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Abstract: Let G be a simple graph on n vertices having 
edge-connectivity /(.' (G) > a and minimum degree o(G) We say G is 
k-critical if /(.' (G) = k and /(.' (G - e) < k for every edge e of G. In 
this paper we prove that a k-critical graph has 1<' (G) o(G). We 
descri be a number of classes of k-cri tical graphs and consider the 
problem of determining the edge-maximal ones. 

1. INTRODUCTION 

For our purposes graphs are undirected, finite, loopless and 

have no multiple edges. For the most part our notation and 

terminology follows that of Bondy and Murty [2]. Thus G is a graph 

with vertex set VCG), edge set E(G), v(G) Vertices and dG) edges. 

However, we denote the complement of G by G, K denotes the complete 
n 

graph on n vertices, K the complete bipartite graph with 
n,m 

bipartioning sets of order nand m, and Ct a cycle of length t. The 

join of disjoint graphs G and H, denoted G v H, is the graph obtained 

by joining each vertex of G to each vertex of H. 

A good deal of graph theory is concerned wi th the 

characterization of graphs having certain specified properties. Graph 

parameters of particular practical interest include: minimum degree 

o(G), connectivity /(.(G) , edge-connectivity /(.' (G), diameter d(G), 

chromatic number X(G), and various covering numbers (vertex, edge, 

clique, etc.). In studying such parameters it is often useful to 

restrict at tent ion to the so called "critical graphs". 
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Let P be a graph parameter. A graph G is said to be P-edge 

(vertex)-critical if peG - e) * peG) (peG - v) * peG)) for every edge 

e (vertex v) of G. For a given P, the problem that arises is that of 

characterizing the class of P-edge-cri tical and class of 

P-vertex-critical graphs. In part icular those that are edge-minimal 

or edge-maximal. This problem has been investigated for the edge case 

when P is: connectivity (Halin [9]); diameter (Caccetta and Haggkvist 

[3], Fan [8]) chromatic index (Yap [16]); and the vertex covering 

number (Lovasz and Plummer [14]), and for the vertex case when Pis: 

connectivity (Chartrand [5], Entringer [7], Hamidoune [11], Krol and 

Veldman [13]) edge-connectivity (Cozzens and Wu [6]). The anologous 

problem for "edge addition" has been considered for diameter (Caccetta 

and Smyth [4], Ore [15]). 

The object of this paper is to study graphs that are 

edge-critical with respect to the parameter K'. For simplicity we say 

a graph G is k-critical if K'(G) = k and K'(G - e) < k for every edge 

e of G. Observe that: K is (n-i)-critical; K is t-critical, where n n,m 
t = min{m,n}; every tree is 1-critical; Cn is 2-critical; and Kl v en 

is 3-critical. We prove that a k-critical graph G has k = o(G). This 

is anologous to the corresponding result of Halin [10] for 

edge-critical graphs with respect to K. In addition, we shall 

consider the problem of determining the maximum number of edges in a 

k-critical graph. 

2. RESULTS 

Let ~(n,k) denote the class of k-critical graphs on n vertices. 

We begin our discussion with some constructions. 

It is very well known that for any graph G K' (G) :s o(G). 

Further, given any positive integers a and b with a :s b there exists a 

graph G on n 2: b + 1 vertices such that K' (G) = a and o(G) == b. A 

class of graphs corresponding the case a = b is sometimes referred to 

as the Harary graphs and are described in standard texts (p.48, [2]). 

Let He n, r) denote the class of graphs on n vert ices having minimum 
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degree and edge-connect i vi ty r and having I~nr ledges. Observe that 

for k ~ 2, H(n,k) ~ b(n,k). In fact, this class is edge-minimal. The 

following is an immediate consequence of the definition of 

criticality. 

Lemma 1. Let G be a graph with K'(G) = 8(G) = k and every edge of G 

is incident to at least one vertex of minimum degree. 

k-crit ical. 

Then G is 

o 

Thus we have one class of cri tical graphs. Let A(n, k) denote 

the subclass of b(n,k) consisting of those graphs in which every edge 

is incident to a vertex of minimum degree. Clearly~, n-k E A(n, k) 

for n ~ 2k. Later we shall show that for n ~ 3k, ~ is an edge 
-1<, n-k 

maximal graph of A(n, k). 

A(n,k) . 

We now construct a class of graphs in 

Let H E H(n - x,k - x) for 1 ~ x ~ n - k, and define G = H v K 
x 

If n - x and k - x are both odd and x * n - k, then G contains an edge 

e = uv with u E H and v E Kx such that G - e is k-edge connected; in 

fact G - e is k-critical. Thus if we let G' G - e if both n - x and 

k - x are odd and G' = G otherwise, then G' E A(n,k) and has (n - x)x 
1 x) (k x) J + l2(n edges. Figure 1 below illustrates this 

construct ion. Note that in our illustration the 11=11 means all edges 

(0 

G G' 

Figure 1 
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between the vertices of H and the vertices of K. We use this 
2 

notation in all our diagrams. In Theorem 2 we show that G' is 

edge-maximal for n < 3k. 

The graphs drawn in Figure 2 below show that A(n, k) -:F- 'G'(n, k). 

In fact, it is easy to construct graphs in the class 'G'(n, k)\.A(n, k). 

One construction is the following. Let n = 2kt + r, 0 ~ r ~ 2k - 1. 

The graph G obtained by adding edges to the graph (2t - 1)~ v ~+r as 

shown in Figure 3 is in the class 'G'(n,k)\.A(n,k) for t ~ 2. Note that 

a line joining two graphs means a "perfect matching" between the two 

graphs. We adopt this convention in all our diagrams. 

G
1 

E 'G'(9,2)\.A(9,2) G
2 

E 'G'(8,3)\.A(8,3) 

Figure 2. 

8 8-0)--C) 
II I II (0 .. • 

88c) 
Figure 3. 



Let G be a graph with a cut vertex v. That is G = G u G wi th 
1 2 

V(G ) fl V(G) {v} Then K' (G) = min{K' (G ), KI 
1 2 1 We thus have 

the following simple but useful property. 

t. Then the graph G whose blocks 

are G
1

, . . . ,G
t 

is in the class bCn
1 

+ n
2 

+ .. - t + 1, k) . 

o 

This lemma provides a procedure for bui lding larger critical 

graphs from smaller ones. 

Let p(u, v) denote the maximum number of edge-disjoint paths 

between vertices u and v in G. Menger's theorem states that 

K' (G) min {p(u,v)}. 

u,veV(G) 

We make use of this result in our next lemma. 

Lemma 3. Let G be a k-edge-connected graph. Then G e b(n,k) if and 

only if p(u,v) = k for every pair of adjacent vertices u,v in G. 

Proof: Suppose G e ben, k) and let e = uv be an edge of G. Consider 

the graph G' :: G e. We have K'(G') k - 1. Let E' be an edge-cut 

set of G' having k - 1 elements. Since K(G) = k, the graph Gil = G' -

E' consists of exactly two components. Further, Gil + e is connected. 

Hence the vert ices u and v are in different components of Gil. 

Consequently the set E = E' u {e} is an edge-cut set of G having k = 
K(G) elements. Thus p(u, v) ~ k. Menger's theorem now impl ies that 

p(u,v) = k as required. 

Conversely, if p(u,v) 

v in G, then K'(G uv) ~ k 

k for every pair of adjacent vertices u, 

1 and hence K'(G) ~ k. Now since K(G) ~ 

k we have G e b(n,k). This completes the proof of the lemma. o 

Thus we can test whether or not a graph G is k-cri tical using 

standard network flow algorithms. 

We now prove the main result of this paper. 
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Theorem 1. If G is a k-critical graph, then BeG) = k. 

Proof: Let G e ~(n,k). Then n ~ k + 1. If n = k + 1, then G = ~+1 
and hence B(G) = k. So we suppose that n ~ k + 2. We prove the 

theorem by contradiction. Assume B(G) > k. 

Let g(k) denote the set of edge-cut sets of G having k elements. 

If E' e gCk), then G - E' consists of two components. Let E* denote 

an element of @(k) such that G - E* has the smallest possible 

component. Let G
1 

and G
2 

denote the components of G - E* and suppose, 

without loss of generality, that n1 = IVCG
1

) 1 ~ n
2 

IVCG
2

) I· 

Let Ai denote the set of vertices of G
i

• i = 1,2, that are 

incident to an edge of E*. We prove the theorem by showing that n
1 

1. Suppose that n
1 

~ 2. We will show that n
1 

~ k + 2. This is 

certainly the case if G
1 

- Al * ¢ as we have assumed that 0 ~ k + 1. 

So suppose that every vertex of G
1 

is in A
1

, We have 

L 
ueV(G ) 

1 

L dG(u) - k 

ueV(G ) 
1 

~ n (k + 1) - k 
1 

k(nl - 1) + nl , (n
1 
~ k) 

~ n
1
(n

1 
- 1) + n

1 
> nl(n

l 
- 1), 

a contradiction. Thus n
1 

~ k + 2. Since IAll S k, we must have at 

least two vertices of G
l 

not in A
l

. Hence there exists an edge e = xy 

in G
1 

with x,y e \' Since G is k-critical, K' (G - e) = k - 1. Now 

since n
2 

~ n
1

,G
2 

contains vertices which are not in A
2

. Let z be one 

such vertex. Clearly z is joined to the vertices of \ by k-edge 

disjoint paths. 

Since K'(G) = k the vertices x and y must each be joined to the 

vertices of A1 by at least k-edge disjoint paths. In fact, the choice 

of E* ensures that there are at least k + 1 such paths. 

This contradicts Lemma 3. Hence n 
1 

our theorem. 
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We mentioned earlier in this section that the Harary graphs were 

edge-minimal members of b(n,k). The problem of determining the 

edge-maximal members of b(n,k) seems to be difficult. Our next result 

determines the maximum number of edges for a graph G E A(n,k). 

Theorem 2. Let G be an edge-maximal graph of A(n,k). Then 

if n ::: 3k 

otherwise 

Proof: By Theorem 1 o(G) = k. We denote the set of vertices of G 

having degree k by X and the remaining vertices by X. Let n
1 

= IXI. 
Since G E A(n,k), we must have n

1 
::: k + 1. Simple counting gives: 

Let g(n
1

) denote the right hand side of (1). 

Clearly 

max 

n !> n - k 
1 

{g(n
1

)} = g(n - k) 

= ken - k) 

if n !> n - k 
1 

otherwise 
(1) 

This maximum is attained by the graph Kk,n-k' For n
1 

::: n - k, we have 

for fixed nand k 

where o(x) = 0 or 1 according to whether x is even or odd. There is 

some algebra involved in establishing (2), but it is fairly 

elementary. 
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From (2) we deduce that g(nl) monotonically increases in n for 
1 1 1 

nl !> l2"(n + k - 1)J and monotonically decreases in n
l 

2:: l2"(n + k + 

1) J . Now since n
l 

2:: n - k, g( n
l

) is decreasing in nl for n 2:: 3k. 

Hence 

max 

n 2:: 3k 

!> g(n - k) 

ken - k) 

For n < 3k, g(nl) attains its maximum value at n
l 

l~(n + k + 1)J. 

It is a straight forward algebraic exercise to verify that g( l~(n + k 

+ 1) J) = l~(n + k)2J. An example of a graph in A(n, k) having this 

number of edges is the graph G' (described following Lemma 1) with 
1 

x = n - l2"( n + k + 1) J . 

Now 

(n + k)2 - 8k(n - k) 

Hence 

always. This completes the proof of the theorem. 

o 

It would be interesting to determine whether or not the 

edge-maximal graphs of ~(n,k) coincide with the edge-maximal graphs of 

A(n,k) . Krol and Veldman [13] have conjectured that for 

K-vertex-critical graphs the analogous question is true for K 2:: 3. 
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