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Abstract 

We present a survey on algorithms for drawing planar digraphs such that 
the arcs do not intersect and are monotonically increasing in the vertical direc-
tion (upward planar drawings). Various graphic standards (e.g., 

and quality measures bends) are considered. 

1 Introduction 

The problem of constructing aesthetically of has received 

increasing attention in the last years [6,18]. standards exist for the 

representation of graphs in the plane. Usually, the vertices are represented by 

and the simple open curves. In a. polyline the edges are rPr\rp'c:pn 

by polygonal chains. In a straight-line drawing the are represented by straight-

line segments. A drawing is planar if no bvo intersect. A polyline is 

a gn:d drawing if the vertices and the bends of the edges have integer coordinates. A 

drawing of a digraph is upward if each arc is curve monotonically increasing in the 

vertical direction. Upv,'ard drawings are widely used to display hierarchic structures. 

Examples include PERT diagrams, ISA hierarchies, and subroutine-call graphs. 

Typical quality measures for the readability of a drawing are the minimization 

of the number of crossings and the display of symmetries. In polyline drawings it 

is desirable to have a low number of bends. The minimization of the area of the 

drawing (defined as the area of the smallest convex polygon covering the drawing) is 

also important. Here, we assume that a resolution rule is given which implies a finite 
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minimum area for the drawing. For example, we may require integer coordinates for 

the vertices (grid drawing), or a minimum distance between any two vertices. 

This paper surveys algorithms for constructing upward planar drawings of di­

graphs and related representations in the plane. \Ve discuss the performance of the 

algorithms in terms of the aforementioned quality measures and of their time com­

plexity. The digraphs which admit upward planar drawings are exactly the subgraphs 

of planar st-graphs, which are planar acyclic digraphs with exactly one source and 

exa.ctly one sink, both on the external face. 

Since planar undirected graphs can be augmented and oriented into planar st­

graphs, and nonplanar graphs can be transformed into planar graphs by replacing 

crossings with fictitious vertices, the surveyed algorithms can be extended and mod­

ified to draw general graphs. 

2 Planar st-graphs 

Let G be an acyclic digraph. An arc ('11, v) of G is transitive if there is another directed 

path in G from u to v. An acyclic digraph is said to be reduced if it has no transitive 

arcs. l\otice that all transitive arcs from G we obtain a reduced 

with the same transitive closure as G. A topological numbering ~ of G maps every 

vertex v of G to number such that ~(u) < U v) for every arc ('11, v). 1\ umber 

~(v) is often referred to as the rank of vertex v. A digraph G admits a topological 

numbering if and only if it is acyclic. 

A planar st-graph is an acyclic planar digraph G with exactly one source and 

exactly one sink t, embedded in the plane with vertices sand t on the boundary 

of the external face (see Figure 1). Planar st-graphs were first introduced in [11] in 

connection with a planarity testing algorithm. They have subsequently been used in 

a host of applications, dealing with partial orders [8,10]' planar graph embedding [1,4, 

17], graph planarization [13], floor planning [22), planar point location [7,14], visibility 

[12,16,19,20,2L23], motion planning [15], and VLS1 layout compaction [22]. 

Lemma 1 f19} Let G be a planar st-graph. The incoming arcs of each vertex v appear 

consecutively around v, and so do the outgoing arcs. Also, the boundary of each face f 

consists of two directed paths enclosing f, with common origin and destination. 

Let V, A, and F denote the set of vertices, arcs, and faces of G, respectively. \Ve 

assume that set F contains two representatives for the external face of G, denoted s· 

("left external face") and r ("right external face"). For each arc a, we define low(a) 

and high( a) as the tail and head vertices of a, respectively. Also, we denote by left ( a) 
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Figure 1: A planar st-graph G (solid lines) and its dual C- (dashed lines). 

the face to the left of a, and right(a) the face to the right of a when a is traversed 

from low(a) to high(a). If arc a has the external face to its left, we define left (a) s·, 

and if a has the external face to its right, we define right ( a) = t*. The dual graph C­

of a planar st-graph G is the embedded planar digraph with vertex set F and having 

an arc a- from left(a) to right(a), for each a E A (see Figure 1). 

Lemma 2 {l2} Let G be a planar st-graph. The dual graph C- is a planar st-graph 

with source s· and sink r. 

Notice the duality of the two separation properties expressed by Lemma 1. The 

face separating the incoming and outgoing arcs of a vertex v are called left (v) 

and right (v), respectively (see Figure 2.a). Also, the source and sink of the bound­

ary of a face f are called low(f) and high(f), respectively Figure 2.b). The 

terminology can be extended by defining vertices low ( c) and high ( c) and faces 

left(c) and right(c) for each element c in V U AuF. For each vertex v, we de­

fine low(v) = high(v) v and left(v) and right(v) as above. For each face f, we 

define low(f) and high(f) as above and left (f) = right(f) = f. 

Lemma 3 [ll} Let G be a planar st-graph. Every vertex v of G is on a simple path 

from s to t. Also) the digraph obtained from C by adding the arc (s, t) is planar and 

2-connected. 
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Figure 2: Separation of primal and dual incidences in a planar st-graph. 

3 Upward planarity 

Let G be a digraph. \Ve say that G is upward planar if G admits an upward planar 

drawing. Clearly, an upward planar graph must be acyclic and planar. However, 

acyclicity and planarity are not sufficient to guarantee upward planarity, as shown 

in the example of Figure 3. In this section we present a characterization of upward 

planarity as subgraph containment in a planar st-graph. 

Let r be a straight-line upward planar drawing of a digraph G. \Ve denote with 

()( a) the slope of arc a of r with respect to the x-axis. Since r is upward, 0 < B( a) < 7T 

for every arc a. Let and Bmax be the minimum and maximum slopes of the arcs on 

the external face of r. \Ve say that r has tolerance angle 0' if the maximum deviation 

of the slope of any arc of r from the interval [Bmin, Bmax] is upper bounded by 0', i.e., 

max{ B( a) - Bmin , Bmax - B( a)} ::; 0', for each arc a. 

Lemma 4 [3} Let G be a maximal planar st-graph. Given a straight-line upward 

planar drawing .6. for the external face of G and a constant 0' > 0) there exists a 

straight-line upward planar drawing r of G with external face .6 and tolerance angle 

0'. 

Sketch of Proof: The proof is by induction on the number n of vertices of G. The 

basis of the induction, n = 3, is immediate. NO\v, assume that the theorem holds for 
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3: Planar acyclic digraphs that are not upward planar. 

graphs with less than n vertices. Let v be a vertex of G that is not on the external 

and va, Vk-l be the neighbors of v, in circular order around v. Since G is 

maximal, these vertices form an undirected cycle X. \\le distinguish two cases: 

Case 1: X has a chord, i.e., an arc (Vi1 Vj) between two nonconsecutive vertices. 

The undirected cycle), v, delimits two subgraphs of G, each a planar st­

graph, vv'here we denote the external one with G1 and the internal one \vith G2 • 

the inductive hypothesis we construct a straight-line upward planar drawing r 1 

for G1 , with external face .6. and tolerance angle cx/2. Let A be the triangle in r 1 

corresponding to the cycle ),. \Ve use again the inductive hypothesis to construct a 

straight-line upv,,'ard planar drawing r 2 for G2 , with external face A. and tolerance 

angle cx/2. The union of r 1 and r 2 is a straight-line upward planar drawing r for G 
with the required properties. 

Case 2: Otherwise. 

Let Vj be a predecessor of v such that there is no directed path from Vi to any other 

predecessor of v. \Ve contract arc (Vi, V) into vertex Vi. The resulting graph G' is 

a maximal planar st- graph. Now, we apply the ind ucti ve hypothesis to construct 

a straight-line upward planar drawing r' for G' with external face .6. and tolerance 

angle 0./2. Finally, \\'e obtain a drawing r of G by suitable re-expanding vertex Vj 

into arc (Vj,v). 0 

Theorem 1 [3:9} A digraph is upward planar if and only if it is a subgraph of a 

planar st-gmph. Also) every upward planar digraph admits a straight-line upward 

planar drawing. 
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4 Straight-line drawings 

4.1 General planar st-graphs 

\Ve begin by how to construct a straight-line upward planar drawing of a 

maximal planar st-graph G. 

Algorithm Stmight-Line-Draw [3} 

Input: maximal planar sf-graph G; 

Output: straight-line upward planar drawing r of G. 

1. Preprocessing: Compute a topological numbering ~ of G and construct for 
each vertex v a balanced search tree T(v), called rank tree of v, which stores 
the arcs incident upon v sorted according to the rank of their other endpoint 
vertex. Notice that we can perform insertions, deletions, and searches in T(v) 
in O(log n) time, n being the number of vertices of G. Also, construct a doubly 
connected list £, called the candidate storing the internal vertices of G vi'ith 
degree at most five. 

2. Drawing: Call a recursive that follows the steps of the proof of 
Lemma 4. \\1e efficiently discriminate between Case 1 and Case 2 of Lemma 4 
by choosing v from the candidate list £, and then searching for chords the 
rank trees. Since v has degree at most \ve need to perform a constant 
number of such tree searches, with total time O(log n). In Case 1, in order to 
call the procedure recursively, we have to create the candidate lists L1 and £2 
for the subgraphs G1 and G2 • This is done by visiting in parallel and G21 

\vhere at each visit step we perform a constant amount of work. \A/henever we 
find a vertex that is in the original candidate list £ of G we move it to the 
appropriate list LIar £2. 'We terminate this parallel visit as soon as one of the 
two subgraphs is completely visited. At this point, \ve move to the candidate 
list of the other subgraph the remaining vertices in L. 

Theorelll 2 [3} Let G be a maximal planar st-gmph with n vertices. Algorithm 

Straight-Line-Draw constructs a straight-line upward planar drawing r for G in 

O(nlogn) time usingO(n) space. 

Since a planar st-graph with n vertices can be augmented into a maximal planar 

st-graph in O( n) time, we have: 

Corollary 1 [3} Let G be a planar st-graph with n vertices. A straight-line upward 

planar drawing r for G can be constructed in O( n log n) time using O( n) space. 
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It should be noticed that the above algorithm uses arithmetic computations with 

real numbers, so that the drawing might have exponential area if a resolution rule is 

given. Indeed, as shown in Section 7, there is and exponential lower bound on the 

worst-case area requirement of straight-line upward planar drawings. 

4.2 Reduced planar st-graphs 

In this section we sketch an algorithm for constructing straight-line grid upward planar 

drawings of reduced planar st-graphs with the following remarkable properties: linear 

time complexity, quadratic area, detection and display of symmetries, and geometric 

characterization of the transitive closure by means of the dominance relation between 

the points associated with the vertices. 

Algorithm Dominance-Draw [5} 

Input: reduced planar sf-graph G; 

Output: straight-line up"irard planar grid drawing r of G. 

1. Preliminary Layout: Assign to each vertex v distinct preliminary X-and 
Y-coordinates in the range [0, n 1] by computing two topological numberings 
of the vertices of G. Such topological numberings are essentially obtained by 
scanning the outgoing arcs of each vertex from left to right and from right to 
left, .,.a<'~~r"'"'''' 

2. Compaction: Compute the final x-coordinates by scanning the vertices accord­
ing to the order given by the preliminary X-coordinates. Let u and v be a pair 
of vertices with consecutive X-coordinates. In general, the final x-coordinate is 
not 'incremented if (u, v) is an arc, and is incremented otherwise. However, in 
the special case when (u, v) is the only outgoing arc of u and the only incoming 
arc of v, the x-coordinate is incremented. This is done to prevent the possibility 
that u and v be assigned the same pair of coordinates. The final y-coordinates 
are similarly computed from the preliminary Y-coordinates. 

A run of algorithm Dominance-Draw is illustrated in Figure 4. Perhaps the best 

aesthetic result is obtained by a r. /4 rotation of the axes. \Ve saj' that a straight-line 

drawing of a digraph is a dominance drawing if for any two vertices u and v there is 

a directed path from u to v if and only if x(u) S; x(v) and y(u) S; y(v). Notice that 

these two conditions cannot be simultaneously satisfied with equality since distinct 

vertices must be placed at distinct points. 

Theorem 3 [5} Let G be a reduced planar st-graph with n vertices. Algorithm 

Dominance-Drav.; has O( n) time complexity and constructs a planar dominance grid 

drawing r of G with O(n 2
) area. 
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Figure 4: A run of Algorithm Dominance-Draw: (a) preliminary drawing; (b) final 
drawing; ( c) final drawing rotated by a 7f /4 angle; (d) minimum area drawing. 
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A pq-componeni of a planar st-graph G is an induced subgraph 0' of G such that 
(see Figure 5.a): 

1. 0' is a planar pq-graph, where the pair {p, q} is a separation pair of G; 

2. 0' contains every vertex of G that is on some path from p to q; 

3. 0' contains every outgoing arc of p and every incoming arc of q. 

Notice that G is a pq-component of itself, namely, its st-component. 

Theoren1 4 [5} Let G be a reduced planar st-graph. The drawing r of G constructed 
by Algorithm Dominance-Draw displays all the geometric isomorphisms and coiso­
morphisms (i.e., translations, reflections, and rotations) of the pq-components of C. 

Figures 5.b-c show the drawing produced by algorithm Dominance-Draw for the 
planar st-graph of Figure 5.a. If the display of symmetries is not important, Algorithm 
Dominance-Draw can be modified so that it produces a minimum area drawing among 
all dominance drawings of G 4.d). 

5 Tessellation and visibility representations 
In this section we present two drawing standards for planar st-graphs, called tessel­
lation representation and visibility representation, where vertices and arcs are as­
sociated with isothetic rectangles/segments in the plane. These representations are 
interesting in their own and they are useful to generate polyline drawings. 

5.1 Tessellation representations 

A tile is a rectangle with sides parallel to the coordinate axes. A tile can be unbounded 
or degenerate to a segment or a point. Two tiles are horizontally (vertically) adjacent 
if they share a portion of a vertical (horizontal) side. The coordinates of a tile B will 
be denoted by xmin(B), xmax(B), Ym.in(B), and Ymax(B). 

Let G be a planar st-graph. As usual, we denote by II, A, and F the sets of 
vertices, arcs, and faces of G, respectively. (Recall that F has two "external faces", 
s· and t*.) An element c E V U AUF is called a constituent of O. A tessellation 
representation 8 for G maps each constituent (vertex, arc, or face) c of G into a tile 
8(c) such that (see Figure G.b): 

1. The interiors of tiles 8(c) and 8(d) are disjoint whenever c '#- d. 
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Figure 5: (a) A planar st-graph G with two rotationally isomorphic pq-components. 
(b) Drawing of G constructed by algorithm Dominance-Draw. (c) Rotated drawing. 
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2. The union of all tiles 8(c), c E V U AUF, is a tile. 

3. Tiles 8( c) and 0( d) are horizontally adjacent if and only if: 

c left(d) or c = right(d) or d left(c) or d right (c). 

4. Tiles 8( c) and 8( d) are vertically adjacent if and only if: 

c = low(d) or c = high(d) or d = low(c) or d = high(c). 

The following algorithm constructs a tessellation representation 8 for a planar st­

graph G such that the tiles associated with vertices and faces degenerate to segments. 

AlgoritluTI Tessellation-Draw {21} 

Input: planar st-graph G; 

Output: tessellation representation 8 for G. 

1. Compute a topological numbering Y of G. 

2. Compute a topological numbering X of G-. 

3. For each constituent c E V U AUF, let the coordinates of tile 8( c) be: 

Xmin(c) = X(left(c)), xmax(c) = X(right(c))l 
Ymin(c) = Y(lOW(C))l Ymax(c) = Y(high(c)). 

An example of a run of algorithm Tessellation-Draw is shown in Figure 6. 

Theorem 5 {21} Let G be a planar st-graph with n vertices. Algorithm Tessellation­

Draw correctly constructs a tessellation representation 8 of G in O( n) time. 

Theoren1 6 Given a planar sf-graph G with n vertices and nonnegative numbers h( c) 

and w( c), for each constituent c of G, a minimum area tessellation r"epresentation 8 

for G such that each tile 8(c) has height at least h(c) and width at least w(c) can be 

constructed in time O(n). 

Corollary 2 Given a planar st-graph G with n vertices) a minimum area grid tessel­

lation representation 8 of G such that no tile is degenerate can be computed in O( n) 
time. Also) the area of 0 is O(n2

). 

Corollary 3 Given a planar st-graph G with n vertices, a minimum area grid tessel­

lation representation 8 of G such that the vertex- and face-tiles ar'e degenerate and 

the arc-tiles are nondegenerate can be computed in O(n) time. Also, the area of 8 is 

O(n2
). 
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Figure 6: Example of a run of algorithm TesseZZation-Dmw: (a) graphs C and C­
labeled by Y and X; (b) tessellation representation e constructed by the algorithm. 
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G 

Figure 7: Example of a visibility representation. 

5.2 Visibility representations 

A visibility representation W for a planar sf-graph G maps each vertex v into a hor­

izontal segment W(v), and each arc a into a vertical segment W(a) such that (see 

Figure 7): 

1. segments w(u) and w(v) are disjoint for distinct vertices u and v; 

2. segment W(a) has its lower endpoint on W(low(a)), its upper endpoint on 

w(high(a)) and does not intersect any other segment. 

A visibility representation can be viewed as a straight-line drawing where each 

arc is a vertical segment, and each vertex has been stretched into a horizontal seg­

ment. Algorithms for constructing visibility representations are given in [3,12,16, 

19]. The following algorithm constructs a visibility representatior from a tessellation 

representation. 

Algorithm Visibility-Draw 

Input: planar st-graph G; 

Output: visibility representation W for G. 

1. Construct a tessellation representation G for G. 
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2. For each vertex v, let w(v) be equal to a horizontal segment extending from the 
left side to the right side of tile 8( v). 

3. For each arc a 1 let W(a) be equal to any vertical segment intersecting the interior 
of tile 8(a) and extending from W(low(a)) to \lI(high(a)). 

Theorem 7 Let G be a planar st-graph with n vertices. Algorithm Visibility-Draw 

correctly constructs a visibility 1'epl'eseniation W for G in 0 (n) time. 

Corollary 4 Let G be a planar st-graph with 71, vertices. A minimum area grid vis­

ibility representation \lI for G can be computed in O(n) time. Also, the area of W is 
0(71,2). 

An interesting feature of visibility representations is the possibility of aligning 

arcs. Let G be a planar sf-graph. Two (directed) paths 7il and 7i2 of G are said to 

be nonintersecting if they are arc-disjoint and do not cross at common vertices. 

Let n be a collection of nonintersecting paths of a planar st-graph G. It is possible 

to construct a visibility representation of G such that the arcs of every path in n are 

vertically aligned. 

Theorem 8 [2} Let G be a planar st-graph with n vertices) and n a set of noninter­

secting paths covering the arcs of G. A grid visibility representation for G with 0(71,2) 

area such that the arcs of every path 7i in IT are vertically aligned can be computed in 

O(n) time. 

6 Polyline drawings 

In this section we present two algorithms for constructing polyline upward planar 

drawings of planar st-graphs. The first algorithm transforms a visibility representation 

into a polyline drawing. The second algorithm uses the technique for domination 

drawings of reduced planar sf-graphs. 

Algorithm Polyline-Draw-l [3} 

Input: planar st-graph G; 

Output: polyline upward planar drawing r of G. 

1. Construct a minimum area grid visibility representation \lI for G according to 
Corollary 4. \Ve denote with }? (v) the y-coordinate of vertex-segment \lI (v), 
and with X(a) the x-coordinate of arc-segment \jJ(a). An arc a will be called 
short if the arc-segment \jJ( a) has length 11 and long otherwise. 
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2. foreach vertex v do begin 
let a be a long arc incident upon v, if one exists, or otherwise any 

arc incident upon v; 
let r( v) be the intersection of w( v) and w( a) end 

3. foreach arc a do begin 
if a is short 

then let r(a) be the segment r(low(a)) I-t r(high(a)) 
else let r( a) be the polygonal line: 

r(low(a)) I-t (X(a) , Y(low(a)) + 1) I-t 

I-t (X(a) , Y(high(a)) - 1) I-t r(high(a)) end 

Theorem 9 [3} Lei G be a planar st-graph with n vertices. Algorithm Polyline-Draw­

l constructs in O( n) time a polyline grid upward planar drawing r for G such that: 

1. r( a) has at most two bends, for each arc a; 

2. r has a total of no more than (IOn - 31)/3 bends; 

3. r has O(n2
) area. 

Theoren1 10 [2} Let G be a planar st-graph with n vertices, and II a set of nonin­

tersecting paths of G. A polyline grid upward planar drawing r for G such that 

1. r has a total of no more than 4n - 10 bends; 

2. r has O(n 2
) area; 

3. the arcs of every path 11 in II are vertically aligned 

can be computed in O( n) time. 

The following algorithm uses the technique for straight-line drawings of reduced 

planar st-graphs. 

Algorithm Polyline-Draw-2 [5} 

Input: st-graph G; 

Output: polyline upward planar drawing r of G. 

1. Construct a reduced planar st-graph G' by replacing each transitive arc a with 
the chain (low(a), Va, high(a)), where Va is a new vertex, called a reduction 
vertex. 

2. Compute a dominance drawing r' of G' using algorithm Dominance-Draw. 
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3. Construct from r' a polyline drawing r of G by replacing each reduction vertex 
r'( va) with a bend. 

Theorem 11 [5} Let G be a planar si-graph with n vertices. Algorithm Polyline­

Draw-2 constructs in O(n) time a polyline grid upward planar drawing r for G such 

thai: 

1. r( a) has at most one bend if a is a transitive arc, and no bends otherwise; 

2. r has a toial of no more than 2n 5 bends; 

3. r has 0(n2 ) area. 

7 Area requirement of planar st-graphs 

In this section we present a class of planar st-graphs which require exponential area in 

any straight-line upward planar dra'wing. This class is recursively defined as follows 

(see Figure S). Go, shovm in Figure 8.a, consists of two So and to, and a 

single arc, (so, to), directed from So to to. , shown in S.b, consists of Go 

plus vertices .51 and t} and arcs (S1' (to, t1), (51, to) and (so, tl)' In general, Gn 
is constructed from Gn- 1 by adding vertices Sn and tn, and arcs (sn' Sn-l), (tn-I, in), 

(Sn' in-d and (.5 n-l: in), with the embedding shown in Figure S.c. 

It is easy to verify that Gn is a planar snin-graph with 2n + 2 vertices and 4n + 1 

arcs. Notice that the arcs (.5i1 ii-I) are always embedded "on the right" and the arcs 

(Si-1, ii) are always embedded "on the left". 

Theoren1 12 [5} Given a resolution rule, let An be the minimum area of a straight­

line upward planar drawing of Gn that preserves the embedding. Then An = D(2n). 

Sketch of Proof: \Ve show by induction that An ~ 4An- 2 • Since A2 ~ c, for some 

constant c depending on the resolution rule, this implies the claimed result. 0 

The restriction that the drawing of Gn preserves the given embedding can be 

removed since the addition of arcs (Si-2: ij) and (Sj, ti-2) (2 S i ::::; n) ensures that Gn 

is 3-connected for n ~ 2, and 3-connected graphs have a unique embedding. Hence, 

we have: 

Theorem 13 [5} A straight-line upward planar drawing of Gn has area D(2n) under 

any resolution rule. 
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So 
(a) 

Figure 8: Recursive definition of planar st-graph Gn . 
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Notice that the graph Gn achieving exponential area requirement has 2n - 2 

transitive arcs. Indeed, as shown in Theorem 3, a reduced planar sf-graph admits 

a straight-line drawing with quadratic area. If we allow bends, we have an fl(n 2
) 

worst-case lower bound on the area of planar polyline drawings, even if we drop the 

upward requirement [24]. 

8 Open problems 

Vve conclude the paper with the following open problems: 

1. Find an O( n )-time algorithm for constructing a straight-line upward planar 

drawing of an n-vertex planar st-graph, or provide an D(n log n) lower bound. 

2. Find a polynomial-time algorithm for testing whether a digraph G is upward 

planar (i.e., whether G is a subgraph of a planar st-graph), or show that the 

problem is NP-complete. 

3. the tradeoff between area and number of bends in polyline upward planar 

drawings. 
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