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Abstract 

Bermond et al. [5] conjectured that the edge set of a cubic graph G can 
be partitioned into two linear k-forests, that is to say two forests whose 
connected components are paths of length at most k, for all k ;::: 5. That 
the statement is valid for all k ;::: 18 was shown in [8] by Jackson and 
Wormald. Here we improve this bound to 

k > {7 if X'( G) = 3; 
- 9 otherwise. 

The result is also extended to d-regular graphs for d > 3, at the expense 
of increasing the number of forests to d - 1. 

All graphs considered will be finite. We shall refer to graphs which may contain 
loops or multiple edges as multigraphs and reserve the term graph for those which 
do not. A linear forest is a forest each of whose components is a path. The linear 
arboricity of a graph G, defined by Harary [7], is the minimum number of linear forests 
required to partition E(G) and is denoted by la(G). It was shown by Akiyama, Exoo 
and Harary [1] that la( G) = 2 when G is cubic. A linear k-forest is a forest consisting 
of paths of length at most k. The linear k-arboricity of G, introduced by Bermond 
et al. [5], is the minimum number oflinear k-forests required to partition E(G), and 
is denoted by lak:( G). When such a partition of E( G) has been imposed, we say that 
G has been factored into linear k-forests. We refer to each linear forest in such a 
partition of E( G) as a factor of G and the partition itself is called a factorization. 

It is conjectured in [5] that if G is cubic then la5( G) :::; 2. A partial result is 
obtained by Delamarre et al. [6] who show that lak:(G) :::; 2 when k ;::: ~IV(G)I ;::: 4. 
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Jackson and Wormald [8] improved this result when IV(G)I 2:: 36, showing that, for 
k ~ 18, an integer, lak(G) = 2. Here we shall improve on this further to show the 
following. 

Theorem 1. Let G be a cubic graph and let k be an integer. Then lak( G) = 2 for 
all 

k > {7 if X' (G) = 3; 
- 9 otherwise. 

In [9], Lindquester and Wormald considered the following variation of linear ar
boricity for r-regular graphs. An r-regular graph G is said to be (I, k )-linear arborific 
if it can be factored into l linear k-forests. In this setting, we are able to prove the 
following. 

Theorem 2. Let G be an r-regular graph, r ~ 3, and let k be an integer. Then G 
is (r -1, k)-linear arborific for all 

k > {7 if X' (G) = r; 
- 9 otherwise. 

While Theorems 1 and 2 are proved here for finite graphs, the results also apply 
for infinite graphs using a standard method (by Tihonov's theorem see for example 
the application on page 57 of [2]). 

Before we prove the theorems, we shall present some preliminary results which 
indicate some restrictions we can demand of factorizations of cubic graphs. These 
will be most useful in the proof of the theorem. 

For our first result we introduce the following terminology. An odd linear forest is 
a linear forest in which each component is a path of odd length. Also, we use X'(G) 
to denote the chromatic index of G (i.e. the minimum number of colours required to 
colour the edges of G so that no two edges of the same colour are incident with the 
same vertex). 

Lemma. Let G be a cubic graph. Then G can be factored into two odd linear 
forests if and only ifX'(G) = 3. 

Proof. Suppose first that G is a cubic graph with a factorization, (Fl' F2 ) into odd 
linear forests Fl and F2 • Colour the edges of the paths in Fl alternately red and blue 
so that each path in Fl has its first and last edges coloured red. Similarly, colour the 
edges of the paths in F2 alternately green and blue so that each path in F2 has its 
first and last edges coloured green. This yields a proper 3-edge-colouring of G giving 
X'(G) = 3. 

Conversely, let us suppose that X'( G) = 3 and that we have a proper 3-edge
colouring imposed on G using the colours blue, green and red. Let F{ and F~ be 
factors of G induced by the blue and green edges and by the red edges respectively. 
Thus F{ consists of disjoint even cycles, while F~ is a set of disjoint edges covering 
the vertices of G. Form new factors Fl and F2 where F2 is the subgraph of G induced 
by the edges in F~ together with at most one edge from each cycle in F{ chosen so 
that F2 is acyclic and such that the paths in F2 have maximum possible total length. 
The factor Fl consists of F{ with the edges in F2 removed. 
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Claim: F2 contains an edge from each cycle in F{. To see this, assume to the 
contrary that there is a cycle C = VIV2 ..• VkVI in Fl. Then VI and V2 are both ends 
of the one path in F 2, while V2 and V3 are both ends of the one path in F2 (by the 
maximality of total length of paths in F2)' Since G is a graph, VI =f=. V3 and no path 
has three ends so the claim follows. 

Thus each path in FI has odd length and each path in F2 has odd length (these 
paths must begin and end with red edges and have every second edge red throughout 
their lengths). II 

Corollary. Let G be an r-regular graph. If X'( G) r, then G can be factored into 
r - 1 odd linear forests. 

Proof. Since X'(G) = r, the edges of G can be partitioned into r I-factors. choose 
r - 3 of these to form factors in our factorization, the remaining 3 I-factors induc
ing a cubic spanning subgraph of G which has chromatic index 3. By the lemma, 
this subgraph can be factored into two odd linear forests, completing the desired 
factorization and the proof of the corollary. II 

Proposition. Let G be a cubic graph. Then there is a factorization of G into two 
linear forests, Fl and F2 such that no component in Fi isomorphic to P3 has its end 
vertices adjacent in G via an internal edge of a path in Fj , where {i,j} = {1,2}. 
(Such a factorization is to have the spread-P3 property.) 

Proof. The proposition is certainly true for G = f{4. So assume that G is a cubic 
graph of smallest order which does not admit a factorization with the spread-P3 
property. Clearly, G cannot be triangle-free. But if we have a triangle T, with 
each edge of T belonging to precisely one triangle, then contracting T to a vertex 
yields a cubic graph, G', of smaller order than than G. By the minimality of G, G' 
admits a factorization with the spread-P3 property. This factorization easily lifts to 
a factorization of G with the spread-P3 property. 

Consequently, we may assume that all triangles in G are paired. By [1] we can 
let G be factored into two linear forests. Assume this is done so that there are as 
few unspread-P3's as possible. (By unspread-P3 we mean a path of length two in 
one factor whose endvertices are adjacent in G via an internal edge in the other 
factor.) As G was chosen not to admit a factorization with the spread-P3 property, 
we must have an unspread-P3 in one of the paired triangles. Figure 1 indicates 
how this factorization may be altered to reduce the number of unspread- P3's. This 
contradiction establishes the result. II 

Figure 1. 
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Proof of Theorem 1. Define F = F(G) to be the set of (FI' F2 ) such that FI and 
F2 form a factorization of G with the spread-P3 property. Then F is nonempty by 
the proposition. For (FI, F2 ) E F, let l(FI' F2 ) denote the length of the longest path 
in FI or F2• Let t be the minimum number such that there exists (FI' F2 ) E F with 
l(FI' F2 ) = t. 

Choose (FI' F2) E F with l(FI' F2 ) = t and such that, subject to this condition, 
the total number m(FI, F2 ), of paths of length t in FI and F2 is as small as possible. 
By symmetry, we may assume that FI has a path P of length t. 

Suppose, contrary to Theorem 1, that t 2:: 10. We will use the structute of 
this factorization to produce distinct edges, ei of G for each integer i 2:: 0, thereby 
contradicting the finiteness of G. To assist in this process we define an i-improvement. 

Given path sets So, . .. , Si, define Ri = Ri(So, ... , Si) to be the set of all edges of 
G which are either contained in or incident with any of the paths in So, ... ,Si. 

Given (FI' F2 ) E F and path sets So, ... , Si, we say that (F{, Fn E F is an 
i -improvement of (FI' F2 ) if there exists an edge e of a path in Si such that 

(i) all edges in Ri \ e are in F{ iff they are in F1 , 

(ii) e is in F{ iff it is not in FI, and 

(iii) each path in Fj of length at least t is also a path in Fj, j = 1 and 2. 

The algorithm below selects paths from the factors Fl and F2 by first taking an 
edge e from a special set of edges in the paths already chosen. The edges in this 
set are specifically determined so that the endvertices of each one are also the end 
vertices of paths (in one of the factors Fl or F2 ) not yet selected in the algorithm. 
After e is selected, the paths which emanate from its endvertices in turn contain 
new edges which go into the special set of edges, thus providing more edges with 
which to continue the process. We refer to these special edges as live edges as, at 
each iteration, they indicate paths which may be chosen to extend our set of selected 
paths. The endvertex of a newly selected path not incident with e may also be 
incident with another live edge, f. Such an edge f no longer indicates two unchosen 
paths, and thus we do not consider it to be live any more. We say that such an edge 
f has been killed by the end vertices of the chosen path. 

We show that the number of live edges does not decrease as the algorithm proceeds 
if t, the length of a longest path in the factorization, is at least 10. Consequently, 
our set of chosen paths grows without bound contradicting the finiteness of G. 

Initially we set: 

So : = {P} (our first chosen path); 

To := a maximum set of independent internal edges in P excluding those third from 
either end (live edges which are available to use in Step 2 to determine new 
paths with which to extend our chosen set); 

Wo := {end vertices of P} (these vertices may kill live edges at some later stage). 
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Note that when t 2:: 5, ITol = ft;21. So for t 2:: 7 we have have ITol > IWol. 

For i > 0 carry out the following three steps. 

1. Choose ei-l E Ti- 1 . 

2. Repeat (a) and (b) consecutively until (b) requires no action because its condition 
fails: 

(a) Define Si to be the set of paths in the factorization (Ft, F2 ) which terminate 
at the endvertices of ei-l.(If ei_lbelongs to a path in Fl (F2 ), then Si ~ 
F2(Fd·) 

(b) If there is an i-improvement (F{, FD of (Fl' F2 ) then reset (Fl' F2 ) to be 
equal to (F{, Fn. 

3. Determine the sets Ti and Wi by the following method. Set: 

Vi := {endvertices of paths in Si}\{endvertices of ei-d; 

Ni := a maximum set of independent internal edges of paths in Si other than 
those third along from a vertex in Vi ; 

T[ := (Ti- 1 \{ei-d) U Ni (adding edges in Ni to the set of live edges, and 
deleting ei-l, which has just been killed); 

W[ := Wi-l U Vi (Vi contains new vertices with the potential to kill live edges); 

Ti := T/\{e E T[ incident with a vertex in W[} (these edges have been killed); 

Wi := W[\ {w E W[ incident with and edge in Tn (after a vertex kills a live 
edge, it no longer has the potential to kill further live edges). 

Step 2 must eventually terminate because the redefinition of (Fl, F2 ) in 2(b) leads 
to a strictly smaller total length of paths in the set Si when 2(a) is next performed. 

Denote the value of (Fl' F2 ) at the end of the ith iteration of the two steps above 
by (Fi,l, Fi ,2). Then for any j > i the set Si retains its property of being a set of 
maximal paths in Fj,l or Fj ,2, because the redefinition of (Fl' F2 ) does not disturb 
any edges in Rj-l. Thus, (Fj,l, Fj ,2) cannot have any i-improvement for i < j. 

Note also that live edges in Ni are killed by vertices in W[ precisely when such 
an edge shares an end vertex with a path in some Sy, j ::; i - 1. In this way, the paths 
in Si cannot be included in Sy, j ::; i - 1. Thus an edge eh E Th chosen in Step 1 
cannot be contained in Thl whenever h' > h. 

Consequently, having chosen ei-l E Ti - 1 for Step 1, we have one of two possiblities 
at the completion of Step 2. 

(i) There is a single path, pI, in Si joining the endvertices of ei-l. Since we are 
working with factorizations with the spread-P3 property, pI must have length 
at least 3. As we work through Step 3 in this case, Vi = 0 and we have at least 
one edge in Ni . Each edge of T[ killed by a vertex in WI results in one vertex 
from VVi-l not being retained in Wi and, in this case, no new vertices will be 
added to W i - 1 when forming Wi (since Vi = 0). Thus ITil increases by at least 
as much as IWd. 

101 



(ii) There are two paths .P, P E Si terminating at the endvertices of ei-l. Suppose 
that l('p) + I(P) :::; t - 2. Then ei-l cannot be in So = P (if it were, then 
swapping ei-l between the appropriate factors would produce a factorization 
in F in which the total number of paths of length at least t is less than in our 
originally chosen factorization; a contradiction). Thus ei-l is in some path in 
Sj, 1 ::; j < i. But now swapping ei-l between the appropriate factors will yield 
a j-improvement for some j < i. (The internal edges third from an endvertex 
of a path in Sj,O ::; j ::; i-I have been excluded from Ti - 1 to ensure that 
swapping ei-l between factors cannot result in an unspread-P3 , producing a 
factorization not in F.). Thus we have I(P)+I(P) ~ t-1. As we have assumed 
that t ~ 10, this means that I(P) + I(P) ~ 9. 

Working through Step 3 in this case, we look at the combined contribution 
to Ni from both .P and P. Now consider 7r E {P,P}. If 1(7r) E {3,4}, 7r 

contributes one edge to Ni. If l( 7r) E {5,6}, 7r contributes two edges to Ni. If 
1(7r) ~ 7, 7r contributes at least three edges to Ni . Consequently, given that 
I(P) + I(P) ~ 9, at least three edges are added to Ni . (Note that if we restrict 
our paths in Fl and F2 to be of odd length, then the above considerations lead 
to at least three edges being contributed to Ni when l(P) + I(P) 2:: 8, i.e. when 
t ~ 9.) As before, each edge of T: killed by a vertex in W: results in one vertex 
from W: not being retained in Wi. There are at most two new vertices added 
to W i - 1 to form W: and at least three new edges added to Ti - 1 to obtain T:. 
Once again, ITil increases by at least as much as IWd. 

In both cases we see by induction that ITil (the number of live edges) exceeds 
IWil (the number of vertices each with the potential to kill a live edge). Thus we 
may continue indefinitely, removing a different edge from Ti at each iteration. This 
contradicts the finiteness of G. 

Next assume that X'( G) = 3. By the Lemma, G can be factored into two odd lin
ear forests. Working through the proof above restricting F to the set of factorizations 
of G into two odd linear forests, we make the following minor modifications. 

To := every second edge in P; 

Ni := every second edge in paths in Si. 

Now, everything follows as before since in case (ii) above, the paths P, P are restricted 
to be of odd length. As noted in the parenthetic comment in case (ii), the finiteness 
of G is contradicted if t 2:: 9 when all paths are of odd length. We conclude that the 
longest (odd) path required in our factorization has length at most 7 and the result 
follows. 18 

Finally we note that our Theorem can easily be extended to graphs of maximum 
degree three since any such graph can be embedded as a subgraph of a cubic graph. 
U sing this we deduce the following: 

Corollary. Let G be a 4-regular graph and k ~ 9 be an integer. Then lak( G) = 3. 
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Proof. Using [10] we may choose a 2-factor F in G. Clearly F has a spanning k
linear forest D. Since H = G - E(D) has maximum degree three, it follows from the 
above-mentioned extension of our Theorem that lak(H) = 2. Thus lak(G) = 3. III 

Having established Theorem 1 and its corollary above, we may now prove Theo
rem 2. 
Proof of Theorem 2. Let G be an r-regular graph with l' ~ 3. If X'(G) = 1', then 
we may factor G into l' I-factors. Choose l' - 3 of these I-factors and delete them 
leaving a cubic spanning subgraph of G which is 3-edge-colourable. By our theorem, 
this subgraph is (2,7)-linear arborific and thus G is (1' - 1,7)-linear arborific as 
required. 

When X'(G) =I=- 1', we proceed by induction on r. Our theorem and the above 
corollary show that this is true for l' = 3,4. Assume that the statement is true for 
all l' :s; 1'0 and let G be an 1'0 + I-regular graph. If 1'0 + 1 is even, then G has a 
2-factor, F, say. The graph G - F is regular of degree 1'0 - 1 and so, by induction, 
may be factored into 1'0 - 2 linear 9-forests. The desired factorization is completed 

decomposing F into two linear 2-forests in the obvious way. 
So assume that 1'0 + 1 is odd. Let M be a maximum matching in G. Then 

G - M has vertices of degrees 1'0 and 1'0 + 1, and the vertices of degree 1'0 + 1 
form an independent set, B, say. The subgraph of G - M induced by B U N(B) 
with edges between vertices in N(B) deleted is bipartite and, by Hall's theorem 
and considerations of degrees, contains a matching, M', which covers the vertices in 
B. Thus G' = G - (M U M') is biregular with degrees 1'0 and 1'0 - 1. If H' is an 
isomorphic copy of G' and Gil is the graph obtained from G' and H' by adding a 
matching between the vertices of degree 1'0 - 1 in G' and the vertices of degree 1'0 - 1 
in H', then Gil is ro-regular and, by our inductive hypothesis, contains a factorization 
into 1'0 - 1 linear 9-forests. Restricting these factors to the vertices in G together 
with M U M' gives the desired factorization of G into 1'0 linear 9-forests. (M U M' is 
a linear forest with components of size 1 and 2.) I 

We note that the technique of Alon in [3] will also produce results along these 
lines, but only for larger d. In fact, for large enough d every d-regular graph can be 
shown to be (d -1,2)-linear arborific (Alon [4]). 
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