# Self-converse Mendelsohn designs with odd block size 

Xiuling Shan and Qingde Kang*<br>Institute of Mathematics, Hebei Normal University<br>Shijiazhuang, 050091, P. R. China

Qiujie Sun

Shijiazhuang Railway Institute
Shijiazhuang, 050043, P. R. China


#### Abstract

A Mendelsohn design $M D(v, k, \lambda)$ is a pair $(X, \mathcal{B})$, where $X$ is a $v$ set together with a collection $\mathcal{B}$ of ordered $k$-tuples from $X$ such that each ordered pair from $X$ is contained in exactly $\lambda k$-tuples of $\mathcal{B}$. An $M D(v, k, \lambda)$ is said to be self-converse, denoted by $\operatorname{SCMD}(v, k, \lambda)=$ $(X, \mathcal{B}, f)$, if there is an isomorphism $f$ from $(X, \mathcal{B})$ to $\left(X, \mathcal{B}^{-1}\right)$, where $\mathcal{B}^{-1}=\left\{\left\langle x_{k}, x_{k-1}, \ldots, x_{2}, x_{1}\right\rangle ;\left\langle x_{1}, \ldots, x_{k}\right\rangle \in \mathcal{B}\right\}$. The existence of $S C M D(v, 3, \lambda), S C M D(v, 4,1), S C M D(v, 5,1)$ and $S C M D(v, 4 t+2,1)$ has been completely settled, where $2 t+1$ is a prime power. But up to now, there is no result about odd block size larger than five. In this paper, we give a constructive proof for the existence of $k-S C M D(v)$, where $k$ is odd and $k>5, v \equiv 1(\bmod k)$.


## 1 Introduction

Let $X$ be a $v$-set and $3 \leq k \leq v$. A cyclic $k$-tuple from $X$ is a collection of $k$ ordered pairs $\left(x_{0}, x_{1}\right),\left(x_{1}, x_{2}\right), \cdots,\left(x_{k-2}, x_{k-1}\right)$ and $\left(x_{k-1}, x_{0}\right)$, where $x_{0}, x_{1}, \cdots, x_{k-1}$ are distinct elements of $X$. It is denoted by $\left\langle x_{0}, x_{1}, \cdots, x_{k-1}\right\rangle$ or any cyclic shift $\left\langle x_{i}, x_{i+1}, \cdots, x_{k-1}, x_{0}, \cdots, x_{i-1}\right\rangle$. A $(v, k, \lambda)$-Mendelsohn design is a pair $(X, \mathcal{B})$, where $\mathcal{B}$ is a collection of cyclic $k$-tuples (called blocks) from $X$, such that each ordered pair of distinct elements of $X$ belongs to exactly $\lambda$ blocks of $\mathcal{B}$. It is denoted by $M D(v, k, \lambda)$.

Let $(X, \mathcal{B})$ be an $M D(v, k, \lambda)$. Define

$$
\mathcal{B}^{-1}=\left\{\left\langle x_{k-1}, x_{k-2}, \cdots, x_{1}, x_{0}\right\rangle ;\left\langle x_{0}, x_{1}, \cdots, x_{k-1}\right\rangle \in \mathcal{B}\right\} .
$$

[^0]Obviously ( $X, \mathcal{B}^{-1}$ ) is also an $M D(v, k, \lambda)$, which is called the converse of $(X, \mathcal{B})$. If there exists an isomorphism $f$ from $(X, \mathcal{B})$ to $\left(X, \mathcal{B}^{-1}\right)$, then the $M D(v, k, \lambda)$ is called self-converse and this is denoted by $\operatorname{SCMD}(v, k, \lambda)=(X, \mathcal{B}, f)$. In particular, it is denoted by $k-S C M D(v)$ when $\lambda=1$. It is easy to show that necessary conditions for the existence of both an $M D(v, k, \lambda)$ and an $\operatorname{SCMD}(v, k, \lambda)$ are

$$
\lambda v(v-1) \equiv 0(\bmod k) .
$$

C.J. Colbourn and A. Rosa [2] posed the open problem about the existence of selfconverse $M D(v, 3, \lambda)$. Yanxun Chang, Guihua Yang and Qingde Kang [3] have solved the case for $\lambda=1$. Jie Zhang [4] solved the case for any $\lambda$. Qingde Kang et al. [5],[6] have completely solved the cases for $k=4,5$ and $4 t+2$, where $2 t+1$ is prime power. But, up to now, there is no result about odd block size larger than five. In this paper, the following results are obtained.
Theorem 1.1 For odd $k>5$, there exists a $k-S C M D(v)$ if $v \equiv 0(\bmod 4)$ and $v \equiv 1(\bmod k)$.
Theorem 1.2 There exists a $(2 t+1)-S C M D(4 t+2)$ for any positive integer $t>2$.
Theorem 1.3 There exists a $k-S C M D(v)$ for odd $k>5$ and $v \equiv 1(\bmod k)$, except for $(4 t+1)-S C M D(4 t+2)$ for any integer $t \geq 2$.

## 2 Definition and Remarks

Let $Z_{v}$ be the ring of integers modulo $v$ and let $d_{1}, d_{2}, \cdots, d_{m}$ be elements of $Z_{v} \backslash\{0\}$. The ordered sequence $D=\left(d_{1}, d_{2}, \cdots, d_{m}\right)$ is called a difference tuple on $Z_{v}$. The corresponding number tuple $\left(i, i+d_{1}, \cdots, i+\sum_{j=1}^{m} d_{j}\right)$ is denoted by $\widetilde{D}_{i}, i \in Z_{v}$. For convenience, we define $h e a d\left(\widetilde{D}_{i}\right)=i$ and $\operatorname{tail}\left(\widetilde{D}_{i}\right)=i+\sum_{j=1}^{m} d_{j}$. Furthermore, define:

If the points in $\widetilde{D}_{0}$ are distinct, then $D$ is called a difference path and this is denoted by $D P(D)$. Obviously, if $D$ is a $D P$ then $-D$ and $D^{-1}$ are both $D P$ s. If the head and the tail of $\widetilde{D}_{0}$ both are 0 , then $D$ is called a difference cycle and this is denoted by $D C(D)$. It is easy to see that if $M$ is a $D C$, then $-M^{-1}$ is a $D C$ too. Let $a, b, d, k$ be positive integers with $a<d<b$. Define:

$$
\begin{aligned}
& {[a, b]_{k}=(a, a+k, \cdots, b)} \\
& {[a, b]_{k} \backslash\{d\}=(a, \cdots, d-k, d+k, \cdots, b)}
\end{aligned}
$$

where $a \equiv b \equiv d(\bmod k)$ and the subscript $k$ may be omitted when $k=1$.
For given point set $X=Z_{v}$, let $\mathcal{T}$ be the set of all cyclic $k$-tuples on $X$ and let $f$ be a bijection on $X$. Denote $\mathcal{P}=\{(x, y) ; x, y \in X, x \neq y\}$. The point set $X$ is partitioned into point-orbits under the action of $f$. Two distinct points $x$ and $y$ are in the same point-orbit if and only if there is a positive integer $s$ such that $f^{s}(x)=y$. The point-orbit containing the point $x$ is denoted by $O_{f}(x)$. The number of points in $O_{f}(x)$ is called the length of $O_{f}(x)$. The mappings induced by $f$ are $f((x, y))=(f(x), f(y))$ on $\mathcal{P}$ and $f\left(\left\langle x_{0}, x_{1}, \cdots, x_{k-1}\right\rangle\right)=\left\langle f\left(x_{0}\right), f\left(x_{1}\right), \cdots, f\left(x_{k-1}\right)\right\rangle$ on $\mathcal{T}$. Denote

$$
R f(P)=(f(P))^{-1}, \quad \forall P \in \mathcal{P} ; \quad R f(B)=(f(B))^{-1}, \forall B \in \mathcal{T}
$$

Then the finite permutation group on $\mathcal{P}$ (or $\mathcal{T}$ ) generated by $R f$ gives an orbit partition of $\mathcal{P}$ (or $\mathcal{T}$ ). Each orbit in $\mathcal{P}$ containing the pair $P$ is called the pair-orbit $O(P)$. Each orbit in $\mathcal{T}$ containing the block $B$ is called the block-orbit $O(B)$. The number of pairs (or blocks) in a pair-orbit (or block-orbit) is called the length of the orbit. Call a block $B$ self-converse if $R f(B)=B$.

Let $d$ (or $D$ ) be the difference (or difference cycle) corresponding to pair $P$ (or block $B$ ). Then, the difference $-d$ (or difference cycle $(-D)^{-1}$ ) corresponds to $R f(P)$ (or $R f(B)$ ). As well, $O(P)=O(R f(P))$ and $O(B)=O(R f(B))$.

Let $x, y \in X, x \neq y$ and $y-x=d$. Suppose the length of $O_{f}(x)$ is $m$. If $x$ and $y$ are in the same point-orbit, then we have

|  | Number of pair-orbits | length of each pair-orbit |
| :---: | :---: | :---: |
| $m$ odd, $\forall d$ | 1 | $2 m$ |
| $m$ even, $d \neq \frac{m}{2}$ | 2 | $m$ |
| $m \equiv 0(\bmod 4), d=\frac{m}{2}$ | 1 | $m$ |
| $m \equiv 2(\bmod 4), d=\frac{m}{2}$ | 2 | $\frac{m}{2}$ |

Otherwise, let the length of $O_{f}(y)$ be $n$. Then, we have

|  | Number of pair-orbits | length of each pair-orbit |
| :---: | :---: | :---: |
| $m$ odd, $n$ odd | 1 | $2[m, n]$ |
| else | 2 | $[m, n]$ |

If there are two pair-orbits corresponding to $d$, we call them complementary. As examples, we give the following:

1. if $X=Z_{4}$ and $f=(0,1,2,3)$, the pair-orbit corresponding to the difference 2 under $R f$ is $\{(0,2),(3,1),(2,0),(1,3)\}$;
2. if $X=Z_{6}$ and $f=(0,1,2,3,4,5)$, the pair-orbits corresponding to the difference 3 under $R f$ are $\{(0,3),(4,1),(2,5)\}$ and $\{(1,4),(5,2),(3,0)\}$;

3 . if $|X|=5$ and $f=(0,1,2)(\overline{0}, \overline{1})$, the pair-orbits corresponding to the mixed difference 1 under $R f$ (see Section 5) are $\{(0, \overline{1}),(\overline{0}, 1),(2, \overline{1}),(\overline{0}, 0),(1, \overline{1}),(\overline{0}, 2)\}$ and $\{(1, \overline{0}),(\overline{1}, 2),(0, \overline{0}),(\overline{1}, 1),(2, \overline{0}),(\overline{1}, 0)\}$.

In particular, we discuss the case $X=Z_{v}$ and $f=(0,1, \cdots, v-1)$, where $v \equiv$ $0(\bmod 4)$. Then, it is easy to see that $\left\{(2 i, 2 i+d),(2 i+d+1,2 i+1) ; 0 \leq i \leq \frac{v}{2}-1\right\}$ and $\left\{(2 i+1,2 i+d+1),(2 i+d, 2 i) ; 0 \leq i \leq \frac{v}{2}-1\right\}$, where $d \in Z_{v}^{*}$, are complementary pair-orbits. The two orbits are the same when $d=\frac{v}{2}$, i.e., $\left\{\left(i, i+\frac{v}{2}\right) ; 0 \leq i \leq v-1\right\}$.

Let $D$ be a $D C$ on $Z_{v}$. Define the following $D C$ s.
$1 S D C(D)$, where $D$ satisfies:
(1) D contains exactly one $\frac{v}{2}$.
(2) For any two pairs in $\widetilde{D}_{0}$, their pair-orbits are distinct.
(3) For any pair $P=(x, x+d)$ in $\widetilde{D}_{0}, d \neq \frac{v}{2}$, there exists a pair $P^{\prime}$ in $\widetilde{D}_{0}$ such that $O(P)$ and $O\left(P^{\prime}\right)$ are complementary.
$2 C D C(D)$, where $D$ satisfies:
(1) $\frac{v}{2} \notin D$.
(2) All the elements in $a b s(D)$ are distinct.

From the above definitions and the discussion of pair-orbits, we have the following lemma.
Lemma 2.1 Under the action of the group generated by $R f$,
(1) there is only one block-orbit with length $v$ corresponding to $S D C(D)$;
(2) there are two block-orbits with length $v$ corresponding to $C D C(D)$.

Obviously, $\left\{\widetilde{D_{2 i}}, \widetilde{D_{2 i+1}}-1 ; 0 \leq i \leq \frac{v}{2}-1\right\}$ and $\left\{\widetilde{D_{2 i+1}},{\widetilde{D_{2 i}}}^{-1} ; 0 \leq i \leq \frac{v}{2}-1\right\}$ are the complementary block-orbits corresponding to $C D C(D)$. But $\left\{\widetilde{D_{2 i}}, \widetilde{D_{2 i+1}}{ }^{-1} ; 0 \leq\right.$ $\left.i \leq \frac{v}{2}-1\right\}$ is the only orbit corresponding to $S D C(D)$.

## 3 Some sub-structures

A $k$-cycle decomposition of a complete graph $K_{v}$ is a collection of undirected cycles with length $k$, whose (undirected) edges partition all the edges of $K_{v}$. Writing each $k$-cycle twice, once in a certain order and the other in the reverse order, then a $k-C S(v)$ gives a $k-S C M D(v)$, where the mapping $f$ is the identity mapping. It is known [1] that there exists a $k$-cycle decomposition of $K_{v}$ if $k$ is odd and $v \equiv$ $1, k(\bmod 2 k)$. Thus, in order to investigate the existence of $k-S C M D(v)$ for odd $k$ and $v \equiv 1(\bmod k)$, we only need to discuss the cases $v \equiv k+1$ and $3 k+1(\bmod 4 k)$. In this section, we suppose $v \equiv 0(\bmod 4)$ and $v \equiv 1(\bmod k)$.

First, from [5] (Lemma 1 and Corollary 2), we have Lemma 3.1 and Corollary 3.2.
Lemma 3.1 For $D P(D)=\left(x_{1}, x_{2}, \cdots, x_{m}\right), 0<x_{1}<\cdots<x_{m} \leq \frac{v}{2}, \pm A(D)$ are DPs.

Corollary 3.2 Let $0<d<m, a>0$ and $a+k m \leq \frac{v}{2}$. If $D=[a, a+k m]_{k}$ or $D=[a, a+k m]_{k} \backslash\{a+k d\}$, then $\pm A(D)$ are DPs.

For convenience, we give the following table (where $D= \pm A[a, a+m]$ ).

Table A

| $m$ | $\operatorname{sgn}(D)$ | $\operatorname{tail}\left(\widetilde{D}_{0}\right)$ | $\left\{\widetilde{D}_{0}\right\}$ |
| :---: | :---: | :---: | :---: |
| even | + | $a+\frac{m}{2}$ | $\left[-\frac{m}{2}, 0\right] \cup\left[a, a+\frac{m}{2}\right]$ |
| even | - | $-\left(a+\frac{m}{2}\right)$ | $\left[0, \frac{m}{2}\right] \cup\left[-\left(a+\frac{m}{2}\right),-a\right]$ |
| odd | + | $-\frac{m+1}{2}$ | $\left[-\frac{m+1}{2}, 0\right] \cup\left[a, a+\frac{m-1}{2}\right]$ |
| odd | - | $\frac{m+1}{2}$ | $\left[0, \frac{m+1}{2}\right] \cup\left[-\left(a+\frac{m-1}{2},-a\right]\right.$ |

Remark In the above table, head $\left(\widetilde{D_{0}}\right)=0$. This table can be used for $D= \pm A[a, a+$ $k m]_{k}$ or $D= \pm A\left([a, a+k m]_{k} \backslash\{a+k d\}\right)$, where all numbers $m, d$ and 1 are replaced by $k m, k d$ and $k$ respectively, while $a$ and 2 are kept fixed. And the intervals $[*, *]$ become $[*, *]_{k}$.

Lemma 3.3 Let $D=[a, a+4 t-1], a>0$ and $t \geq 1$. Then $\pm S(D)$ are DPs.
Proof. Let $N=S(D)$. From the definition of $S(D)$,

$$
\widehat{N}_{0}=[a+1, a+2 t] \cup([-2 t, 1] \backslash\{-(2 t-1)\}) .
$$

So $S(D)$ is a $D P$ and $-S(D)$ is a $D P$ too.
Lemma 3.4 Let $M$ be a $D P$ on $Z_{v}$ and $\frac{v}{2} \notin M$. If $M$ satisfies $\left(\widetilde{M}_{0} \backslash\{0\}\right) \cap\left(\widetilde{M}_{0}+\right.$ $\left.(-1)^{i+1} \frac{v}{4}\right)=\emptyset, \frac{v}{2} \notin \widetilde{M}_{0}$ and $\sum_{d \in M} d \equiv(-1)^{i} \frac{v}{4}(\bmod v)$ for $i=0$ or 1 , then $\left(M, \frac{v}{2}, M\right)$ is a DC. Furthermore, $\left(M, \frac{v}{2}, M\right)$ is an $S D C$ when $\frac{v}{4}$ is odd.
Proof. Let $\widetilde{M}_{0}=\left(0, x_{1}, \cdots, x_{m}\right)$, where $m=|M|$ and $0<\left|x_{i}\right|<\frac{v}{2}$. Obviously, $x_{m}=\sum_{d \in M} d \equiv(-1)^{i \frac{v}{4}}(\bmod v)$. If $D=\left(M, \frac{v}{2}, M\right)$, then

$$
\widetilde{D}_{0}=\left(0, x_{1}, \cdots, x_{m}, \frac{v}{2}+x_{m}, \frac{v}{2}+x_{m}+x_{1}, \cdots, \frac{v}{2}+2 x_{m}\right) .
$$

$\widetilde{D}_{0}$ is closed since $x_{m} \equiv(-1)^{i \frac{v}{4}}(\bmod v)$. Furthermore, since $M$ is a $D P$ and $\left(\widetilde{M}_{0} \backslash\{0\}\right) \cap\left(\widetilde{M}_{0}+(-1)^{i+1} \frac{v}{4}\right)=\emptyset, D$ is a $D C$. If $\frac{v}{4}$ is odd, we can show that $D$ is an $S D C$ by the definition of $S D C$.
Corollary 3.5 If $v \equiv 4(\bmod 8), 1 \leq t<t+m<\frac{v}{4}, t+m<a<\frac{v}{2}$ and

$$
a \equiv \pm \frac{v}{4}-(-1)^{m}\left\lceil\frac{m}{2}\right\rceil-\frac{1+(-1)^{2}}{2} t(\bmod v)
$$

then $\left(A[t, t+m], a, \frac{v}{2}, A[t, t+m], a\right)$ is an $S D C$.
Proof. Letting $D=A[t, t+m]$, then $D$ is a $D P$ by Corollary 3.2 and $\operatorname{tail}\left(\widetilde{D}_{0}\right)=$ $(-1)^{m}\left\lceil\frac{m}{2}\right\rceil+\frac{1+(-1)^{m}}{2} t$ from Table A. Let $M=(D, a)$. From Table A we can see that $|x|<\frac{v}{4}$ for all $x \in \widetilde{D}_{0}$. For $1 \leq t<t+m<\frac{v}{4}$ and $t+m<a<\frac{v}{2}$, $\left(\widetilde{M}_{0} \backslash\{0\}\right) \cap\left(\widetilde{M}_{0}+(-1)^{i+1} \frac{v}{4}\right)$ is empty. Thus, $\left(M, \frac{v}{2}, M\right)$ is an $S D C$ by Lemma 3.4.

Lemma 3.6 Let $M$ be a DP on $Z_{v}$ and $\frac{v}{2} \notin M$. If $\frac{v}{2} \notin \widetilde{M}_{0},\left|\sum_{d \in M} d\right| \equiv \frac{v}{4}(\bmod v)$ and all elements of abs $\left(\widetilde{M}_{0}\right)$ are distinct, then $\left(M, \frac{v}{2}, M^{-1}\right)$ is a DC. Furthermore, ( $M, \frac{v}{2}, M^{-1}$ ) is an SDC when $\frac{v}{4}$ is even and all differences in $M$ are odd.
Proof. Let $\widetilde{M}_{0}=\left(0, x_{1}, \cdots, x_{m}\right)$, where $m=|M|$ and $0<\left|x_{i}\right|<\frac{v}{2}$. Denote $D=\left(M, \frac{v}{2}, M^{-1}\right)$. Since $\left|x_{m}\right|=\left|\sum_{d \in M} d\right|=\frac{v}{4}$, it is easy to see that

$$
\widetilde{D}_{0}=\left(0, x_{1}, x_{2}, \cdots, x_{m},-x_{m},-x_{m-1}, \cdots,-x_{1}\right)
$$

is closed. Because all the elements in $a b s\left(\widetilde{M}_{0}\right)$ are distinct, $D$ is indeed a $D C$. If $\frac{v}{4}$ is even and all the differences in $M$ are odd, $D$ is an $S D C$ by the definition of $S D C$.

Corollary 3.7 Let $a, b, m, t$ be odd and satisfy the following conditions: $1 \leq t<$ $t+2 m<a<\frac{v}{4}, b \in\left[1, \frac{v}{2}-1\right] \backslash[t, t+2 m]_{2}$ and $a \neq b$. Let $T=A[t, t+2 m]_{2}$ and $M=(T, a, b)$. If $v \equiv 0(\bmod 8),\left|a+b+\operatorname{tail}\left(\widetilde{T}_{0}\right)\right| \equiv \frac{v}{4}(\bmod v)$, then $\left(M, \frac{v}{2}, M^{-1}\right)$ is an $S D C$.
Proof. From Table A we see that $\operatorname{tail}\left(\widetilde{T}_{0}\right)=-(m+1)$. Since $a, b, t$ are all odd and satisfy the conditions, the elements in abs $\left(\widetilde{M}_{0}\right)$ are all distinct. Then $\left(M, \frac{v}{2}, M^{-1}\right)$ is an $S D C$ by Lemma 3.6.

## Lemma 3.8

(1) Let $s, t \geq 1$ and $v=(8 s+1)(8 t+7)+1$. If $N_{1}=A[1,4 t-1]_{2}, N_{2}=$ $\left(4 t+2, A\left([2,4 t]_{2}^{-1}\right)\right)$ and $N_{3}=\left(4 t+1, \frac{v}{4}-4 t-3\right)$, then $\left(N_{1}, \frac{v}{2},\left(N_{1} \backslash\{1\}\right)^{-1}, N_{2}, N_{3}, 1\right.$, $N_{2}^{-1}, N_{3}$ ) is an $S D C$;
(2) Let $s \geq 0, t \geq 1$ and $v=(8 s+5)(8 t+3)+1$. If $N_{1}=A[1,4 t-1]_{2}$ and $N_{2}=\left(\frac{v}{4}+4 t, A[2,4 t]_{2}\right)$, then $\left(N_{1}, \frac{v}{2},\left(N_{1} \backslash\{1\}\right)^{-1}, N_{2}, 1, N_{2}^{-1}\right)$ is an SDC.

## Proof.

(1) Let $D=\left(N_{1}, \frac{v}{2},\left(N_{1} \backslash\{1\}\right)^{-1}, N_{2}, N_{3}, 1, N_{2}^{-1}, N_{3}\right)$. Then $\widetilde{D}_{0}=[-2 t, 0]_{2} \cup$ $[1,2 t-1]_{2} \cup\left[\frac{v}{2}-4 t+1, \frac{v}{2}-2 t\right] \cup\left[\frac{v}{2}-6 t+1, \frac{v}{2}-4 t-1\right]_{2} \cup\left[\frac{v}{2}-2 t+1, \frac{v}{2}+1\right]_{2} \cup$ $\left[-\frac{v}{4}-4 t,-\frac{v}{4}+2\right]_{2} \cup\left\{\frac{v}{2}+2 t+2,-\frac{v}{4}-2 t-1,-\frac{v}{4}+4 t+3\right\}$ by Table A. It is easy to see that $\left|\sum_{d \in D} d\right| \equiv 0(\bmod v)$ and all elements in $\widetilde{D}_{0}$ are distinct except for the head $=$ the tail. So, $D$ is a $D C$. By the definition of $S D C, D$ is an $S D C$.
(2) Let $D=\left(N_{1}, \frac{v}{2},\left(N_{1} \backslash\{1\}\right)^{-1}, N_{2}, 1, N_{2}^{-1}\right)$. Then $\widetilde{D}_{0}=[-2 t, 0]_{2} \cup[1,2 t-1]_{2} \cup$ $\left[\frac{v}{2}-4 t+2, \frac{v}{2}-2 t\right]_{2} \cup\left[\frac{v}{2}-6 t+1, \frac{v}{2}-4 t-1\right]_{2} \cup\left[-\frac{v}{4}-2 t-1,-\frac{v}{4}+2 t-1\right]_{2} \cup$ $\left[-\frac{v}{4}-6 t,--\frac{v}{4}-2 t\right]_{2}$ by Table A. The rest of the proof is similar to (1).

Let $a, b, c, i$ be positive integers and $b$ be even. Denote

$$
\begin{aligned}
& U_{i}(a, b, c)=\left(A[a+b(i-1), a+b i-1],-(c+i), c-i, \frac{b}{2}+2 i\right) \\
& V_{i}(a, b, c)=\left(A[a+b(i-1), a+b i-1],-(c+i), c-i+1, \frac{b}{2}+2 i-1\right)
\end{aligned}
$$

Lemma 3.9 Let $a, b, c, s, i, v$ be positive integers and $v, b$ be even. If the following conditions are satisfied: $c+\frac{b}{2}+s<\frac{v}{2}, c>2 s-1$ and $0<a<a+b s-1<\frac{v}{2}$, then $U_{i}$ and $V_{i}$ defined above are $C D C s$ for any $1 \leq i \leq s$.
Proof. Denote $T=A[a+b(i-1), a+b i-1]$. By Table A, $\left\{\widetilde{T_{0}}\right\}=[a+b(i-1)$, $\left.a+b i-1-\frac{b}{2}\right] \cup\left[-\frac{b}{2}, 0\right]$ and $\operatorname{tail}\left(\widetilde{T_{0}}\right)=-\frac{b}{2}$. Since $a+b s-1<\frac{v}{2}, T$ is a $D P$ on $Z_{v}$ by Corollary 3.2. So, in the corresponding number tuple of $U_{i}$ with head 0 , all elements are distinct. Thereby, all the $U_{i}$ (or $V_{i}$ ) are $D C \mathrm{~s}$ on $Z_{v}$. By the definition of $C D C$, they are all $C D C$ s.

## 4 The Proof of Theorem 1.1

In this section, we will give several classes of constructions for a $k-S C M D(v)=$ $(X, \mathcal{B}, f)$ for $v \equiv 0(\bmod 4)$ and $v \equiv 1(\bmod k)$, where the point set $X$ is $Z_{v}$, the mapping $f$ is $i \rightarrow i+1$ for $i \in Z_{v}$. Also, each block set $\mathcal{B}$ consists of one $S D C$ and $n C D C$ s, where $\frac{v(v-1)}{k}=(2 n+1) v$ by Lemma 2.1. So, the number $n$ of $C D C$ is $\frac{v-k-1}{2 k}$. Furthermore, in order to verify the correctness of the given construction, we only need to show:
(1) Each given $D C$ is an $S D C(D)$ or a $C D C(D)$, (using the conclusion in Section 3 or direct examination).
(2) The differences in all the $D C$ s form a partition of $\left[1, \frac{v}{2}\right]$. (Note that, in an $S D C$, each difference except for $\frac{v}{2}$ appears twice and is calculated only once.)
Theorem 4.1 There exists a $(4 t+3)-S C M D((4 s+1)(4 t+3)+1)$ for positive integers $s, t$ with the same parity.

Construction. Let $v=(4 s+1)(4 t+3)+1$ and $X=Z_{v}$.
(I) $S D C\left(N, \frac{v}{2}, N\right)$, where $N=\left(A[1,2 t], \frac{v}{4}+t\right)$.
(II) $C D C(D)$, where $D$ is taken as follows.
(1) $U_{i}\left(2 t+2 s+1,4 t, \frac{v}{4}+t\right), 1 \leq i \leq s$;
(2) $V_{i}\left(\frac{v}{4}+3 s+t+1,4 t, \frac{v}{4}+2 s+t\right), 1 \leq i \leq s$.

Proof. Obviously, $\frac{v}{4}$ is odd for $v=(4 s+1)(4 t+3)+1$. By Corollary 3.5, (I) is an $S D C$. Moreover, the difference tuples in (II) are $C D C$ s by Lemma 3.9. The differences in (I) and (II) form a partition of [ $\left.1, \frac{v}{2}\right]$. In addition, the number of blocks is $v+2 s \times v \times 2=(4 s+1) v$, as expected.

Theorem 4.2 There exists a $(4 t+3)-S C M D((4 s+1)(4 t+3)+1)$ for odd integer $t \geq 3$ and even integer $s \geq 2$.
Construction. Let $t=2 m+1$ and $s=2 n$. Then, the design will be $(8 m+7)-$ $S C M D(v)$, where $v=(8 n+1)(8 m+7)+1$.
(I) $S D C\left(N_{1}, \frac{v}{2},\left(N_{1} \backslash\{1\}\right)^{-1}, N_{2}, N_{3}, 1, N_{2}^{-1}, N_{3}\right)$, where $N_{1}=A[1,4 m-1]_{2}, \quad N_{2}=\left(4 m+2,-A\left([2,4 m]_{2}^{-1}\right)\right), \quad N_{3}=(4 m+1$, $\left.\frac{v}{4}-4 m-3\right)$.
(II) $C D C(D)$, where $D$ is taken as follows.
(1) $U_{i}\left(4 m+4 n+3,8 m+4, \frac{y}{4}-4 m-3\right), 1 \leq i \leq 2 n-1$;
(2) $V_{i}\left(\frac{v}{4}+6 n+2 m+2,8 m+4, \frac{v}{4}-4 m+4 n-3\right), 1 \leq i \leq 2 n$;
(3) $\left(A\left[\frac{v}{4}-6 m-2 n-3, \frac{v}{4}-4 m-2 n-4\right], A\left[\frac{v}{4}-4 m+6 n-2, \frac{v}{4}+2 m+6 n+1\right]\right.$, $\left.-\left(\frac{v}{4}+2 n-4 m-3\right), \frac{v}{4}-4 m-2 n-3,4 m+4 n+2\right)$.
Proof. By Lemma $3.8(1)$, (I) is an $S D C$. By Lemma 3.9 or direct examination, the difference tuples in (II) are CDCs. The differences in (I) and (II) form a partition of $\left[1, \frac{v}{2}\right]$. In addition, the number of blocks is $v+(1+2 n-1+2 n) \times 2 v=(8 n+1) v$, as expected. For $4 m-1 \geq 1$, we need $m \geq 1$, i.e., $t \geq 3$.
Theorem 4.3 There exists a $7-S C M D(56 t+8)$ for any positive integer $t$.
Construction.
(I) $S D C(1,-2,28 t+4,1,14 t+3,14 t+3,-2)$.
(II) $C D C(D)$, where $D$ is taken as follows.
(1) $U_{i}(4 t+3,4,14 t+3), \quad 1 \leq i \leq 2 t$;
(2) $V_{i}(20 t+4,4,18 t+4), \quad 1 \leq i \leq 2 t$.

Theorem 4.4 There exists $a(4 t+3)-S C M D((4 s+1)(4 t+3)+1)$ for odd integer $s \geq 1$ and even integer $t \geq 2$.

Construction. Let $t=2 m$ and $s=2 n+1$. Then the design will be $(8 m+3)$ $S C M D(v)$, where $v=(8 n+5)(8 m+3)+1$.
(I) $S D C\left(N_{1}, \frac{v}{2},\left(N_{1} \backslash\{1\}\right)^{-1}, N_{2}, 1, N_{2}^{-1}\right)$, where

$$
N_{1}=A[1,4 m-1]_{2}, N_{2}=\left(\frac{v}{4}+4 m, A[2,4 m]_{2}\right)
$$

(II) $C D C(D)$, where $D$ is taken as follows.
(1) $U_{i}\left(4 m+4 n+3,8 m, \frac{v}{4}+4 m\right), \quad 1 \leq i \leq 2 n+1$;
(2) $V_{i}\left(\frac{v}{4}+6 n+4 m+4,8 m, \frac{v}{4}+4 m+4 n+2\right), 1 \leq i \leq 2 n$;
(3) $\left(A[a, a+2 m-1], A\left[\frac{v}{2}-6 m, \frac{v}{2}-1\right],-(b+2 n+1), b-2 n, 4 m+4 n+1\right)$, where $a=\frac{v}{4}+2 m-2 n-1, b=\frac{v}{4}+4 m+4 n+2$.
Proof. Similar to the proof of Theorem 4.2.
Theorem 4.5 There exists a $(4 t+3)-S C M D(4 t+4)$ for any positive integer $t$.
Construction.
(1) $t \equiv 0(\bmod 2): S D C\left(A[1,2 t+2], S[1,2 t]^{-1}, 2 t+1\right)$.
(2) $t \equiv 3(\bmod 4): S D C\left(A[1,2 t+1]_{2}, 2 t+2, A[3,2 t+1]_{2}^{-1}, M, 1, M^{-1}\right)$,
where $M=\left(-2 t,-(t+1), A[t+3,2 t-2]_{2}^{-1}, 2, A[4, t-1]_{2}^{-1}\right)$.
(3) $t \equiv 1(\bmod 4)$ and $t>1: S D C\left(A[1,2 t+1]_{2}, 2 t+2,-A[3,2 t+1]_{2}^{-1},-2 t,-(t+1)\right.$, $\left.A[4,2 t]_{2}^{-1}, 1, A[2, t-1]_{2},-2, A[t+5,2 t-2]_{2},-(t+3)\right)$.
(4) $t=1: \quad \operatorname{SDC}(1,-2,4,1,-2,3,3)$.

Theorem 4.6 There exists a $(4 t+1)-S C M D((4 s+3)(4 t+1)+1)$ for integers $s \geq 0$ and $t \geq 1$ with the same parity.
Construction. Let $v=(4 s+3)(4 t+1)+1$.
(I) $S D C\left(N, \frac{v}{2}, N\right)$, where $N=\left(A[1,2 t-1], \frac{v}{4}-t\right)$.
(II) $C D C(D)$, where $D$ is taken as follows.
(1) $U_{i}\left(2 t+2 s+1,4 t-2, \frac{v}{4}-t\right), \quad 1 \leq i \leq s$;
(2) $V_{i}(4 s t+4 s+2 t+4,4 t-2,4 s t+3 s+2 t+2), \quad 1 \leq i \leq s+1$.

Proof. By Corollary 3.5, (I) is an SDC. By Lemma 3.9, all the difference tuples in (II) are $C D C$ s. The differences in (I) and (II) form a partition of [ $1, \frac{v}{2}$ ]. In addition, the number of blocks is $v+(2 s+1) \times 2 v=(4 s+3) v$, as expected.
Theorem 4.7 There exists a $(4 t+1)-S C M D((4 s+3)(4 t+1)+1)$ for odd integer $t \geq 3$ and even integer $s \geq 2$.
Construction. First, we give the construction for $t=3$ and $s=2$, i.e., 13$S C M D(144)$.
(1) $S D C\left(M, 72, M^{-1}\right)$, where $M=\left(A[65,71]_{2}, 35,5\right)$;
(2) $C D C\left(A[6,14] \backslash\{8\}, A[64,70]_{2}, 8\right)$;
(3) $C D C(A[15,24], 36,3,-34)$;
(4) $C D C(A[25,32], 38,-39,37,1,-33)$;
(5) $C D C(A[40,49], 62,4,-61)$;
(6) $C D C(A[50,59], 63,2,-60)$.

Then, let $t=2 m+1$ and $s=2 n$, where $m=1, n \geq 2$ or $m>1, n \geq 1$. The design will be $(8 m+5)-S C M D(v)$, where $v=(8 n+3)(8 m+5)+1$.
(I) $S D C\left(N, \frac{v}{2}, N^{-1}\right)$.
(II) $C D C(D)$, where $D$ is taken as follows.
(1) $\left(A[2,8 m]_{2}, a-1,-(a+1), A[c, c+4 m-2]_{2}, 8 m+3,-(8 m+5), A[c+1, c+\right.$ $\left.4 m-1]_{2}, 8 m+4\right) ;$
(2) $(8 m+1,-(8 m+2), A([b-2 m-2, b+2 m+2] \backslash\{b\}), A[c+4 m, c+4 m+3]$, $A[d-4 m+9, d],-(c+4 m+4), c-1,8 m+6) ;$
(3) $\left(A\left[x_{1+(8 m+2)(i-1)}, x_{(8 m+2) i}\right],-(c+4 m+4+i), c-1-i, 8 m+2 i+6\right)$,

$$
1 \leq i \leq 2 n-1
$$

(4) $(A[p+(8 m+2)(i-1), p-1+(8 m+2) i],-(b+2 m+2+i), b-2 m-2-i$, $8 m+2 i+5), \quad 1 \leq i \leq 2 n$,
where $a=8 m+4 n+7, b=16 n m+6 n+2 m-3, c=16 n m+10 n+4 m, d=$ $16 n m+12 n+12 m-5, p=16 n m+16 n+12 m+7, N=\left(A[1,8 m-1]_{2}, a, b\right), M=$ $[a+2, p-1] \backslash[b-2 m-2 n-2, d]=\left(x_{1}, x_{2}, \cdots, x_{|M|}\right)$ and $x_{i}<x_{i+1}$ for $1 \leq i \leq|M|$.
Proof. Here, we only give the proof for $(t, s) \neq(3,2)$. Let $v=(8 n+3)(8 m+5)+1$. By Corollary 3.7, (I) is an SDC. By Lemma 3.9 or direct examination, the difference tuples in (II) are $C D C \mathrm{~s}$. The differences in (I) and (II) form a partition of $\left[1, \frac{v}{2}\right]$. In addition, the number of blocks is $v+(1+1+2 n-u-1+1+u-1+2 n) \times 2 v=(8 n+3) v$, as expected. It is easy to see that $|M|=(8 m+2)(2 n-1)$. Then, from the definition of $M$, we need $b-2 m-2 n-2 \geq a+2$, i.e., $16 m n+4 n-5 \geq 8 m+4 n+9$, which implies $n \geq \frac{4 m+7}{8 m}$. This inequality holds when $m=1, n \geq 2$ or $m>1, n \geq 1$, i.e., $t \geq 3, s \geq 2$ and $(s, t) \neq(2,3)$. But the construction for $(s, t)=(2,3)$ has been given above.

Theorem 4.8 There exists a $(8 t+5)-S C M D(24 t+16)$ for any positive integer $t$.

## Construction.

(I) $S D C\left(M, 12 t+8, M^{-1}\right)$, where

$$
M=\left(A[1,4 t-1]_{2}, A[8 t+9,12 t+7]_{2},-(8 t+5), 6 t+1\right)
$$

(II) $C D C\left(A[2,4 t]_{2}, A[8 t+8,12 t+6]_{2},-A\left([4 t+1,6 t]^{-1}\right),-A([6 t+3,8 t+7] \backslash\right.$ $\left.\{8 t+5\})^{-1}, 6 t+2\right)$.

Theorem 4.9 There exists a $(4 t+1)-S C M D((4 s+3)(4 t+1)+1)$ for even integer $t \geq 4$ and odd integer $s \geq 5$.

Construction. First, we give the construction for $t=4$ and $s=5$, i.e., 17 $S C M D(392)$.
(1) $S D C\left(M, 196, M^{-1}\right)$, where $M=\left(1,-3, A[189,195]_{2},-31,-61\right)$;
(2) $C D C\left(2,-4, A[188,194]_{2},-A[5,10]^{-1},-A[42,45]^{-1}, 11\right)$;
(3) $C D C(A[27,30], A[51,60],-46,41,12)$;
(4) $C D C(A[62+14(i-1), 61+14 i],-(46+i), 41-i, 12+2 i), 1 \leq i \leq 4$;
(5) $C D C(A[118+14(i-1), 117+14 i],-(31+i), 27-i, 11+2 i), 1 \leq i \leq 5$.

Then, let $t=2 m$ and $s=2 n+1$, where $m=2, n \geq 3$ or $m>2, n \geq 2$. The design will be $(8 m+1)-S C M D(v)$, where $v=(8 n+7)(8 m+1)+1$.
(I) $S D C\left(N, \frac{v}{2}, N^{-1}\right)$.
(II) $C D C(D)$, where $D$ is taken as follows.
(1) $\left(A[2,4 m-4]_{2}, A\left[\frac{v}{2}-4 m, \frac{v}{2}-2\right]_{2},-A[4 m-3,6 m-2]^{-1}\right.$,

$$
\left.-A\left([6 m, 8 m-1]^{-1}\right), 6 m-1\right)
$$

(2) $(A([a-2 m, a+2 m] \backslash\{a\}), A[b, b+4 m-3],-(d-1), 12 m+8 n+7,8 m+4 n)$;
(3) $\left(A\left[x_{1+(8 m-2)(i-1)}, x_{(8 m-2) i}\right],-(c+i), c-4 m-1-i, 8 m+2 i\right), 1 \leq i \leq 2 n-1$;
(4) $(8 m+4 n+2,-(8 m+4 n+3), b-2,-(b-1), A[e, e+8 m-7],-c, c-4 m-1,8 m)$;
(5) $(A[p+(8 m-2)(i-1), p-1+(8 m-2) i],-(a+2 m+i), a-2 m-i, 8 m+2 i-1)$, $1 \leq i \leq 2 n+1$,
where $a=10 m+6 n+5, b=12 m+10 n+10, c=16 m+10 n+8, d=16 m+12 n+9, e=$ $16 n m+8 n+8 m+12, p=16 n m+16 m+8 n+6, N=\left(A[1,4 m-5]_{2}, A\left[\frac{v}{2}-4 m+\right.\right.$ $\left.\left.1, \frac{v}{2}-1\right]_{2},-a,-(16 n m-4 n-1)\right), M=[d, d+(8 m-2)(2 n-1)] \backslash\{16 m n-4 n-1\}=$ $\left(x_{1}, x_{2}, \cdots, x_{|M|}\right)$ and $x_{i}<x_{i+1}$ for $1 \leq i \leq|M|$.
Proof. Here, we only give the proof for $(t, s) \neq(4,5)$. By Lemma 3.6, (I) is an $S D C$. By Lemma 3.9 or direct examination, the difference tuples in (II) are $C D C \mathrm{~s}$. The differences in (I) and (II) form a partition of $\left[1, \frac{v}{2}\right]$. In addition, the number of blocks is $v+(1+1+2 n-1+1+2 n+1) \times 2 v=(8 n+7) v$, as expected. It is easy to see that $|M|=(8 n-2)(2 n-1)$. Then from the definition of $M$, we need $16 m n-4 n-1 \geq d$, i.e., $16 m n-4 n-1 \geq 16 m n+12 n+9$, which implies $n \geq 1+\frac{13}{8 m-8}$. This inequality holds when $m=2, n \geq 3$ or $m>2, n \geq 2$, i.e., $t \geq 4, s \geq 5$ and $(s, t) \neq(5,4)$. But the construction for $(s, t)=(5,4)$ has been given above.
Theorem 4.10 There exists a $(8 t+1)-S C M D(56 t+8)$ for any positive integer $t$.

## Construction.

(1) $S D C\left(M, 28 t+4, M^{-1}\right)$, where $M=\left(A[6 t+1,14 t-5]_{2}, 18 t+1,28 t+3\right)$;
(2) $C D C\left(A[6 t, 14 t-6]_{2}, A[22 t+1,26 t+2], 6 t-1\right)$;
(3) $C D C(A[3,6 t-2], 14 t-4,-(14 t-3), A[26 t+3,28 t+2],-18 t, 22 t,-1)$;
(4) $C D C(A[14 t-1,18 t-2], A[18 t+2,22 t-1],-(14 t-2), 18 t-1,-2)$.

Theorem 4.11 There exists a $(8 t+1)-S C M D(120 t+16)$ for any integer $t \geq 2$.

## Construction.

(1) $S D C\left(M, 60 t+8, M^{-1}\right)$, where $M=\left(A[42 t+7,50 t+1]_{2}, 34 t+3,60 t+7\right)$;
(2) $C D C\left(A[38 t+5,42 t+6], A[42 t+8,50 t+2]_{2}, 6 t-1\right)$;
(3) $C D C(A[6 t+(8 t-2)(i-1), 6 t-1+(8 t-2) i],-(34 t+3-i), 38 t+1+i$, $-(2 i-1)), 1 \leq i \leq 3 ;$
(4) $C D C(A[7,6 t-2], A[50 t+3,52 t+8],-(30 t-6), 34 t-1,-6)$;
(5) $C D C(A[30 t-3,34 t-4], A[34 t+4,38 t+1],-(30 t-5), 34 t-2,-4)$;
(6) $C D C(A[52 t+9,60 t+6],-(30 t-4), 34 t-3,-2)$.

Proof. In this construction, we need $6<6 t-1$, i.e., $t \geq 2$.
Theorem 4.12 There exists a $9-S C M D(72 s+64)$ for any nonnegative integer $s$.

## Construction.

(I) $S D C\left(M, 36 s+32, M^{-1}\right)$, where $M=(1,-3,18 s+19,36 s+31)$.
(II) $C D C(D)$, where $D$ is taken as follows
(1) $(2,-4,6,-7, A([18 s+17,18 s+21] \backslash\{18 s+19\}), 5)$;
(2) $(A[4 s+6 i+4,4 s+6 i+9],-(18 s+21+i), 18 s+17-i, 2 i+7), 1 \leq i \leq 2 s+1$;
(3) $(A[24 s+6 i+23,24 s+6 i+28],-(22 s+27+i), 22 s+24-i, 2 i+6), 1 \leq i \leq 2 s$;
(4) $(A[22 s+24,22 s+27], 36 s+29,-(36 s+30),-(24 s+28), 20 s+23,4 s+8)$.

## The proof of Theorem 1.1:

According to the range of $k$ and $v$, there are the following cases :
(1) $k=4 t+3, \quad v=(4 s+1)(4 t+3)+1, t>0$.

If $s=0$, see Theorem 4.5. If $s>0$ and $s, t$ have the same parity, see Theorem 4.1; otherwise see Theorem $4.2(t>1$ odd $)$, Theorem $4.3(t=1)$ and Theorem $4.4(t$ even).
(2) $k=4 t+1, \quad v=(4 s+3)(4 t+1)+1, t>1$.

If $s, t$ have the same parity, see Theorem 4.6; if $s$ is even and $t$ is odd, see Theorem 4.7-4.8; if $s$ is odd and $t$ is even, see Theorem 4.11-4.12.

## 5 The proof of Theorem 1.2

In this section, we will give several classes of constructions for a $k-S C M D(2 k)=$ $(X, \mathcal{B}, f)$, where the point set $X$ is $\left\{\infty_{1}, \infty_{2}\right\} \cup\left(Z_{k-1} \times Z_{2}\right)$ and the mapping $f$ is

$$
\left(\infty_{1}\right)\left(\infty_{2}\right) \prod_{i \in Z_{k-1}}(i, \bar{i})
$$

For brevity, the points in $Z_{k-1} \times Z_{2}$ are denoted by $x=(x, 0)$ or $\bar{x}=(x, 1)$. The difference between points of $Z_{k-1} \times\{0\}$ (or of $Z_{k-1} \times\{1\}$ ) is said to be pure, and is denoted by $d$ (or $\bar{d}$ ). The difference between $x$ and $\bar{x}$ is said to be mixed, and is denoted by $d_{01}$ (for the ordered pairs $(x, \overline{x+d})$ ) or $d_{10}$ (for the ordered pairs $(\bar{x}, x+d)$ ). Define:

$$
\begin{aligned}
& \overline{\bar{A}}[a, a+d]=\left(\bar{a},-(\overline{a+1}), \cdots,(-1)^{d}(\overline{a+d})\right) \text {; } \\
& M A[a, a+d]=\left(a_{01},-(a+1)_{10}, \cdots,(-1)^{d}(a+d)_{i j}\right) \text {, where }(i, j)=(1,0) \text { for odd } \\
& \quad d, \text { or }(0,1) \text { for even } d ; \\
& \overline{M A[a, a+d]=\left(a_{10},-(a+1)_{01}, \cdots,(-1)^{d}(a+d)_{i j}\right), \text { where }(i, j)=(0,1) \text { for odd }} \begin{array}{c}
d, \text { or }(1,0) \text { for even } d .
\end{array}
\end{aligned}
$$

And, define the following block families:
$S D C_{\infty}(M)=\left(M, 0_{i j},-\bar{M}^{-1}\right)=D$, where $i=0$ or 1 follows tail $\left(\widetilde{M_{0}}\right) \in Z_{k-1} \times\{0\}$ or $Z_{k-1} \times\{1\}$. The corresponding number tuple family is $\left\{\left(\infty, \widetilde{D_{a}}\right)\right.$; $\left.a \in Z_{k-1} \times\{t\}\right\}$, where $t$ is determined by the first difference in $M$;
$C D C_{\infty}(M)$, where $M$ is a $D P$, the head and the tail of $\widetilde{M}_{a}$ belong to different point-orbits, and $\sum_{d \in M} d$ is odd. The corresponding number tuple family is $\left\{\left(\infty, \widetilde{M}_{a}\right) ; a \in Z_{k-1} \times\{t\}\right\}$, where $t$ is determined by the first difference in $M$.

For convenience, the subscript $a$ in the above number tuple families is called the starter. Note that the terminology $S D C_{\infty}\left(\right.$ and $\left.C D C_{\infty}\right)$ excludes $D C$, since $\widetilde{M}_{a}$ cannot be closed. Under the mapping $f$ in this section, there are $k-1$ block-orbits corresponding to each $S D C_{\infty}$ and $\frac{k-1}{2}$ block-orbits corresponding to each $C D C_{\infty}$. There is only one self-converse block in each block-orbit of $S D C_{\infty}(M)$. But there are two blocks in each block-orbit of $C D C_{\infty}(M)$ of which one is the $f$-converse of the other. Briefly, we gather all the blocks in these orbits and called them the block family corresponding to $S D C_{\infty}(M)$ or $C D C_{\infty}(M)$. The following Lemmas 5.1-5.2 are obvious.
Lemma 5.1 Let t be a positive integer. The point set is $X=\left\{\infty_{1}, \infty_{2}\right\} \cup\left(Z_{4 t+2} \times Z_{2}\right)$ and the mapping is $f=\left(\infty_{1}\right)\left(\infty_{2}\right) \prod_{i=0}^{4 t+1}(i, \bar{i})$. Then the following DCs are both $S D C_{\infty} s$ and the blocks in the block family cover each pair with pure difference in $[1,2 t]$ and in $[\overline{1}, \overline{2 t}]$ exactly once.
(1) $S D C_{\infty_{1}}(A[1,2 t])$ with starters in $[0,4 t+1]$;
(2) $S D C_{\infty_{2}}(\bar{A}[1,2 t])$ with starters in $[\overline{0}, \overline{4 t+1}]$.

Lemma 5.2 Let $t$ be a positive integer. The point set is $X=\left\{\infty_{1}, \infty_{2}\right\} \cup\left(Z_{4 t} \times Z_{2}\right)$ and the mapping is $f=\left(\infty_{1}\right)\left(\infty_{2}\right) \prod_{i=0}^{4 t-1}(i, \bar{i})$. Then, the following DCs in (1)-(4) are all $S D C_{\infty} s$ and the blocks in the block family cover each pair with pure difference in $[1,2 t] \backslash\{2 t-1\}$ and $[\overline{1}, \overline{2 t}] \backslash\{\overline{2 t-1}\}$ exactly once.
(1) $S D C_{\infty_{1}}\left((2 t)_{01}, \bar{A}[1,2 t-2]\right)$ with starters in $[0,2 t-1]$;
(2) $S D C_{\infty_{2}}(\overline{2 t}, \bar{A}[1,2 t-2])$ with starters in $[2 t, \overline{4 t-1]}$;
(3) $S D C_{\infty_{1}}(2 t, A[1,2 t-2])$ with starters in $[2 t, 4 t-1]$;
(4) $S D C_{\infty_{2}}\left((2 t)_{10}, A[1,2 t-2]\right)$ with starters in $[\overline{0}, \overline{2 t-1}]$.

Note In the following theorems, the mentioned replacement for a block should be done for its $f$-converse as well.
Theorem 5.3 There exists an $(8 t+3)-S C M D(16 t+6)$ for any positive integer $t$.
Construction. $X=\left\{\infty_{1}, \infty_{2}\right\} \cup\left(Z_{8 t+2} \times Z_{2}\right), f=\left(\infty_{1}\right)\left(\infty_{2}\right) \prod_{i=0}^{8 t+1}(i, \bar{i})$.
(1) $S D C_{\infty_{2}}(\bar{A}[1,4 t])$ with starters in $[\overline{0}, \overline{8 t+1}]$, where the block with starter $\overline{4 t}$, i.e., $\left\langle\infty_{2}, \overline{4 t}, \cdots\right\rangle$, is replaced by $\left\langle\infty_{1}, \overline{4 t}, \cdots\right\rangle$;
(2) $S D C_{\infty_{1}}(A[1,4 t])$ with starters in $[0,8 t+1]$;
(3) $C D C_{\infty_{1}}\left(\bar{M} A[1,4 t], \overline{4 t+1},-\bar{M} A[2,4 t]^{-1}, 4 t+1\right)$ with starters in $[\overline{1}, \overline{8 t+1}]_{2}$, where the block with starter $\overline{8 t+1}$, i.e., $\left\langle\infty_{1}, \overline{8 t+1}, \cdots, \overline{1}, 8 t+1,4 t\right\rangle$, is replaced by $B=\left\langle\infty_{1}, \overline{8 t+1}, \cdots, \overline{1}, 4 t, \infty_{2}\right\rangle ;$
(4) $C D C_{\infty_{2}}\left((4 t+1)_{01}, \bar{M} A[1,4 t-2],(4 t+1)_{10},(-1)_{01},-\bar{M} A[2,4 t]^{-1},-(4 t)_{01}\right)$ with starters in $[1,8 t+1]_{2}$;
(5) $C=\left\langle 8 t+1, a_{0}, b_{0}, a_{1}, b_{1}, \cdots, a_{4 t}, b_{4 t}\right\rangle$, where $a_{i}=4(i+1) t, b_{i}=\overline{4(i+1) t+1}$, $0 \leq i \leq 4 t$ and all $a_{i}, b_{i}$ are in $Z_{8 t+2}$.
Proof. The number of the blocks is $(8 t+2)+(8 t+2)+(4 t+4 t+1+1) \times 2=$ $\frac{(16 t+6)(16 t+5)}{8 t+3}$, as expected.
${ }^{8 t+3}$ Lemma 5.1 , (1) and (2) are both $S D C_{\infty}$ s. By direct checking, (3) and (4) are both $C D C_{\infty} \mathrm{s}$. Obviously, if $d \neq 1_{01}$ and $(4 t-1)_{10}$, each pair with difference $( \pm d)_{01},( \pm d)_{10}, \pm d, \pm \bar{d}$ appears exactly once in (1)-(6) except for the pairs
$(\overline{1}, 8 t+1),(8 t+1,4 t),(\overline{4 t}, \overline{8 t+1})$ and $(\overline{8 t+1}, 1)$. If $d=1_{01}$ or $(4 t-1)_{10}$, each pair with difference $d$ appears exactly once in (1)-(6) except for the pairs in the set $S=\left\{(i, \overline{i+1}),(i+1, \bar{i}) ; i \in[0,8 t]_{2}\right\} \cup\left\{(\bar{i}, i+4 t-1),(\overline{i+4 t-1}, i) ; i \in[3,8 t+1]_{2}\right\}$. Since $\operatorname{gcd}(1+4 t-1,8 t+2)=2$, all $a_{i}, b_{i}$ in the construction can form directed cycle $D=\left\langle a_{0}, b_{0}, \cdots, a_{4 t}, b_{4 t}\right\rangle$ and its $f$-converse. Let $C=\left\langle a_{0}, b_{0}, \cdots, a_{4 t}, b_{4 t}, 8 t+1\right\rangle$. Note that $\left(b_{4 t}, 8 t+1, a_{0}\right)=(\overline{1}, 8 t+1,4 t)$. Then, obviously, $C$ and its $f$-converse cover all pairs in $S$ and the pairs $(\overline{1}, 8 t+1),(8 t+1,4 t),(\overline{4 t}, \overline{8 t+1})$ and $(\overline{8 t+1}, 1)$.

From the definition of $S D C_{\infty}$ and $C D C_{\infty}$, we can see that the construction is an $(8 t+3)-S C M D(16 t+6)$.
Theorem 5.4 There exists an $(8 t+7)-S C M D(16 t+14)$ for any positive integer $t$.
Construction. $X=\left\{\infty_{1}, \infty_{2}\right\} \cup\left(Z_{8 t+6} \times Z_{2}\right), f=\left(\infty_{1}\right)\left(\infty_{2}\right) \prod_{i=0}^{8 t+5}(i, \bar{i})$.
(1) $S D C_{\infty_{1}}(A[1,4 t+2])$ with starters in $[0,8 t+5]$;
(2) $S D C_{\infty_{2}}(\bar{A}[1,4 t+2])$ with starters in $[\overline{0}, \overline{8 t+5}]$, where the block with starter $\overline{4 t+2}$, i.e., $\left\langle\infty_{2}, \overline{4 t+2}, \cdots\right\rangle$, is replaced by $\left\langle\infty_{1}, \overline{4 t+2}, \cdots\right\rangle$;
(3) $C D C_{\infty_{1}}\left(\overline{4 t+3}, \bar{M} A[1,4 t+2],-\bar{M} A[2,4 t+2]^{-1}, 4 t+3\right)$ with starters in $[\overline{1}, \overline{8 t+5}]_{2}$, where the block with starter $\overline{8 t+5}$, i.e., $\left\langle\infty_{1}, \overline{8 t+5}, \cdots, \overline{1}, 8 t+5,4 t+2\right\rangle$, is replaced by $B=\left\langle\infty_{1}, \overline{8 t+5}, \cdots, \overline{1}, 4 t+2, \infty_{2}\right\rangle$;
(4) $C D C_{\infty_{2}}\left(1_{01},-\bar{M} A[2,4 t+2]^{-1},-(4 t+2)_{01},(4 t+3)_{10}, M A[3,4 t]^{-1},(4 t+3)_{01}\right.$, $\left.(-1)_{10}, 2_{01}\right)$ with starters in $[1,8 t+5]_{2}$;
(5) $C=\left\langle 8 t+5, a_{0}, b_{0}, a_{1}, b_{1}, \cdots, a_{4 t+2}, b_{4 t+2}\right\rangle$, where $a_{i}, b_{i} \in Z_{8 t+6}$, $a_{i}=(i+1)(4 t+2), b_{i}=\overline{(i+1)(4 t+2)+1}, 0 \leq i \leq 4 t+2$.
Proof. Similar to the proof of Theorem 5.3.
Theorem 5.5 There exists a 7-SCMD(14).
Construction. $X=\left\{\infty_{1}, \infty_{2}\right\} \cup\left(Z_{6} \times Z_{2}\right), f=\left(\infty_{1}\right)\left(\infty_{2}\right) \prod_{i=0}^{5}(i, \bar{i})$.
(1) $S D C_{\infty_{1}}(A[1,2])$ with starters in $[0,5]$;
(2) $S D C_{\infty_{2}}(\bar{A}(1,2])$ with starters in $[\overline{0}, \overline{5}]$, where the block with starter $\overline{2}$, i.c., $\left\langle\infty_{2}, \overline{2}, \overline{3}, \overline{1}, 1,3,2\right\rangle$, is replaced by $\left\langle\infty_{1}, \overline{2}, \overline{3}, \overline{1}, 1,3,2\right\rangle$;
(3) $C D C_{\infty_{1}}\left(\overline{3}, 1_{10},(-2)_{01},(-2)_{10}, 3\right)$ with starters in $[\overline{1}, \overline{5}]_{2}$, where the block with starter $\overline{5}$, i.e., $\left\langle\infty_{1}, \overline{5}, \overline{2}, 3, \overline{1}, 5,2\right\rangle$, is replaced by $B=\left\langle\infty_{1}, \overline{5}, \overline{2}, 3, \overline{1}, 2, \infty_{2}\right\rangle$;
(4) $C D C_{\infty_{2}}\left(3_{01}, 2_{10}, 2_{01}, 3_{10}, 1_{01}\right)$ with starters in $[1,5]_{2}$;
(5) $C=\langle 5,2, \overline{3}, 4, \overline{5}, 0, \overline{1}\rangle$.

Theorem 5.6 There exists an $(8 t+5)-S C M D(16 t+10)$ for any positive integer $t \geq 3$.
Construction. $X=\left\{\infty_{1}, \infty_{2}\right\} \cup\left(Z_{8 t+4} \times Z_{2}\right), f=\left(\infty_{1}\right)\left(\infty_{2}\right) \prod_{i=0}^{8 t+3}(i, \bar{i})$.
(1) $S D C_{\infty_{1}}\left((4 t+2)_{01}, \bar{A}[1,4 t]\right)$ with starters in $[0,4 t+1]$, where the block with starter 0 , i.e., $\left\langle\infty_{1}, 0, \cdots\right\rangle$, is replaced by $\left\langle\infty_{2}, 0, \cdots\right\rangle$;
(2) $S D C_{\infty_{1}}(4 t+2, A[1,4 t])$ with starters in $[4 t+2,8 t+3]$;
(3) $S D C_{\infty_{2}}\left((4 t+2)_{10}, A[1,4 t]\right)$ with starters in $[\overline{0}, \overline{4 t+1}]$;
(4) $S D C_{\infty_{2}}(\overline{4 t+2}, \bar{A}[1,4 t])$ with starters in $[\overline{4 t+2}, \overline{8 t+3}]$;
(5) $C D C_{\infty_{2}}\left((4 t-2)_{01}, \overline{-(4 t+1)},-\bar{M} A^{-1}[1,4 t+1],-M A[1,4 t-2],-(4 t+1)\right.$, $\left.-(4 t-1)_{01}\right)$ with starters in $[1,8 t+3]_{2}$, where the block with starter 1, i.e., $\left\langle\infty_{2}, 1\right.$, $\overline{4 t-1}, \overline{8 t+2}, \cdots\rangle$, is replaced by $B=\left\langle\infty_{1}, \infty_{2}, 1, \overline{8 t+2}, \cdots\right\rangle$;
(6) $C D C_{\infty_{1}}\left(\bar{M} A^{-1}[2,4 t-3],-\bar{M} A^{-1}[4 t-1,4 t+1],-(4 t+1), M A^{-1}[4 t-1\right.$, $\left.4 t+1], \bar{M} A[4,4 t-2], 1_{01},-\overline{4 t+1}, 2_{10},(4 t+1)_{01},-(4 t)_{10}\right)$ with starters in $[\overline{1}, \overline{8 t+3}]_{2} ;$
(7) $C=\left\langle\overline{4 t-1}, a_{0}, b_{0}, a_{1}, b_{1}, \cdots, a_{4 t+1}, b_{4 t+1}\right\rangle$, where $a_{i}=\overline{-2(i+1)}, b_{i}=$ $-2(i+1)+1,0 \leq i \leq 4 t+1$ and $a_{i}, b_{i}$ are in $Z_{8 t+4}$.
Proof. Similar to the proof of Theorem 5.3.
Theorem 5.7 There exists a 13-SCMD(26).
Construction. $X=\left\{\infty_{1}, \infty_{2}\right\} \cup\left(Z_{12} \times Z_{2}\right), f=\left(\infty_{1}\right)\left(\infty_{2}\right) \prod_{i=0}^{11}(i, \bar{i})$.
(1) $S D C_{\infty_{1}}\left(6_{01}, \bar{A}[1,4]\right)$ with starters in $[0,5]$, where the block with starter 0 , i.e., $\left\langle\infty_{1}, 0, \cdots\right\rangle$, is replaced by $\left\langle\infty_{2}, 0, \cdots\right\rangle$;
(2) $S D C_{\infty_{1}}(6, A[1,4])$ with starters in $[6,11]$;
(3) $S D C_{\infty_{2}}\left(6_{10}, A[1,4]\right)$ with starters in $[\overline{0}, 5]$;
(4) $S D C_{\infty_{2}}(\overline{6}, \bar{A}[1,4])$ with starters in $[\overline{6}, \overline{1}]$;
(5) $C D C_{\infty_{2}}\left(2_{01}, \overline{-5},-\bar{M} A^{-1}[1,5],-5,(-3)_{01}, 4_{10},(-1)_{01}\right)$ with starters in $[1,11]_{2}$, where the block with starter 11 , i.e., $\left\langle\infty_{2}, 11, \overline{1}, \overline{8}, \cdots\right\rangle$, is replaced by $B=\left\langle\infty_{1}, \infty_{2}, 11\right.$, $\overline{8}, \cdots\rangle$;
(6) $C D C_{\infty_{1}}\left(2_{10},(-5)_{01}, 1_{10}, 5_{01},(-4)_{10},(-4)_{01}, \overline{-5}, 3_{10},-5,1_{01}, 2_{10}\right)$ with starters in $[\overline{1}, \overline{11}]_{2}$;
(7) $C=\langle\overline{1}, \overline{8}, 1, \overline{10}, 3, \overline{0}, 5, \overline{2}, 7, \overline{4}, 9, \overline{6}, 11\rangle$.

Theorem 5.8 There exists a 21-SCMD(42).
Construction. $X=\left\{\infty_{1}, \infty_{2}\right\} \cup\left(Z_{20} \times Z_{2}\right), f=\left(\infty_{1}\right)\left(\infty_{2}\right) \prod_{i=0}^{19}(i, \bar{i})$.
(1) $S D C_{\infty_{1}}\left(10_{01}, \bar{A}[1,8]\right)$ with starters in $[0,9]$, where the block with starter 0 , i.e., $\left\langle\infty_{1}, 0, \cdots\right\rangle$, is replaced by $\left\langle\infty_{2}, 0, \cdots\right\rangle$;
(2) $S D C_{\infty_{1}}(10, A[1,8])$ with starters in $[10,19]$;
(3) $S D C_{\infty_{2}}\left(10_{10}, A[1,8]\right)$ with starters in $[\overline{0}, \overline{9}]$;
(4) $S D C_{\infty_{2}}(\overline{10}, \bar{A}[1,8])$ with starters in $[\overline{10}, \overline{19}]$;
(5) $C D C_{\infty}$, $\left(6_{01}, \overline{-9},-\bar{M} A^{-1}[1,9],-M A[1,6],-9,(-7)_{01}\right)$ with starters in $[1,19]_{2}$, where the block with starter 1, i.e., $\left\langle\infty_{2}, 1, \overline{7}, \overline{18}, \cdots\right\rangle$, is replaced by $B=\left\langle\infty_{1}, \infty_{2}, 1\right.$, $\overline{18}, \cdots$;
(6) $C D C_{\infty_{1}}\left(\bar{M} A^{-1}[2,5],-\bar{M} A^{-1}[7,9],-9,-\bar{M} A[7,9], \overline{-9}, 2_{10}, 1_{01}, \bar{M} A[4,6], 9_{01}\right.$, $\left.(-8)_{10}\right)$ with starters in $[\overline{1}, \overline{19}]_{2}$;
(7) $C=\left\langle\overline{7}, a_{0}, b_{0}, a_{1}, b_{1}, \cdots, a_{4}, b_{4}\right\rangle$, where $a_{i}=\overline{-2(i+1)}, b_{i}=-2(i+1)+1,0 \leq$ $i \leq 4$ and all $a_{i}, b_{i}$ are in $Z_{20}$.
Theorem 5.9 There exists an $(8 t+1)-S C M D(16 t+2)$ for any integer $t \geq 2$.
Construction. $X=\left\{\infty_{1}, \infty_{2}\right\} \cup\left(Z_{8 t} \times Z_{2}\right), f=\left(\infty_{1}\right)\left(\infty_{2}\right) \prod_{i=0}^{8 t-1}(i, \bar{i})$.
(1) $S D C_{\infty_{1}}\left((4 t)_{01}, \bar{A}[1,4 t-2]\right)$ with starters in $[0,4 t-1]$;
(2) $S D C_{\infty}$, $(4 t, A[1,4 t-2])$ with starters in $[4 t, 8 t-1]$, where the block with starter $4 t$, i.e., $\left(\infty_{1}, 4 t, \cdots\right\rangle$, is replaced by $\left\langle\infty_{2}, 4 t, \cdots\right\rangle$;
(3) $S D C_{\infty_{2}}\left((4 t)_{10}, A[1,4 t-2]\right)$ with starters in $[\overline{0}, \overline{4 t-1}]$;
(4) $S D C_{\infty_{2}}(\overline{4 t}, \bar{A}[1,4 t-2])$ with starters in $[\overline{4 t}, \overline{8 t-1}]$;
(5) $C D C_{\infty_{2}}\left((4 t-4)_{01}, \overline{-(4 t-1)}, \bar{M} A^{-1}[1,4 t-1], 1_{01}, \overline{4 t-1}, \bar{M} A[2,4 t-3]\right)$ with starters in $[1,8 t-1]_{2}$, where the block with starter 1, i.e., $\left\langle\infty_{2}, 1, \overline{4 t-3}, \overline{8 t-2}, \cdots\right\rangle$, is replaced by $B=\left\langle\infty_{1}, \infty_{2}, 1, \overline{8 t-2}, \cdots\right\rangle$;
(6) $C D C_{\infty_{1}}\left(-\bar{M} A^{-1}[2,4 t-5],-\bar{M} A[4 t-2,4 t-1],-\bar{M} A[4 t-2,4 t-1],-(\overline{4 t-1})\right.$, $\left.(-2)_{10}, 1_{01}, \bar{M} A[4,4 t-3],(4 t-1)_{10},(4 t-2)_{01}, \overline{4 t-1},-(4 t-3)_{10}\right)$ with starters in $[\overline{1}, \overline{8 t},-1]_{2} ;$
(7) $C=\left\langle\overline{4 t-3}, a_{0}, b_{0}, a_{1}, b_{1}, \cdots, a_{4 t-1}, b_{4 t-1}\right\rangle$, where $a_{i}=\overline{-2(i+1)}, b_{i}=$ $-2(i+1)+1,0 \leq i \leq 4 t-1$ and all $a_{i}, b_{i}$ are in $Z_{8 t}$.
Proof. In the construction, we need $4 t-4>0$, i.e., $t \geq 2$. The rest of the proof is similar to Theorem 5.3.
Theorem 5.10 There exists a $9-S C M D(18)$.
Construction. $X=\left\{\infty_{1}, \infty_{2}\right\} \cup\left(Z_{8} \times Z_{2}\right), f=\left(\infty_{1}\right)\left(\infty_{2}\right) \prod_{i=0}^{7}(i, \bar{i})$.
(1) $S D C_{\infty_{1}}\left(4_{01}, \bar{A}(1,2]\right)$ with starters in $[0,3]$, where the block with starter 2, i.e., $\left\langle\infty_{1}, 2, \cdots\right\rangle$, is replaced by $\left\langle\infty_{2}, 2, \cdots\right\rangle$;
(2) $S D C_{\infty_{1}}(4, A[1,2])$ with starters in $[4,7]$;
(3) $S D C_{\infty_{2}}\left(4_{10}, A[1,2]\right)$ with starters in $[\overline{0}, \overline{3}]$;
(4) $S D C_{\infty_{2}}(\overline{4}, \bar{A}[1,2])$ with starters in $[\overline{4}, \overline{7}]$;
(5) $C D C_{\infty_{2}}\left(2_{01}, \overline{-3}, 3_{10}, 1_{01},(-2)_{10},(-3)_{01}, \overline{3}\right)$ with starters in $[1,7]_{2}$, where the block with starter 1, i.e., $\left\langle\infty_{2}, 1, \overline{3}, \overline{0}, 3, \overline{4}, 2, \overline{7}, \overline{2}\right\rangle$, is replaced by $B=\left\langle\infty_{1}, \infty_{2}, 1, \overline{0}, 3\right.$, $\overline{4}, 2, \overline{7}, \overline{2}\rangle$;
(6) $C D C_{\infty_{1}}\left((-3)_{10}, 2_{01}, \overline{3},(-1)_{10}, 3_{01}, \overline{-3},(-2)_{10}\right)$ with starters in $[\overline{1}, \overline{7}]_{2}$;
(7) $C=\langle 1, \overline{3}, \overline{0}, 7, \overline{6}, 5, \overline{4}, 3, \overline{2}\rangle$.

## The proof of Theorem 1.2:

Let $k=2 t+1(t>2)$. According to the value of $t$ modulo 4 we have following cases:

If $t \equiv 1(\bmod 4)$, see Theorem 5.3 ;
If $t \equiv 3(\bmod 4)$, see Theorem 5.4 and Theorem 5.5;
If $t \equiv 2(\bmod 4)$, see Theorem $5.6-5.8$;
If $t \equiv 0(\bmod 4)$, see Theorem 5.9 and Theorem 5.10.

## 6 The proof of Theorem 1.3

Let $D=\left(d_{1}, d_{2}, \cdots, d_{k}\right)$ be a $C D C$. If there are $d_{i}, d_{i+1}, d_{i+2}, d_{i+3} \in D$ such that $d_{i} \equiv d_{i+2}, d_{i+1} \equiv d_{i+3}$ and $d_{i} \not \equiv d_{i+1}(\bmod 2)$, then the $C D C$ is said to be of ALT-type and ( $\left.d_{i}, d_{i+1}, d_{i+2}, d_{i+3}\right)$ is called the $A L T$-piece.
Lemma 6.1 Among the CDCs of each construction given in Section 4, there is at least one ALT-type CDC.

Proof. In section 4, we need to investigate all the constructions except for Theorem 4.5 in which there is no $C D C$. In fact we can point out the following $A L T$-type CDCs.

Theorem 4.1- $U_{1}\left(2 t+2 s+1,4 t, \frac{v}{4}+t\right) \quad($ for $t \geq 1)$;
Theorem 4.2- $U_{1}\left(4 m+4 n+3,8 m+4, \frac{v}{4}-4 m-3\right)$ (for $m \geq 1$ );
Theorem 4.3- $U_{1}(4 t+3,4,14 t+3) \quad($ for $t \geq 1)$;
Theorem 4.4- $U_{1}\left(4 m+4 n+3,8 m, \frac{v}{4}+4 m\right)$ (for $m \geq 1$ );

Theorem 4.6- $U_{1}\left(2 t+2 s+1,4 t-2, \frac{v}{4}-t\right) \quad($ for $t \geq 1)$;
Theorem 4.7-(3) in the first construction, the difference cycle with $i=1$ in $\operatorname{part}(\mathrm{II})$ (4) (for $m \geq 1$ ) in the second construction;
Theorem 4.8-the only $C D C$ (for $t \geq 1$, so there is an $A L T$-piece in $-A([6 t+$ $\left.3,8 t+7] \backslash\{8 t+5\})^{-1}\right)$;

Theorem 4.9-(3) in the first construction, the difference cycle with $i=1 \mathrm{in} \mathrm{part(II)} \mathrm{(5)} \mathrm{(for} m \geq 2$ ) in the second construction;
Theorem 4.10-(2) (for $t \geq 1$ );
Theorem 4.11-(1) (for $t \geq 2$ );
Theorem 4.12--part(II) (2).
Theorem 6.2 For odd $k>5$, let $v \equiv 1(\bmod k), v \neq k+1$ and $v \equiv 0(\bmod 4)$. If there exist a $k-S C M D(v)$ with $A L T$-type CDCs and a $k-S C M D(2 k)$, then there exists a $k-S C M D(v+2 k)$.
Proof. Let $k=2 t+1$ and $t>2$. Let $(X, \mathcal{B}, g)$ be a $(2 t+1)-S C M D(v)$ with an $A L T$-type $C D C$ and $(Y, \mathcal{C}, h)$ be a $(2 t+1)-S C M D(4 t+2)$, where $X=Z_{v}, g=$ $(0,1, \cdots, v-1), Y=\left\{a_{i}, \overline{a_{i}}, 1 \leq i \leq 2 t\right\} \cup\left\{\infty_{1}, \infty_{2}\right\}, h=\left(\infty_{1}\right)\left(\infty_{2}\right) \prod_{i=1}^{2 t}\left(a_{i}, \overline{a_{i}}\right)$.

Let $D=\left(d_{1}, d_{2}, d_{3}, d_{4}, \cdots, d_{2 t+1}\right)$, where $\left(d_{1}, d_{2}, d_{3}, d_{4}\right)$ is an $A L T$-piece. And, $B=\left\langle x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \cdots, x_{2 t+1}\right\rangle$ is a block in $\mathcal{B}$, where $x_{i}+d_{i} \equiv x_{i+1}(\bmod v), \quad i \in$ $Z_{2 t+1}$. Let $O(B)$ be the block-orbit containing $B$. For expressing the parity of all these $x_{i}$ (suppose $x_{1}$ is even), we give the following table.

Table B

|  | case I | case II |
| :---: | :---: | :---: |
| $\left(d_{1}, d_{2}, d_{3}, d_{4}\right)$ | even, odd, even, odd | odd, even, odd, even |
| $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ | even, even, odd, odd, even | even, odd, odd, even, even |

Define the following five basic blocks:

$$
\begin{aligned}
& B_{1}=\left\langle x_{1}, x_{2}, a_{1}, y_{1}, a_{2}, \cdots, y_{t-2}, a_{t-1}, y_{t-1}, a_{t}\right\rangle ; \\
& B_{2}=\left\langle x_{3}, x_{4}, a_{1}, y_{1}+1, a_{2}, \cdots, y_{t-2}+1, a_{t-1}, y_{t-1}+1, a_{t}\right\rangle ; \\
& B_{3}=\left\langle x_{2}, x_{3}, a_{t+1}, y_{1}, a_{t+2}, \cdots, y_{t-2}, a_{2 t-1}, y_{t-1}, a_{2 t}\right\rangle ; \\
& B_{4}=\left\langle x_{4}, x_{5}, a_{t+1}, y_{1}+1, a_{t+2}, \cdots, y_{t-2}+1, a_{2 t-1}, y_{t-1}+1, a_{2 t}\right\rangle ; \\
& B_{5}=\left\langle\infty_{1}, z, \infty_{2}, x_{5}, x_{6}, \cdots, x_{2 t+1}, x_{1}\right\rangle,
\end{aligned}
$$

where $z=x_{2}$ (case I) or $x_{4}$ (case II) and these $y_{j}, 1 \leq j \leq t-1$, are distinct elements from the set

$$
\left\{2 i ; 0 \leq i \leq \frac{v-2}{2}\right\} \backslash\left\{x_{1}, x_{2}, x_{3}, x_{3}-1, x_{4}-1, x_{5}-1\right\}
$$

Since $\frac{v}{2}-6>t-1$, the required $y_{j}$ can indeed be chosen. Obviously, the points in each $B_{i}$ are mutually distinct. By Table B , in both cases, we have $x_{1} \not \equiv x_{3}, x_{2} \not \equiv x_{4}$, $x_{3} \not \equiv x_{5}(\bmod 2)$ and $x_{1} \equiv x_{5} \equiv z(\bmod 2)$. Therefore, each $a_{i}$ appears in two basic blocks above, e.g. $\left\langle\cdots u, a_{i}, v, \cdots\right\rangle$ and $\left\langle\cdots u^{\prime}, a_{i}, v^{\prime}, \cdots\right\rangle$, such that $u \not \equiv u^{\prime}$ and $v \not \equiv v^{\prime}(\bmod 2)$.

Define the mapping $f$ on $X \cup Y$ as follows:

$$
f(x)=\left\{\begin{array}{ll}
g(x) ; & x \in X \\
h(x) ; & x \in Y
\end{array} .\right.
$$

Let $G$ be the finite permutation group generated by $R f$ and let $O\left(B_{i}\right)(1 \leq i \leq 5)$ be the block-orbit containing each $B_{i}$ under the action of $G$. Let

$$
\mathcal{J}=(\mathcal{B} \backslash O(B)) \cup \mathcal{C} \cup\left(\bigcup_{i=1}^{5} O\left(B_{i}\right)\right)
$$

Obviously, $(X \cup Y, \mathcal{J}, f)$ is a $k$-SCMD $(v+2 k)$.
Theorem 6.3 There exists a $(4 t+3)-S C M D(12 t+10)$ for any positive integer $t$.
Proof. Let $(X, \mathcal{B}, g)$ be a $(4 t+3)-S C M D(4 t+4)$ as given in Theorem 4.5, where B contains only an $S D C$, and let $(Y, \mathcal{C}, h)$ be a $(4 t+3)-S C M D(8 t+6)$ as given in Theorem 1.2. To avoid confusion, denote $Y=\left\{\infty_{1}, \infty_{2}\right\} \cup\left\{a_{i}, b_{i} ; i \in Z_{4 t+2}\right\}$ and $h=\left(\infty_{1}\right)\left(\infty_{2}\right) \prod_{i=0}^{4 t+1}\left(a_{i}, b_{i}\right)$. Now, we construct a $(4 t+3)-S C M D(12 t+10)$ on $X \cup Y$. Define the mapping $f$ by

$$
f(x)=\left\{\begin{array}{ll}
g(x) & x \in X \\
h(x) & x \in Y
\end{array} .\right.
$$

We define five basic blocks $B_{1}, B_{2}, \cdots, B_{5}$ in three cases:
(1) $t$ is even.

Let $D=S D C\left(A[1,2 t+2], S[1,2 t]^{-1}, 2 t+1\right)$. There is an ALT-piece $\left(d_{1}, d_{2}, d_{3}, d_{4}\right)$ $=(1,-2,3,-4)$ in $A[1,2 t+2]$. Let $B=\left\langle 0,1,4 t+3,2,4 t+2, x_{1}, \cdots, x_{4 t-2}\right\rangle$. Define the following five basic blocks:

$$
\begin{aligned}
& B_{1}=\left\langle 0,1, a_{0}, y_{0}, a_{1}, y_{1}, \cdots, a_{2 t-1}, y_{2 t-1}, a_{2 t}\right\rangle, \\
& B_{2}=\left\langle 4 t+3,2, a_{0}, y_{0}+1, a_{1}, y_{1}+1, \cdots, a_{2 t-1}, y_{2 t-1}+1, a_{2 t}\right\rangle, \\
& B_{3}=\left\langle 1,4 t+3, a_{2 t+1}, y_{0}, a_{2 t+2}, y_{1}, \cdots, a_{4 t}, y_{2 t-1}, a_{4 t+1}\right\rangle, \\
& B_{4}=\left\langle 2,4 t+2, a_{2 t+1}, y_{0}+1, a_{2 t+2}, y_{1}+1 \cdots, a_{4 t}, y_{2 t-1}+1, a_{4 t+1}\right\rangle, \\
& B_{5}=\left\langle\infty_{1}, 2, \infty_{2}, 4 t+2, x_{1}, x_{2}, \cdots, x_{4 t-2}, 0\right\rangle,
\end{aligned}
$$

where $\left(y_{0}, y_{1}, \cdots, y_{2 t-1}\right)=(2,3, \cdots, 2 t+1)$.
(2) $t$ is odd and $t>1$.

Now, the two $S D C$ s both contain the interval $A[1,2 t+1]_{2}$. For $t \geq 3$, there is an $A L T$-piece $\left(d_{1}, d_{2}, d_{3}, d_{4}\right)=(1,-3,5,-7)$ in $A[1,2 t+1]_{2}$. Let $B=\langle 0,1,4 t+$ $\left.2,3,4 t, x_{1}, \cdots, x_{4 t-2}\right)$. Define the following five basic blocks:

$$
\begin{aligned}
& B_{1}=\left\langle 0,1, a_{0}, y_{0}, a_{1}, y_{1}, \cdots, a_{2 t-1}, y_{2 t-1}, a_{2 t}\right\rangle, \\
& B_{2}=\left\langle 3,4 t, a_{0}, y_{0}+1, a_{1}, y_{1}+1, \cdots, a_{2 t-1}, y_{2 t-1}+1, a_{2 t}\right\rangle, \\
& B_{3}=\left\langle 1,4 t+2, a_{2 t+1}, y_{0}, a_{2 t+2}, y_{1}, \cdots, a_{4 t}, y_{2 t-1}, a_{4 t+1}\right\rangle, \\
& B_{4}=\left\langle 4 t+2,3, a_{2 t+1}, y_{0}+1, a_{2 t+2}, y_{1}+1 \cdots, a_{4 t}, y_{2 t-1}+1, a_{4 t+1}\right\rangle, \\
& B_{5}=\left\langle\infty_{1}, 4 t+2, \infty_{2}, 4 t, x_{1}, x_{2}, \cdots, x_{4 t-2}, 0\right\rangle,
\end{aligned}
$$

where $\left(y_{0}, y_{2}, \cdots, y_{2 t-1}\right)=(4,5, \cdots, 2 t+3)$.
(3) $t=1$.

Let $D=S D C(1,-2,4,1,-2,3,3)$ and $B=\langle 0,1,7,3,4,2,5\rangle$. Define the following five basic blocks:

$$
\begin{aligned}
& B_{1}=\left\langle 7,3, a_{0}, 2, a_{1}, 6, a_{2}\right\rangle ; \\
& B_{2}=\left\langle 4,2, a_{0}, 3, a_{1}, 7, a_{2}\right\rangle ; \\
& B_{3}=\left\langle 3,4, a_{3}, 2, a_{4}, 6, a_{5}\right\rangle ; \\
& B_{4}=\left\langle 2,5, a_{3}, 3, a_{4}, 7, a_{5}\right\rangle ; \\
& B_{5}=\left\langle\infty_{1}, 3, \infty_{2}, 5,0,1,7\right\rangle .
\end{aligned}
$$

Obviously, each $a_{i}$ appears in two basic blocks above: $\left\langle\cdots u, a_{i}, v, \cdots\right\rangle$ and $\left\langle\cdots u^{\prime}, a_{i}, v^{\prime}, \cdots\right\rangle$, such that $u \not \equiv u^{\prime}$ and $v \not \equiv v^{\prime}(\bmod 2)$. The blocks $B_{5}=\left\langle\infty_{1}, u, \infty_{2}\right.$, $v, \cdots, w\rangle$ in three cases satisfy $u \equiv v \equiv w(\bmod 2)$. Then, let $G$ be the finite permutation group generated by $R f$. Let $O\left(B_{i}\right)$ be the block-orbit containing $B_{i}$ under the action of $G$. It is easy to see that each ordered pair $(x, y)$, which belongs to $X \times X$ or $X \times Y$, appears in exactly one block of $\bigcup_{i=1}^{5} O\left(B_{i}\right)$ ). Let

$$
\mathcal{A}=\mathcal{C} \cup\left(\bigcup_{i=1}^{5_{5}^{1}} O\left(B_{i}\right)\right)
$$

Obviously, $(X \cup Y, \mathcal{A}, f)$ is a $(4 t+3)-S C M D(12 t+10)$.
Lemma $6.4[5]$ Let $(X, \mathcal{B}, f)$ be a $k-S C M D(v)$.
(1) The self-converse block $A$ in $\mathcal{B}$, i.e., $f(A)^{-1}=A$, must possess one of the following structures:

Type I. $A=\left\langle a_{1}, a_{2}, \cdots, a_{t}, b_{t}, \cdots, b_{2}, b_{1}\right\rangle, \quad t=\frac{k}{2}$;
Type II. $A=\left\langle\infty, a_{1}, \cdots, a_{t}, \infty^{\prime}, b_{t}, \cdots, b_{1}\right\rangle, \quad t=\frac{k}{2}-1$;
Type III. $A=\left\langle\infty, a_{1}, \cdots, a_{t}, b_{t}, \cdots, b_{1}\right\rangle, \quad t=\frac{k-1}{2}$,
where $f\left(a_{i}\right)=b_{i}, f\left(b_{i}\right)=a_{i}$ for $1 \leq i \leq t$ and $f(\infty)=\infty, f\left(\infty^{\prime}\right)=\infty^{\prime}$.
(2) If $f$ contains a transposition ( $a, b$ ), then the block covering the ordered pair ( $a, b$ ) must be self-converse of Type I (if $k$ even) or Type III (if $k$ odd).
(3) If $\mathcal{B}$ contains a self-converse block, then
(for $k$ even): $f$ contains at least $\frac{k}{2}$ transpositions and $\mathcal{B}$ contains at least $\frac{k}{2}$ self-converse blocks of Type I;
(for $k$ odd): $f$ contains at least $\frac{k-1}{2}$ transpositions and $\mathcal{B}$ contains at least $k-1$ self-converse blocks of Type III.
Theorem 6.5 There exists no $(4 t+1)-S C M D(4 t+2)$ for any positive integer $t$.
Proof. Suppose there is a $(4 t+1)-S C M D(4 t+2)=(X, \mathcal{B}, f)$, where $|\mathcal{B}|=$ $4 t+2=|X|$. Obviously, the elements in any block of $\mathcal{B}$ are $X \backslash\{a\}$ and the missing element $x$ is distinct for different block. Let $B_{a}$ be the block without point $a$. Then $\mathcal{B}=\left\{B_{a} ; a \in X\right\}$. It is easy to see that, if $f(a)=b$ then $f^{-1}\left(B_{a}\right)=B_{b}$. So we have
(1) $f$ contains no 1-cycle.

In fact, suppose $f=(\infty) \cdots$, then $B_{\infty}$ is self-converse. By Lemma 6.4 (1), $f$ contains two fixed points. By Lemma 6.4 (3), there are at least $4 t$ self-converse blocks of Type III in $\mathcal{B}$. But, this is impossible since $t \geq 2$.
(2) $f$ contains no 2 -cycle (i.e, transposition).

Suppose $f=(a, b) \cdots$, then, by Lemma 6.4 (2), there is a self-converse block containing the pair $(a, b)$ in $\mathcal{B}$. Furthermore, by Lemma 6.4 (3), $\mathcal{B}$ contains at least $4 t$ self-converse blocks of Type III, which is impossible by (1).
(3) $f$ contains no 3 -cycle.

Suppose $f=(a, b, c) \cdots$, then under the action of the derived mapping $B \rightarrow$ $f(B)^{-1}, B_{a} \rightarrow B_{b} \rightarrow B_{c} \rightarrow B_{a}$. So, we have $f^{3}\left(B_{a}\right)^{-1}=B_{a}$. Let $B_{a}=\left\langle b, x_{1}, \cdots, x_{m}\right.$, $\left.c, y_{n}, \cdots, y_{1}\right\rangle$, where $x_{i}, y_{j} \notin\{a, b, c\}, m+n=4 t-1$ and $\left\{x_{1}, \cdots, x_{m}\right\}$ or $\left\{y_{1}, \cdots, y_{n}\right\}$ may be empty. The expression of the relation $f^{3}\left(B_{a}\right)^{-1}=\left\langle b, f^{3}\left(y_{1}\right), \cdots, f^{3}\left(y_{n}\right), c\right.$, $\left.f^{3}\left(x_{m}\right), \cdots, f^{3}\left(x_{1}\right)\right\rangle=B_{a}$ shows that $m=n$, which is impossible since $m+n=4 t-1$.
(4) $f$ contains no $(2 s+1)$-cycle.

When $s=0$ or 1 , the conclusion is correct by (1) or (3). Now, let $s \geq 2$ and $f=$ $\left(a_{0}, a_{1}, \cdots, a_{2 s}\right) \cdots$. Obviously, if $B_{a_{0}}=\left\langle a_{1}, \cdots, a_{2}, \cdots, a_{2 s}, \cdots\right\rangle$, then $f^{2 s+1}\left(B_{a_{0}}\right)^{-1}=$ $\left\langle a_{2 s}, \cdots, a_{2}, \cdots, a_{1}, \cdots\right\rangle=B_{a_{0}}$. But, this is impossible since $2 s \geq 4$.
(5) $f$ contains no $(4 s+2)$-cycle.

Suppose $f=\left(a_{0}, a_{1}, \cdots, a_{4 s+1}\right) \cdots$. Let $B_{x}=\left\langle a_{0}, a_{2 s+1}, \cdots\right\rangle$ be the block containing the ordered pair $\left(a_{0}, a_{2 s+1}\right)$. Obviously, the block $f^{2 s+1}\left(B_{x}\right)^{-1}$ contains the ordered pair $\left(a_{0}, a_{2 s+1}\right)$ too. So $B_{x}=f^{2 s+1}\left(B_{x}\right)^{-1}$, i.e., $x$ must belong to an odd cycle of $f$, which is impossible by (4).

So $f$ can only contain $4 s$-cycles. But $4 t+2 \equiv 2(\bmod 4)$, which is impossible. Thus, there exists no $(4 t+1)-S C M D(4 t+2)$.

## The proof of Theorem 1.3:

All possibilities are shown in the following table:

| $k \equiv(\bmod 4)$ | $v=(4 s+1) k+1 \equiv(\bmod 4)$ | $v=(4 s+3) k+1 \equiv(\bmod 4)$ |
| :---: | :---: | :---: |
| 1 | 2 | 0 |
| 3 | 0 | 2 |

In this table, two parts of $v \equiv 0(\bmod 4)$ have been solved in Theorem 1.1. By Lemma 6.1 and Theorem 6.2, the following recursive relations hold when there is at least one $C D C$ in the original constructions:
$\begin{array}{ll}(k \equiv 1(\bmod 4)) & k-S C M D((4 s+3) k+1) \rightarrow k-S C M D((4 s+5) k+1) ; \\ (k \equiv 3(\bmod 4)) & k-S C M D((4 s+1) k+1) \rightarrow k-S C M D((4 s+3) k+1) .\end{array}$
While the two exceptions have been solved:
$k>5$ and there is no $C D C$ in the original construction, see Theorem 6.3 ; there exists no $(4 t+1)-S C M D(4 t+2)$, see Theorem 6.5.

## References

[1]C.J. Colbourn and J.H. Dinitz, The CRC Handbook of Combinatorial Designs, $C R C$ Press, Inc., 1996.
[2]C.J. Colbourn and A. Rosa, Directed and Mendelsohn triple systems, Chapter 4 of Contemporary Design Theory, Wiley Interscience Publication (1992), 97-136.
[3]Yanxun Chang, Guihua Yang and Qingde Kang, The spectrum of self-converse MTS, Ars Combinatoria, 44 (1996), 273-281.
[4]Jie Zhang, The spectrum of simple self-converse $\operatorname{MTS}(v, \lambda)$, Acta Mathematic Applicate Sinica, Vol. 20, No. 4 (1997), 487-497.
[5]Qingde Kang, Self-converse Mendelsohn designs with block size $4 t+2$, Journal of Combinatorial Designs 7 (1999), 283-310.
[6] Qingde Kang, Xiuling Shan and Qiujie Sun, The spectrum of self-converse Mendelsohn designs with block size 4 and 5, Journal of Combinatorial Designs 8 (2000), 411-418.

## Appendix

1. $7-S C M D(36)$ (Theorem 4.1, let $t=1, s=1$ ).
$X=Z_{36}$ and $f=(0,1, \cdots, 35)$.
(I) $S D C(1,-2,10,18,1,-2,10)$.
(II) $C D C(D)$, where $D$ is taken as follows.
(1) $(A[5,8],-11,9,4)$;
(2) $(A[14,17],-13,12,3)$.
2. $15-S C M D(136)$ (Theorem 4.2, let $t=3, s=2$ ).
$X=Z_{136}$ and $f=(0,1, \cdots, 135)$.
(I) $S D C(1,-3,68,-3,6,-4,2,5,27,1,2,-4,6,5,27)$.
(II) $C D C(D)$, where $D$ is taken as follows.
(1) $(A[11,22],-28,26,8)$;
(2) $(23,-24, A[34,43],-29,25,10)$;
(3) $(A[44,55],-32,31,7)$;
(4) $(A[56,67],-33,30,9)$.
3. 7 -SCMD (64) (Theorem 4.3, let $t=1$ ).
$X=Z_{64}$ and $f=(0,1, \cdots, 63)$.
(I) $S D C(1,-2,17,32,1,-2,17)$.
(II) $C D C(D)$, where $D$ is taken as follows.
(1) $(A[7,10],-18,16,4)$;
(2) $(A[11,14],-19,15,6)$;
(3) $(A[24,27],-22,21,3)$;
(4) $(A[28,31],-23,20,5)$.
4. $11-S C M D(56)$ (Theorem 4.4, let $t=2, s=1$ ).
$X=Z_{56}$ and $f=(0,1, \cdots, 55)$.
(1) $\operatorname{SDC}(1,-3,28,-3,18,2,-4,1,-4,2,18)$;
(2) $C D C(15,-16, A[22,27],-21,20,5)$;
(3) $C D C(A[7,14],-19,17,6)$.
5. 5-SCMD (36) (Theorem 4.6, let $t=1, s=1$ ).
$X=Z_{36}$ and $f=(0,1, \cdots, 35)$.
(1) $S D C(1,8,18,1,8)$;
(2) $C D C(5,-6,7,-9,3)$;
(3) $C D C(14,-15,11,-12,2)$;
(4) $C D C(16,-17,10,-13,4)$.
6. 13-SCMD(248) (Theorem4.7, let $t=3, s=4$ ).
$X=Z_{248}$ and $f=(0,1, \cdots, 247)$.
(I) $S D C\left(M, 124, M^{-1}\right)$, where $M=\left(A[1,7]_{2}, 23,43\right)$.
(II) $C D C(D)$, where $D$ is taken as follows.
(1) $\left(A[2,8]_{2}, 11,-13,22,-24,56,-58,57,-59,12\right)$;
(2) $(9,-10, A[39,47] \backslash\{43\}, A[60,63],-64,55,14)$;
(3) $(A[25,34],-65,54,16)$;
(4) $(A[64,73],-66,60,18)$;
(5) $(A[74,83],-67,59,20)$;
(6) $(A[84+10(i-1), 83+10 i],-(47+i), 39-i, 13+2 i)$.
7. $5-S C M D(20 t+16)$.
$X=Z_{20 t+16}$ and $f=(0,1, \cdots, 20 t+15)$.
(I) $\begin{cases}S D C(1,5 t+3,10 t+8,1,5 t+3) & t \text { is odd } \\ S D C(1,5 t+3,10 t+8,5 t+3,1) & t \text { is even }\end{cases}$
(II) $C D C(D)$, where $D$ is taken as follows.
(1) $(2 t+2 i+1,-(2 t+2 i+2), 5 t-i+3,-(5 t+i+3), 2 i+1), 1 \leq i \leq t$;
(2) $(8 t+2 i+4,-(8 t+2 i+5), 7 t-i+5,-(7 t+i+4), 2 i), 1 \leq i \leq t+1$.
8. $17-S C M D(528)$ (Theorem 4.10, let $t=4, s=7$ ).
$X=Z_{248}$ and $f=(0,1, \cdots, 527)$.
(I) $S D C\left(M, 264, M^{-1}\right)$, where $M=\left(1,-3, A[257,263]_{2},-43,-83\right)$.
(II) $C D C(D)$, where $D$ is taken as follows.
(1) $\left(-2,4, A[256,262]_{2},-A[5,10]^{-1},-A[12,15]^{-1}, 11\right)$;
(2) $(A[39,47] \backslash\{43\}, A[62,67],-70,61,16)$;
(3) $(30,-31,68,-69, A[77,87] \backslash\{83\},-71,60,18)$;
(4) $(A[88+14(i-1), 87+14 i],-(71+i), 60-i, 18+2 i), 1 \leq i \leq 5$;
(5) $(A[158+14(i-1), 157+14 i],-(47+i), 39-i, 15+2 i), 1 \leq i \leq 7$.
(Received 19/1/2000)

[^0]:    *Research supported by NSFC 19831050 and 19771028.

