \in T_{i}^{\prime}\right.$ incident with a vertex in $\left.W_{i}^{\prime}\right\}$ (these edges have been killed); $W_{i}:=W_{i}^{\prime} \backslash\left\{w \in W_{i}^{\prime}\right.$ incident with and edge in $\left.T_{i}^{\prime}\right\}$ (after a vertex kills a live edge, it no longer has the potential to kill further live edges).

Step 2 must eventually terminate because the redefinition of $\left(F_{1}, F_{2}\right)$ in $2(\mathrm{~b})$ leads to a strictly smaller total length of paths in the set S_{i} when 2(a) is next performed.

Denote the value of $\left(F_{1}, F_{2}\right)$ at the end of the i th iteration of the two steps above by $\left(F_{i, 1}, F_{i, 2}\right)$. Then for any $j>i$ the set S_{i} retains its property of being a set of maximal paths in $F_{j, 1}$ or $F_{j, 2}$, because the redefinition of $\left(F_{1}, F_{2}\right)$ does not disturb any edges in R_{j-1}. Thus, $\left(F_{j, 1}, F_{j, 2}\right)$ cannot have any i-improvement for $i<j$.

Note also that live edges in N_{i} are killed by vertices in W_{i}^{\prime} precisely when such an edge shares an endvertex with a path in some $S_{j}, j \leq i-1$. In this way, the paths in S_{i} cannot be included in $S_{j}, j \leq i-1$. Thus an edge $e_{h} \in T_{h}$ chosen in Step 1 cannot be contained in $T_{h^{\prime}}$ whenever $h^{\prime}>h$.

Consequently, having chosen $e_{i-1} \in T_{i-1}$ for Step 1, we have one of two possiblities at the completion of Step 2.
(i) There is a single path, P^{\prime}, in S_{i} joining the endvertices of e_{i-1}. Since we are working with factorizations with the spread $-P_{3}$ property, P^{\prime} must have length at least 3. As we work through Step 3 in this case, $V_{i}=\emptyset$ and we have at least one edge in N_{i}. Each edge of T_{i}^{\prime} killed by a vertex in W_{i}^{\prime} results in one vertex from W_{i-1} not being retained in W_{i} and, in this case, no new vertices will be added to W_{i-1} when forming W_{i} (since $V_{i}=\emptyset$). Thus $\left|T_{i}\right|$ increases by at least as much as $\left|W_{i}\right|$.
(ii) There are two paths $\tilde{P}, \hat{P} \in S_{i}$ terminating at the endvertices of e_{i-1}. Suppose that $l(\tilde{P})+l(\hat{P}) \leq t-2$. Then e_{i-1} cannot be in $S_{0}=P$ (if it were, then swapping e_{i-1} between the appropriate factors would produce a factorization in \mathcal{F} in which the total number of paths of length at least t is less than in our originally chosen factorization; a contradiction). Thus e_{i-1} is in some path in $S_{j}, 1 \leq j<i$. But now swapping e_{i-1} between the appropriate factors will yield a j-improvement for some $j<i$. (The internal edges third from an endvertex of a path in $S_{j}, 0 \leq j \leq i-1$ have been excluded from T_{i-1} to ensure that swapping ϵ_{i-1} between factors cannot result in an unspread- P_{3}, producing a factorization not in \mathcal{F}.). Thus we have $l(\tilde{P})+l(\hat{P}) \geq t-1$. As we have assumed that $t \geq 10$, this means that $l(\tilde{P})+l(\hat{P}) \geq 9$.
Working through Step 3 in this case, we look at the combined contribution to N_{i} from both \tilde{P} and \hat{P}. Now consider $\pi \in\{\tilde{P}, \hat{P}\}$. If $l(\pi) \in\{3,4\}, \pi$ contributes one edge to N_{i}. If $l(\pi) \in\{5,6\}, \pi$ contributes two edges to N_{i}. If $l(\pi) \geq 7, \pi$ contributes at least three edges to N_{i}. Consequently, given that $l(\tilde{P})+l(\hat{P}) \geq 9$, at least three edges are added to N_{i}. (Note that if we restrict our paths in F_{1} and F_{2} to be of odd length, then the above considerations lead to at least three edges being contributed to N_{i} when $l(\tilde{P})+l(\hat{P}) \geq 8$, i.e. when $t \geq 9$.) As before, each edge of T_{i}^{\prime} killed by a vertex in W_{i}^{\prime} results in one vertex from W_{i}^{\prime} not being retained in W_{i}. There are at most two new vertices added to W_{i-1} to form W_{i}^{\prime} and at least three new edges added to T_{i-1} to obtain T_{i}^{\prime}. Once again, $\left|T_{i}\right|$ increases by at least as much as $\left|W_{i}\right|$.

In both cases we see by induction that $\left|T_{i}\right|$ (the number of live edges) exceeds $\left|W_{i}\right|$ (the number of vertices each with the potential to kill a live edge). Thus we may continue indefinitely, removing a different edge from T_{i} at each iteration. This contradicts the finiteness of G.

Next assume that $\chi^{\prime}(G)=3$. By the Lemma, G can be factored into two odd linear forests. Working through the proof above restricting \mathcal{F} to the set of factorizations of G into two odd linear forests, we make the following minor modifications.
$T_{0}:=$ every second edge in $P ;$
$N_{i}:=$ every second edge in paths in S_{i}.
Now, everything follows as before since in case (ii) above, the paths \tilde{P}, \hat{P} are restricted to be of odd length. As noted in the parenthetic comment in case (ii), the finiteness of G is contradicted if $t \geq 9$ when all paths are of odd length. We conclude that the longest (odd) path required in our factorization has length at most 7 and the result follows.

Finally we note that our Theorem can easily be extended to graphs of maximum degree three since any such graph can be embedded as a subgraph of a cubic graph. Using this we deduce the following:
Corollary. Let G be a 4-regular graph and $k \geq 9$ be an integer. Then $l a_{k}(G)=3$.

Proof. Using [10] we may choose a 2 -factor F in G. Clearly F has a spanning k linear forest D. Since $H=G-E(D)$ has maximum degree three, it follows from the above-mentioned extension of our Theorem that $l a_{k}(H)=2$. Thus $l a_{k}(G)=3$.

Having established Theorem 1 and its corollary above, we may now prove Theorem 2.
Proof of Theorem 2. Let G be an r-regular graph with $r \geq 3$. If $\chi^{\prime}(G)=r$, then we may factor G into $r 1$-factors. Choose $r-3$ of these 1 -factors and delete them leaving a cubic spanning subgraph of G which is 3-edge-colourable. By our theorem, this subgraph is $(2,7)$-linear arborific and thus G is $(r-1,7)$-linear arborific as required.

When $\chi^{\prime}(G) \neq r$, we proceed by induction on r. Our theorem and the above corollary show that this is true for $r=3,4$. Assume that the statement is true for all $r \leq r_{0}$ and let G be an $r_{0}+1$-regular graph. If $r_{0}+1$ is even, then G has a 2 -factor, F, say. The graph $G-F$ is regular of degree $r_{0}-1$ and so, by induction, may be factored into $r_{0}-2$ linear 9 -forests. The desired factorization is completed by decomposing F into two linear 2 -forests in the obvious way.

So assume that $r_{0}+1$ is odd. Let M be a maximum matching in G. Then $G-M$ has vertices of degrees r_{0} and $r_{0}+1$, and the vertices of degree $r_{0}+1$ form an independent set, B, say. The subgraph of $G-M$ induced by $B \cup N(B)$ with edges between vertices in $N(B)$ deleted is bipartite and, by Hall's theorem and considerations of degrees, contains a matching, M^{\prime}, which covers the vertices in B. Thus $G^{\prime}=G-\left(M \cup M^{\prime}\right)$ is biregular with degrees r_{0} and $r_{0}-1$. If H^{\prime} is an isomorphic copy of G^{\prime} and $G^{\prime \prime}$ is the graph obtained from G^{\prime} and H^{\prime} by adding a matching between the vertices of degree $r_{0}-1$ in G^{\prime} and the vertices of degree $r_{0}-1$ in H^{\prime}, then $G^{\prime \prime}$ is r_{0}-regular and, by our inductive hypothesis, contains a factorization into $r_{0}-1$ linear 9 -forests. Restricting these factors to the vertices in G together with $M \cup M^{\prime}$ gives the desired factorization of G into r_{0} linear 9 -forests. ($M \cup M^{\prime}$ is a linear forest with components of size 1 and 2.)

We note that the technique of Alon in [3] will also produce results along these lines, but only for larger d. In fact, for large enough d every d-regular graph can be shown to be ($d-1,2$)-linear arborific (Alon [4]).

References

[1] J. Akiyama, G. Exoo and F. Harary, Covering and packing in graphs III, cyclic and acyclic invariants, Math. Slovaca 30 (1980), 405-417.
[2] N. Alon and J.H. Spencer, The Probabilistic Method, Wiley, New York (1992).
[3] N. Alon, The linear arboricity of graphs, Israel Journal of Mathematics 62 No. 3 (1988), 311-325.
[4] N. Alon, Private communication.
[5] J.C. Bermond, J.L. Fouquet, M. Habib and B. Peroche, On linear k-arboricity, Discrete Math. 52 (1984), 123-132.
[6] D. Delamarre, J.L. Fouquet, H. Thuillier and B. Virot, Linear k-arboricity of cubic graphs, preprint.
[7] F. Harary, Covering and packing in graphs I, Ann. New York Acad. Sci. 175 (1970), 198-205.
[8] Bill Jackson and Nicholas C. Wormald, On the linear arboricity of cubic graphs, Discrete Math. 162 (1996), 293-297.
[9] T. Lindquester and Nicholas C. Wormald, Linear arboricity of r-regular graphs, submitted.
[10] J. Petersen, Die Theorie der regulären Graphen, Acta Math. 15 (1891), 193-220.

