Self-converse Mendelsohn designs with odd block size

Xiuling Shan and Qingde Kang^{*}

Institute of Mathematics, Hebei Normal University Shijiazhuang, 050091, P. R. China

Qiujie Sun

Shijiazhuang Railway Institute Shijiazhuang, 050043, P. R. China

Abstract

A Mendelsohn design $MD(v, k, \lambda)$ is a pair (X, \mathcal{B}) , where X is a vset together with a collection \mathcal{B} of ordered k-tuples from X such that each ordered pair from X is contained in exactly λ k-tuples of \mathcal{B} . An $MD(v, k, \lambda)$ is said to be self-converse, denoted by $SCMD(v, k, \lambda) =$ (X, \mathcal{B}, f) , if there is an isomorphism f from (X, \mathcal{B}) to (X, \mathcal{B}^{-1}) , where $\mathcal{B}^{-1} = \{\langle x_k, x_{k-1}, ..., x_2, x_1 \rangle; \langle x_1, ..., x_k \rangle \in \mathcal{B} \}$. The existence of $SCMD(v, 3, \lambda), SCMD(v, 4, 1), SCMD(v, 5, 1)$ and SCMD(v, 4t+2, 1)has been completely settled, where 2t + 1 is a prime power. But up to now, there is no result about odd block size larger than five. In this paper, we give a constructive proof for the existence of k-SCMD(v), where k is odd and $k > 5, v \equiv 1 \pmod{k}$.

1 Introduction

Let X be a v-set and $3 \leq k \leq v$. A cyclic k-tuple from X is a collection of k ordered pairs $(x_0, x_1), (x_1, x_2), \dots, (x_{k-2}, x_{k-1})$ and (x_{k-1}, x_0) , where x_0, x_1, \dots, x_{k-1} are distinct elements of X. It is denoted by $\langle x_0, x_1, \dots, x_{k-1} \rangle$ or any cyclic shift $\langle x_i, x_{i+1}, \dots, x_{k-1}, x_0, \dots, x_{i-1} \rangle$. A (v, k, λ) -Mendelsohn design is a pair (X, \mathcal{B}) , where \mathcal{B} is a collection of cyclic k-tuples (called blocks) from X, such that each ordered pair of distinct elements of X belongs to exactly λ blocks of \mathcal{B} . It is denoted by $MD(v, k, \lambda)$.

Let (X, \mathcal{B}) be an $MD(v, k, \lambda)$. Define $\mathcal{B}^{-1} = \{ \langle x_{k-1}, x_{k-2}, \cdots, x_1, x_0 \rangle; \langle x_0, x_1, \cdots, x_{k-1} \rangle \in \mathcal{B} \}.$

*Research supported by NSFC 19831050 and 19771028.

Australasian Journal of Combinatorics 24(2001), pp.13-33

Obviously (X, \mathcal{B}^{-1}) is also an $MD(v, k, \lambda)$, which is called the *converse* of (X, \mathcal{B}) . If there exists an isomorphism f from (X, \mathcal{B}) to (X, \mathcal{B}^{-1}) , then the $MD(v, k, \lambda)$ is called *self-converse* and this is denoted by $SCMD(v, k, \lambda) = (X, \mathcal{B}, f)$. In particular, it is denoted by k-SCMD(v) when $\lambda = 1$. It is easy to show that necessary conditions for the existence of both an $MD(v, k, \lambda)$ and an $SCMD(v, k, \lambda)$ are

$$\lambda v(v-1) \equiv 0 \pmod{k}.$$

C.J. Colbourn and A. Rosa [2] posed the open problem about the existence of selfconverse $MD(v, 3, \lambda)$. Yanxun Chang, Guihua Yang and Qingde Kang [3] have solved the case for $\lambda = 1$. Jie Zhang [4] solved the case for any λ . Qingde Kang et al. [5],[6] have completely solved the cases for k = 4, 5 and 4t + 2, where 2t + 1 is prime power. But, up to now, there is no result about odd block size larger than five. In this paper, the following results are obtained.

Theorem 1.1 For odd k > 5, there exists a k-SCMD(v) if $v \equiv 0 \pmod{4}$ and $v \equiv 1 \pmod{k}$.

Theorem 1.2 There exists a (2t+1)-SCMD(4t+2) for any positive integer t > 2.

Theorem 1.3 There exists a k-SCMD(v) for odd k > 5 and $v \equiv 1 \pmod{k}$, except for (4t + 1)-SCMD(4t + 2) for any integer $t \ge 2$.

2 Definition and Remarks

Let Z_v be the ring of integers modulo v and let d_1, d_2, \dots, d_m be elements of $Z_v \setminus \{0\}$. The ordered sequence $D = (d_1, d_2, \dots, d_m)$ is called a *difference tuple* on Z_v . The corresponding number tuple $(i, i + d_1, \dots, i + \sum_{j=1}^m d_j)$ is denoted by $\widetilde{D}_i, i \in Z_v$. For convenience, we define $head(\widetilde{D}_i) = i$ and $tail(\widetilde{D}_i) = i + \sum_{j=1}^m d_j$. Furthermore, define:

$$\begin{array}{rcl} -D &=& (-d_1,-d_2,\cdots,-d_m);\\ D^{-1} &=& (d_m,d_{m-1},\cdots,d_1);\\ A(D) &=& (d_1,-d_2,d_3,\cdots,(-1)^{m-1}d_m);\\ -A(D)^{-1} &=& -(A(D))^{-1};\\ abs(D) &=& \{|d_1|,|d_2|,\cdots,|d_m|\};\\ abs(\widetilde{D_i}) &=& \{|i|,|i+d_1|,\cdots,|i+\sum\limits_{j=1}^m d_j|\};\\ S[a,a+3] &=& (a+2,-(a+1),a,-(a+3));\\ S[a,a+4t-1] &=& (S[a,a+3],\cdots,S[a+4t-4,a+4t-1]);\\ S[a,a+4t-1]^{-1} &=& (S[a,a+4t-1])^{-1}. \end{array}$$

If the points in \widetilde{D}_0 are distinct, then D is called a *difference path* and this is denoted by DP(D). Obviously, if D is a DP then -D and D^{-1} are both DPs. If the head and the tail of \widetilde{D}_0 both are 0, then D is called a *difference cycle* and this is denoted by DC(D). It is easy to see that if M is a DC, then $-M^{-1}$ is a DC too. Let a, b, d, kbe positive integers with a < d < b. Define: $[a,b]_k = (a,a+k,\cdots,b),$

 $[a,b]_k \setminus \{d\} = (a,\cdots,d-k,d+k,\cdots,b),$

where $a \equiv b \equiv d \pmod{k}$ and the subscript k may be omitted when k = 1.

For given point set $X = Z_v$, let \mathcal{T} be the set of all cyclic k-tuples on X and let f be a bijection on X. Denote $\mathcal{P} = \{(x, y) ; x, y \in X, x \neq y\}$. The point set X is partitioned into *point-orbits* under the action of f. Two distinct points x and y are in the same point-orbit if and only if there is a positive integer s such that $f^s(x) = y$. The point-orbit containing the point x is denoted by $O_f(x)$. The number of points in $O_f(x)$ is called the *length* of $O_f(x)$. The mappings induced by f are f((x, y)) = (f(x), f(y)) on \mathcal{P} and $f(\langle x_0, x_1, \dots, x_{k-1} \rangle) = \langle f(x_0), f(x_1), \dots, f(x_{k-1}) \rangle$ on \mathcal{T} . Denote

$$Rf(P) = (f(P))^{-1}, \forall P \in \mathcal{P}; \quad Rf(B) = (f(B))^{-1}, \forall B \in \mathcal{T}.$$

Then the finite permutation group on \mathcal{P} (or \mathcal{T}) generated by Rf gives an orbit partition of \mathcal{P} (or \mathcal{T}). Each orbit in \mathcal{P} containing the pair P is called the *pair-orbit* O(P). Each orbit in \mathcal{T} containing the block B is called the *block-orbit* O(B). The number of pairs (or blocks) in a pair-orbit (or block-orbit) is called the *length* of the orbit. Call a block B self-converse if Rf(B) = B.

Let d (or D) be the difference (or difference cycle) corresponding to pair P (or block B). Then, the difference -d (or difference cycle $(-D)^{-1}$) corresponds to Rf(P) (or Rf(B)). As well, O(P) = O(Rf(P)) and O(B) = O(Rf(B)).

Let $x, y \in X$, $x \neq y$ and y - x = d. Suppose the length of $O_f(x)$ is m. If x and y are in the same point-orbit, then we have

	Number of pair-orbits	length of each pair-orbit
$m \text{ odd}, \forall d$	1	2m
m even, $d \neq \frac{m}{2}$	2	m
$m \equiv 0 \pmod{4}, d = \frac{m}{2}$	1	m
$m \equiv 2 \pmod{4}, d = \frac{m}{2}$	2	$\frac{m}{2}$

Otherwise, let the length of $O_f(y)$ be n. Then, we have

	Number of pair-orbits	length of each pair-orbit
m odd, n odd	1	2[m,n]
else	2	[m,n]

If there are two pair-orbits corresponding to d, we call them *complementary*. As examples, we give the following:

1. if $X = Z_4$ and f = (0, 1, 2, 3), the pair-orbit corresponding to the difference 2 under Rf is $\{(0, 2), (3, 1), (2, 0), (1, 3)\};$

2. if $X = Z_6$ and f = (0, 1, 2, 3, 4, 5), the pair-orbits corresponding to the difference 3 under Rf are $\{(0, 3), (4, 1), (2, 5)\}$ and $\{(1, 4), (5, 2), (3, 0)\}$;

3. if |X| = 5 and $f = (0, 1, 2)(\overline{0}, \overline{1})$, the pair-orbits corresponding to the mixed difference 1 under Rf (see Section 5) are $\{(0, \overline{1}), (\overline{0}, 1), (2, \overline{1}), (\overline{0}, 0), (1, \overline{1}), (\overline{0}, 2)\}$ and $\{(1, \overline{0}), (\overline{1}, 2), (0, \overline{0}), (\overline{1}, 1), (2, \overline{0}), (\overline{1}, 0)\}$.

In particular, we discuss the case $X = Z_v$ and $f = (0, 1, \dots, v-1)$, where $v \equiv 0 \pmod{4}$. Then, it is easy to see that $\{(2i, 2i+d), (2i+d+1, 2i+1); 0 \le i \le \frac{v}{2}-1\}$ and $\{(2i+1, 2i+d+1), (2i+d, 2i); 0 \le i \le \frac{v}{2}-1\}$, where $d \in Z_v^*$, are complementary pair-orbits. The two orbits are the same when $d = \frac{v}{2}$, i.e., $\{(i, i+\frac{v}{2}); 0 \le i \le v-1\}$.

- Let D be a DC on Z_v . Define the following DCs.
- 1 <u>SDC(D)</u>, where D satisfies:
 - (1) D contains exactly one $\frac{v}{2}$.
 - (2) For any two pairs in D_0 , their pair-orbits are distinct.
 - (3) For any pair P = (x, x + d) in \widetilde{D}_0 , $d \neq \frac{v}{2}$, there exists a pair P' in \widetilde{D}_0 such that O(P) and O(P') are complementary.
- 2 CDC(D), where D satisfies:
 - $(\overline{1}) \quad \frac{v}{2} \not\in \overline{D}.$
 - (2) All the elements in abs(D) are distinct.

From the above definitions and the discussion of pair-orbits, we have the following lemma.

Lemma 2.1 Under the action of the group generated by Rf,

- (1) there is only one block-orbit with length v corresponding to SDC(D);
- (2) there are two block-orbits with length v corresponding to CDC(D).

Obviously, $\{\widetilde{D_{2i}}, \widetilde{D_{2i+1}}^{-1}; 0 \le i \le \frac{v}{2} - 1\}$ and $\{\widetilde{D_{2i+1}}, \widetilde{D_{2i}}^{-1}; 0 \le i \le \frac{v}{2} - 1\}$ are the complementary block-orbits corresponding to CDC(D). But $\{\widetilde{D_{2i}}, \widetilde{D_{2i+1}}^{-1}; 0 \le i \le \frac{v}{2} - 1\}$ is the only orbit corresponding to SDC(D).

3 Some sub-structures

A k-cycle decomposition of a complete graph K_v is a collection of undirected cycles with length k, whose (undirected) edges partition all the edges of K_v . Writing each k-cycle twice, once in a certain order and the other in the reverse order, then a k-CS(v) gives a k-SCMD(v), where the mapping f is the identity mapping. It is known [1] that there exists a k-cycle decomposition of K_v if k is odd and $v \equiv$ 1, k (mod 2k). Thus, in order to investigate the existence of k-SCMD(v) for odd k and $v \equiv 1 \pmod{k}$, we only need to discuss the cases $v \equiv k + 1$ and $3k + 1 \pmod{4k}$. In this section, we suppose $v \equiv 0 \pmod{4}$ and $v \equiv 1 \pmod{k}$.

First, from [5] (Lemma 1 and Corollary 2), we have Lemma 3.1 and Corollary 3.2.

Lemma 3.1 For $DP(D) = (x_1, x_2, \dots, x_m), \ 0 < x_1 < \dots < x_m \le \frac{v}{2}, \ \pm A(D)$ are DPs.

Corollary 3.2 Let 0 < d < m, a > 0 and $a + km \le \frac{v}{2}$. If $D = [a, a + km]_k$ or $D = [a, a + km]_k \setminus \{a + kd\}$, then $\pm A(D)$ are DPs.

For convenience, we give the following table (where $D = \pm A[a, a + m]$).

Table A

m	sgn(D)	$tail(\widetilde{D}_0)$	$\{\widetilde{D}_0\}$
even	+	$a + \frac{m}{2}$	$\left[-\frac{m}{2},0\right]\cup\left[a,a+\frac{m}{2}\right]$
even	—	$-(a + \frac{m}{2})$	$[0, \frac{m}{2}] \cup [-(a + \frac{m}{2}), -a]$
odd	+	$-\frac{m+1}{2}$	$[-\frac{m+1}{2},0] \cup [a,a+\frac{m-1}{2}]$
odd	adarren	$\frac{m+1}{2}$	$[0, \frac{m+1}{2}] \cup [-(a + \frac{m-1}{2}, -a]]$

Remark In the above table, $head(\widetilde{D_0}) = 0$. This table can be used for $D = \pm A[a, a + km]_k$ or $D = \pm A([a, a + km]_k \setminus \{a + kd\})$, where all numbers m, d and 1 are replaced by km, kd and k respectively, while a and 2 are kept fixed. And the intervals [*, *] become $[*, *]_k$.

Lemma 3.3 Let D = [a, a + 4t - 1], a > 0 and $t \ge 1$. Then $\pm S(D)$ are DPs. Proof. Let N = S(D). From the definition of S(D), $\overline{N_0} = [a + 1, a + 2t] \cup ([-2t, 1] \setminus \{-(2t - 1)\}).$ So S(D) is a DP and -S(D) is a DP too.

Lemma 3.4 Let M be a DP on Z_v and $\frac{v}{2} \notin M$. If M satisfies $(\widetilde{M}_0 \setminus \{0\}) \cap (\widetilde{M}_0 + (-1)^{i+1}\frac{v}{4}) = \emptyset$, $\frac{v}{2} \notin \widetilde{M}_0$ and $\sum_{d \in M} d \equiv (-1)^i \frac{v}{4} \pmod{v}$ for i = 0 or 1, then $(M, \frac{v}{2}, M)$ is a DC. Furthermore, $(M, \frac{v}{2}, M)$ is an SDC when $\frac{v}{4}$ is odd.

Proof. Let $\widetilde{M}_0 = (0, x_1, \dots, x_m)$, where m = |M| and $0 < |x_i| < \frac{v}{2}$. Obviously, $x_m = \sum_{d \in M} d \equiv (-1)^i \frac{v}{4} \pmod{v}$. If $D = (M, \frac{v}{2}, M)$, then

$$D_0 = (0, x_1, \cdots, x_m, \frac{v}{2} + x_m, \frac{v}{2} + x_m + x_1, \cdots, \frac{v}{2} + 2x_m).$$

 D_0 is closed since $x_m \equiv (-1)^{i\frac{v}{4}} \pmod{v}$. Furthermore, since M is a DP and $(\widetilde{M}_0 \setminus \{0\}) \cap (\widetilde{M}_0 + (-1)^{i+1}\frac{v}{4}) = \emptyset$, D is a DC. If $\frac{v}{4}$ is odd, we can show that D is an SDC by the definition of SDC.

Corollary 3.5 If
$$v \equiv 4 \pmod{8}$$
, $1 \leq t < t + m < \frac{v}{4}$, $t + m < a < \frac{v}{2}$ and $a \equiv \pm \frac{v}{4} - (-1)^m \lceil \frac{m}{2} \rceil - \frac{1 + (-1)^m}{2} t \pmod{v}$, then $(A[t, t + m], a, \frac{v}{2}, A[t, t + m], a)$ is an SDC.

Proof. Letting D = A[t, t+m], then D is a DP by Corollary 3.2 and $tail(\widetilde{D}_0) = (-1)^m \lceil \frac{m}{2} \rceil + \frac{1+(-1)^m}{2}t$ from Table A. Let M = (D, a). From Table A we can see that $|x| < \frac{v}{4}$ for all $x \in \widetilde{D}_0$. For $1 \le t < t+m < \frac{v}{4}$ and $t+m < a < \frac{v}{2}$, $(\widetilde{M}_0 \setminus \{0\}) \cap (\widetilde{M}_0 + (-1)^{i+1} \frac{v}{4})$ is empty. Thus, $(M, \frac{v}{2}, M)$ is an *SDC* by Lemma 3.4.

Lemma 3.6 Let M be a DP on Z_v and $\frac{v}{2} \notin M$. If $\frac{v}{2} \notin \widetilde{M}_0$, $|\sum_{d \in M} d| \equiv \frac{v}{4} \pmod{v}$ and all elements of $abs(\widetilde{M}_0)$ are distinct, then $(M, \frac{v}{2}, M^{-1})$ is a DC. Furthermore, $(M, \frac{v}{2}, M^{-1})$ is an SDC when $\frac{v}{4}$ is even and all differences in M are odd.

Proof. Let $\widetilde{M}_0 = (0, x_1, \dots, x_m)$, where m = |M| and $0 < |x_i| < \frac{v}{2}$. Denote $D = (M, \frac{v}{2}, M^{-1})$. Since $|x_m| = |\sum_{d \in M} d| = \frac{v}{4}$, it is easy to see that

$$D_0 = (0, x_1, x_2, \cdots, x_m, -x_m, -x_{m-1}, \cdots, -x_1)$$

is closed. Because all the elements in $abs(M_0)$ are distinct, D is indeed a DC. If $\frac{v}{4}$ is even and all the differences in M are odd, D is an SDC by the definition of SDC.

Corollary 3.7 Let a, b, m, t be odd and satisfy the following conditions: $1 \leq t < t + 2m < a < \frac{v}{4}$, $b \in [1, \frac{v}{2} - 1] \setminus [t, t + 2m]_2$ and $a \neq b$. Let $T = A[t, t + 2m]_2$ and M = (T, a, b). If $v \equiv 0 \pmod{8}$, $|a + b + tail(\tilde{T}_0)| \equiv \frac{v}{4} \pmod{v}$, then $(M, \frac{v}{2}, M^{-1})$ is an SDC.

Proof. From Table A we see that $tail(\tilde{T}_0) = -(m+1)$. Since a, b, t are all odd and satisfy the conditions, the elements in $abs(\tilde{M}_0)$ are all distinct. Then $(M, \frac{v}{2}, M^{-1})$ is an *SDC* by Lemma 3.6.

Lemma 3.8

(1) Let $s, t \ge 1$ and v = (8s+1)(8t+7) + 1. If $N_1 = A[1, 4t-1]_2$, $N_2 = (4t+2, A([2, 4t]_2^{-1}))$ and $N_3 = (4t+1, \frac{v}{4}-4t-3)$, then $(N_1, \frac{v}{2}, (N_1 \setminus \{1\})^{-1}, N_2, N_3, 1, N_2^{-1}, N_3)$ is an SDC; (2) Let $s \ge 0$, $t \ge 1$ and v = (8s+5)(8t+3) + 1. If $N_1 = A[1, 4t-1]_2$ and $N_2 = (\frac{v}{4} + 4t, A[2, 4t]_2)$, then $(N_1, \frac{v}{2}, (N_1 \setminus \{1\})^{-1}, N_2, 1, N_2^{-1})$ is an SDC.

Proof.

(1) Let $D = (N_1, \frac{v}{2}, (N_1 \setminus \{1\})^{-1}, N_2, N_3, 1, N_2^{-1}, N_3)$. Then $\widetilde{D}_0 = [-2t, 0]_2 \cup [1, 2t-1]_2 \cup [\frac{v}{2} - 4t + 1, \frac{v}{2} - 2t] \cup [\frac{v}{2} - 6t + 1, \frac{v}{2} - 4t - 1]_2 \cup [\frac{v}{2} - 2t + 1, \frac{v}{2} + 1]_2 \cup [-\frac{v}{4} - 4t, -\frac{v}{4} + 2]_2 \cup \{\frac{v}{2} + 2t + 2, -\frac{v}{4} - 2t - 1, -\frac{v}{4} + 4t + 3\}$ by Table A. It is easy to see that $|\sum_{d \in D} d| \equiv 0 \pmod{v}$ and all elements in \widetilde{D}_0 are distinct except for the head = the tail. So, D is a DC. By the definition of SDC, D is an SDC. (2) Let $D = (N_1, \frac{v}{2}, (N_1 \setminus \{1\})^{-1}, N_2, 1, N_2^{-1})$. Then $\widetilde{D}_0 = [-2t, 0]_2 \cup [1, 2t - 1]_2 \cup [\frac{v}{2} - 4t + 2, \frac{v}{2} - 2t]_2 \cup [\frac{v}{2} - 6t + 1, \frac{v}{2} - 4t - 1]_2 \cup [-\frac{v}{4} - 2t - 1, -\frac{v}{4} + 2t - 1]_2 \cup [-\frac{v}{4} - 6t, -\frac{v}{4} - 2t]_2$ by Table A. The rest of the proof is similar to (1).

Let
$$a, b, c, i$$
 be positive integers and b be even. Denote

$$U_i(a, b, c) = (A[a + b(i - 1), a + bi - 1], -(c + i), c - i, \frac{b}{2} + 2i);$$

$$V_i(a, b, c) = (A[a + b(i - 1), a + bi - 1], -(c + i), c - i + 1, \frac{b}{2} + 2i - 1).$$

Lemma 3.9 Let a, b, c, s, i, v be positive integers and v, b be even. If the following conditions are satisfied: $c + \frac{b}{2} + s < \frac{v}{2}$, c > 2s - 1 and $0 < a < a + bs - 1 < \frac{v}{2}$, then U_i and V_i defined above are CDCs for any $1 \le i \le s$.

Proof. Denote T = A[a + b(i - 1), a + bi - 1]. By Table A, $\{\widetilde{T_0}\} = [a + b(i - 1), a + bi - 1 - \frac{b}{2}] \cup [-\frac{b}{2}, 0]$ and $tail(\widetilde{T_0}) = -\frac{b}{2}$. Since $a + bs - 1 < \frac{v}{2}$, T is a DP on Z_v by Corollary 3.2. So, in the corresponding number tuple of U_i with head 0, all elements are distinct. Thereby, all the U_i (or V_i) are DCs on Z_v . By the definition of CDC, they are all CDCs.

4 The Proof of Theorem 1.1

In this section, we will give several classes of constructions for a k-SCMD $(v) = (X, \mathcal{B}, f)$ for $v \equiv 0 \pmod{4}$ and $v \equiv 1 \pmod{k}$, where the point set X is Z_v , the mapping f is $i \to i+1$ for $i \in Z_v$. Also, each block set \mathcal{B} consists of one SDC and n CDCs, where $\frac{v(v-1)}{k} = (2n+1)v$ by Lemma 2.1. So, the number n of CDCs is $\frac{v-k-1}{2k}$. Furthermore, in order to verify the correctness of the given construction, we only need to show:

(1) Each given DC is an SDC(D) or a CDC(D), (using the conclusion in Section 3 or direct examination).

(2) The differences in all the *DCs* form a partition of $[1, \frac{v}{2}]$. (Note that, in an *SDC*, each difference except for $\frac{v}{2}$ appears twice and is calculated only once.)

Theorem 4.1 There exists a (4t + 3)-SCMD((4s + 1)(4t + 3) + 1) for positive integers s, t with the same parity.

Construction. Let v = (4s+1)(4t+3) + 1 and $X = Z_v$.

- (I) $SDC(N, \frac{v}{2}, N)$, where $N = (A[1, 2t], \frac{v}{4} + t)$.
- (II) CDC(D), where D is taken as follows. (1) $U_i(2t+2s+1, 4t, \frac{v}{4}+t), 1 \le i \le s;$ (2) $V_i(\frac{v}{4}+3s+t+1, 4t, \frac{v}{4}+2s+t), 1 \le i \le s.$

Proof. Obviously, $\frac{v}{4}$ is odd for v = (4s + 1)(4t + 3) + 1. By Corollary 3.5, (I) is an *SDC*. Moreover, the difference tuples in (II) are *CDC*s by Lemma 3.9. The differences in (I) and (II) form a partition of $[1, \frac{v}{2}]$. In addition, the number of blocks is $v + 2s \times v \times 2 = (4s + 1)v$, as expected.

Theorem 4.2 There exists a (4t+3)-SCMD((4s+1)(4t+3)+1) for odd integer $t \ge 3$ and even integer $s \ge 2$.

Construction. Let t = 2m + 1 and s = 2n. Then, the design will be (8m + 7)-SCMD(v), where v = (8n + 1)(8m + 7) + 1.

(I) $SDC(N_1, \frac{v}{2}, (N_1 \setminus \{1\})^{-1}, N_2, N_3, 1, N_2^{-1}, N_3),$ where $N_1 = A[1, 4m - 1]_2, N_2 = (4m + 2, -A([2, 4m]_2^{-1})), N_3 = (4m + 1, \frac{v}{4} - 4m - 3).$

(II) CDC(D), where D is taken as follows.

- (1) $U_i(4m+4n+3, 8m+4, \frac{v}{4}-4m-3), 1 \le i \le 2n-1;$
- (2) $V_i(\frac{v}{4} + 6n + 2m + 2, 8m + 4, \frac{v}{4} 4m + 4n 3), 1 \le i \le 2n;$
- (3) $(A[\frac{v}{4} 6m 2n 3, \frac{v}{4} 4m 2n 4], A[\frac{v}{4} 4m + 6n 2, \frac{v}{4} + 2m + 6n + 1], -(\frac{v}{4} + 2n 4m 3), \frac{v}{4} 4m 2n 3, 4m + 4n + 2).$

Proof. By Lemma 3.8(1), (I) is an *SDC*. By Lemma 3.9 or direct examination, the difference tuples in (II) are *CDCs*. The differences in (I) and (II) form a partition of $[1, \frac{v}{2}]$. In addition, the number of blocks is $v + (1 + 2n - 1 + 2n) \times 2v = (8n + 1)v$, as expected. For $4m - 1 \ge 1$, we need $m \ge 1$, i.e., $t \ge 3$.

Theorem 4.3 There exists a 7-SCMD(56t + 8) for any positive integer t.

Construction.

(I) SDC(1, -2, 28t + 4, 1, 14t + 3, 14t + 3, -2).

(II) CDC(D), where D is taken as follows. (1) $U_i(4t+3, 4, 14t+3), 1 \le i \le 2t;$ (2) $V_i(20t+4, 4, 18t+4), 1 \le i \le 2t.$

Theorem 4.4 There exists a (4t+3)-SCMD((4s+1)(4t+3)+1) for odd integer $s \ge 1$ and even integer $t \ge 2$.

Construction. Let t = 2m and s = 2n + 1. Then the design will be (8m + 3)- SCMD(v), where v = (8n + 5)(8m + 3) + 1. (I) $SDC(N_1, \frac{v}{2}, (N_1 \setminus \{1\})^{-1}, N_2, 1, N_2^{-1})$, where $N_1 = A[1, 4m - 1]_2, N_2 = (\frac{v}{4} + 4m, A[2, 4m]_2)$. (II) CDC(D), where D is taken as follows. (1) $U_i(4m + 4n + 3, 8m, \frac{v}{4} + 4m)$, $1 \le i \le 2n + 1$; (2) $V_i(\frac{v}{4} + 6n + 4m + 4, 8m, \frac{v}{4} + 4m + 4n + 2)$, $1 \le i \le 2n$; (3) $(A[a, a + 2m - 1], A[\frac{v}{2} - 6m, \frac{v}{2} - 1], -(b + 2n + 1), b - 2n, 4m + 4n + 1)$, where $a = \frac{v}{4} + 2m - 2n - 1$, $b = \frac{v}{4} + 4m + 4n + 2$.

Proof. Similar to the proof of Theorem 4.2.

Theorem 4.5 There exists a (4t+3)-SCMD(4t+4) for any positive integer t.

Construction.

- (1) $t \equiv 0 \pmod{2}$: $SDC(A[1, 2t+2], S[1, 2t]^{-1}, 2t+1)$.
- (2) $t \equiv 3 \pmod{4}$: $SDC(A[1, 2t+1]_2, 2t+2, A[3, 2t+1]_2^{-1}, M, 1, M^{-1}),$ where $M = (-2t, -(t+1), A[t+3, 2t-2]_2^{-1}, 2, A[4, t-1]_2^{-1}).$
- (3) $t \equiv 1 \pmod{4}$ and t > 1: $SDC(A[1, 2t+1]_2, 2t+2, -A[3, 2t+1]_2^{-1}, -2t, -(t+1), A[4, 2t]_2^{-1}, 1, A[2, t-1]_2, -2, A[t+5, 2t-2]_2, -(t+3)).$ (4) t = 1: SDC(1, -2, 4, 1, -2, 3, 3).

Theorem 4.6 There exists a (4t+1)-SCMD((4s+3)(4t+1)+1) for integers $s \ge 0$ and $t \ge 1$ with the same parity.

Construction. Let v = (4s+3)(4t+1) + 1. (I) $SDC(N, \frac{v}{2}, N)$, where $N = (A[1, 2t-1], \frac{v}{4} - t)$. (II) CDC(D), where D is taken as follows. (1) $U_i(2t+2s+1, 4t-2, \frac{v}{4} - t), 1 \le i \le s$; (2) $V_i(4st+4s+2t+4, 4t-2, 4st+3s+2t+2), 1 \le i \le s+1$.

Proof. By Corollary 3.5, (I) is an *SDC*. By Lemma 3.9, all the difference tuples in (II) are *CDC*s. The differences in (I) and (II) form a partition of $[1, \frac{v}{2}]$. In addition, the number of blocks is $v + (2s + 1) \times 2v = (4s + 3)v$, as expected.

Theorem 4.7 There exists a (4t + 1)-SCMD((4s + 3)(4t + 1) + 1) for odd integer $t \ge 3$ and even integer $s \ge 2$.

Construction. First, we give the construction for t = 3 and s = 2, i.e., 13-SCMD(144).

- (1) $SDC(M, 72, M^{-1})$, where $M = (A[65, 71]_2, 35, 5)$;
- (2) $CDC(A[6, 14] \setminus \{8\}, A[64, 70]_2, 8);$
- (3) CDC(A[15, 24], 36, 3, -34);
- (4) CDC(A[25, 32], 38, -39, 37, 1, -33);

(5) CDC(A[40, 49], 62, 4, -61);

(6) CDC(A[50, 59], 63, 2, -60).

Then, let t = 2m + 1 and s = 2n, where m = 1, $n \ge 2$ or m > 1, $n \ge 1$. The design will be (8m + 5)-SCMD(v), where v = (8n + 3)(8m + 5) + 1.

(I) $SDC(N, \frac{v}{2}, N^{-1}).$

(II) CDC(D), where D is taken as follows.

- (1) $(A[2,8m]_2, a-1, -(a+1), A[c, c+4m-2]_2, 8m+3, -(8m+5), A[c+1, c+4m-1]_2, 8m+4);$
- (2) $(8m+1, -(8m+2), A([b-2m-2, b+2m+2] \setminus \{b\}), A[c+4m, c+4m+3], A[d-4m+9, d], -(c+4m+4), c-1, 8m+6);$
- (3) $(A[x_{1+(8m+2)(i-1)}, x_{(8m+2)i}], -(c+4m+4+i), c-1-i, 8m+2i+6),$ $1 \le i \le 2n-1;$
- (4) $(A[p+(8m+2)(i-1), p-1+(8m+2)i], -(b+2m+2+i), b-2m-2-i, 8m+2i+5), 1 \le i \le 2n,$

where $a = 8m + 4n + 7, b = 16nm + 6n + 2m - 3, c = 16nm + 10n + 4m, d = 16nm + 12n + 12m - 5, p = 16nm + 16n + 12m + 7, N = (A[1, 8m - 1]_2, a, b), M = [a + 2, p - 1] \setminus [b - 2m - 2n - 2, d] = (x_1, x_2, \dots, x_{|M|}) \text{ and } x_i < x_{i+1} \text{ for } 1 \le i \le |M|.$

Proof. Here, we only give the proof for $(t, s) \neq (3, 2)$. Let v = (8n+3)(8m+5)+1. By Corollary 3.7, (I) is an *SDC*. By Lemma 3.9 or direct examination, the difference tuples in (II) are *CDCs*. The differences in (I) and (II) form a partition of $[1, \frac{v}{2}]$. In addition, the number of blocks is $v+(1+1+2n-u-1+1+u-1+2n) \times 2v = (8n+3)v$, as expected. It is easy to see that |M| = (8m+2)(2n-1). Then, from the definition of M, we need $b - 2m - 2n - 2 \ge a + 2$, i.e., $16mn + 4n - 5 \ge 8m + 4n + 9$, which implies $n \ge \frac{4m+7}{8m}$. This inequality holds when m = 1, $n \ge 2$ or m > 1, $n \ge 1$, i.e., $t \ge 3$, $s \ge 2$ and $(s, t) \ne (2, 3)$. But the construction for (s, t) = (2, 3) has been given above.

Theorem 4.8 There exists a (8t + 5)-SCMD(24t + 16) for any positive integer t.

Construction.

(I) $SDC(M, 12t + 8, M^{-1})$, where $M = (A[1, 4t - 1]_2, A[8t + 9, 12t + 7]_2, -(8t + 5), 6t + 1);$ (II) $CDC(A[2, 4t]_2, A[8t + 8, 12t + 6]_2, -A([4t + 1, 6t]^{-1}), -A([6t + 3, 8t + 7] \setminus \{8t + 5\})^{-1}, 6t + 2).$

Theorem 4.9 There exists a (4t+1)-SCMD((4s+3)(4t+1)+1) for even integer $t \ge 4$ and odd integer $s \ge 5$.

Construction. First, we give the construction for t = 4 and s = 5, i.e., 17-SCMD(392).

- (1) $SDC(M, 196, M^{-1})$, where $M = (1, -3, A[189, 195]_2, -31, -61)$;
- (2) $CDC(2, -4, A[188, 194]_2, -A[5, 10]^{-1}, -A[42, 45]^{-1}, 11);$
- (3) CDC(A[27, 30], A[51, 60], -46, 41, 12);
- (4) $CDC(A[62+14(i-1), 61+14i], -(46+i), 41-i, 12+2i), 1 \le i \le 4;$
- (5) $CDC(A[118+14(i-1), 117+14i], -(31+i), 27-i, 11+2i), 1 \le i \le 5.$

Then, let t = 2m and s = 2n + 1, where m = 2, $n \ge 3$ or m > 2, $n \ge 2$. The design will be (8m + 1)-SCMD(v), where v = (8n + 7)(8m + 1) + 1.

- (I) $SDC(N, \frac{v}{2}, N^{-1}).$
- (II) CDC(D), where D is taken as follows.
 - (1) $(A[2, 4m-4]_2, A[\frac{v}{2}-4m, \frac{v}{2}-2]_2, -A[4m-3, 6m-2]^{-1}, -A([6m, 8m-1]^{-1}), 6m-1);$
 - (2) $(A([a-2m, a+2m] \setminus \{a\}), A[b, b+4m-3], -(d-1), 12m+8n+7, 8m+4n);$
 - (3) $(A[x_{1+(8m-2)(i-1)}, x_{(8m-2)i}], -(c+i), c-4m-1-i, 8m+2i), 1 \le i \le 2n-1;$
 - (4) (8m+4n+2, -(8m+4n+3), b-2, -(b-1), A[e, e+8m-7], -c, c-4m-1, 8m);
- (5) $(A[p+(8m-2)(i-1), p-1+(8m-2)i], -(a+2m+i), a-2m-i, 8m+2i-1), 1 \le i \le 2n+1,$

where a = 10m + 6n + 5, b = 12m + 10n + 10, c = 16m + 10n + 8, d = 16m + 12n + 9, e = 16nm + 8n + 8m + 12, p = 16nm + 16m + 8n + 6, $N = (A[1, 4m - 5]_2, A[\frac{v}{2} - 4m + 1, \frac{v}{2} - 1]_2, -a, -(16nm - 4n - 1))$, $M = [d, d + (8m - 2)(2n - 1)] \setminus \{16mn - 4n - 1\} = (x_1, x_2, \dots, x_{|M|})$ and $x_i < x_{i+1}$ for $1 \le i \le |M|$.

Proof. Here, we only give the proof for $(t, s) \neq (4, 5)$. By Lemma 3.6, (I) is an *SDC*. By Lemma 3.9 or direct examination, the difference tuples in (II) are *CDCs*. The differences in (I) and (II) form a partition of $[1, \frac{v}{2}]$. In addition, the number of blocks is $v + (1 + 1 + 2n - 1 + 1 + 2n + 1) \times 2v = (8n + 7)v$, as expected. It is easy to see that |M| = (8n - 2)(2n - 1). Then from the definition of M, we need $16mn - 4n - 1 \geq d$, i.e., $16mn - 4n - 1 \geq 16mn + 12n + 9$, which implies $n \geq 1 + \frac{13}{8m-8}$. This inequality holds when m = 2, $n \geq 3$ or m > 2, $n \geq 2$, i.e., $t \geq 4$, $s \geq 5$ and $(s, t) \neq (5, 4)$. But the construction for (s, t) = (5, 4) has been given above.

Theorem 4.10 There exists a (8t + 1)-SCMD(56t + 8) for any positive integer t.

Construction.

- (1) $SDC(M, 28t + 4, M^{-1})$, where $M = (A[6t + 1, 14t 5]_2, 18t + 1, 28t + 3);$
- (2) $CDC(A[6t, 14t 6]_2, A[22t + 1, 26t + 2], 6t 1);$
- (3) CDC(A[3, 6t 2], 14t 4, -(14t 3), A[26t + 3, 28t + 2], -18t, 22t, -1);
- (4) CDC(A[14t-1, 18t-2], A[18t+2, 22t-1], -(14t-2), 18t-1, -2).

Theorem 4.11 There exists a (8t + 1)-SCMD(120t + 16) for any integer $t \ge 2$.

Construction.

- (1) $SDC(M, 60t + 8, M^{-1})$, where $M = (A[42t + 7, 50t + 1]_2, 34t + 3, 60t + 7)$;
- (2) $CDC(A[38t+5, 42t+6], A[42t+8, 50t+2]_2, 6t-1);$
- (3) $CDC(A[6t + (8t 2)(i 1), 6t 1 + (8t 2)i], -(34t + 3 i), 38t + 1 + i, -(2i 1)), 1 \le i \le 3;$
- (4) CDC(A[7, 6t 2], A[50t + 3, 52t + 8], -(30t 6), 34t 1, -6);
- (5) CDC(A[30t-3, 34t-4], A[34t+4, 38t+1], -(30t-5), 34t-2, -4);
- (6) CDC(A[52t+9,60t+6],-(30t-4),34t-3,-2).

Proof. In this construction, we need 6 < 6t - 1, i.e., $t \ge 2$.

Theorem 4.12 There exists a 9-SCMD(72s + 64) for any nonnegative integer s.

Construction.

(I) $SDC(M, 36s + 32, M^{-1})$, where M = (1, -3, 18s + 19, 36s + 31).

(II) CDC(D), where D is taken as follows

(1) $(2, -4, 6, -7, A([18s + 17, 18s + 21] \setminus \{18s + 19\}), 5);$

(2) $(A[4s+6i+4,4s+6i+9], -(18s+21+i), 18s+17-i, 2i+7), 1 \le i \le 2s+1;$

(3) $(A[24s+6i+23,24s+6i+28], -(22s+27+i), 22s+24-i, 2i+6), 1 \le i \le 2s;$

(4) (A[22s+24,22s+27], 36s+29, -(36s+30), -(24s+28), 20s+23, 4s+8).

The proof of Theorem 1.1:

According to the range of k and v, there are the following cases :

(1) k = 4t + 3, v = (4s + 1)(4t + 3) + 1, t > 0.

If s = 0, see Theorem 4.5. If s > 0 and s, t have the same parity, see Theorem 4.1; otherwise see Theorem 4.2 (t > 1 odd), Theorem 4.3 (t = 1) and Theorem 4.4 (t even).

(2) k = 4t + 1, v = (4s + 3)(4t + 1) + 1, t > 1.

If s, t have the same parity, see Theorem 4.6; if s is even and t is odd, see Theorem 4.7–4.8; if s is odd and t is even, see Theorem 4.11-4.12.

5 The proof of Theorem 1.2

In this section, we will give several classes of constructions for a k-SCMD(2k) = (X, \mathcal{B}, f) , where the point set X is $\{\infty_1, \infty_2\} \cup (Z_{k-1} \times Z_2)$ and the mapping f is

$$(\infty_1)(\infty_2)\prod_{i\in Z_{k-1}}(i,\overline{i}).$$

For brevity, the points in $Z_{k-1} \times Z_2$ are denoted by x = (x, 0) or $\bar{x} = (x, 1)$. The difference between points of $Z_{k-1} \times \{0\}$ (or of $Z_{k-1} \times \{1\}$) is said to be *pure*, and is denoted by d (or \bar{d}). The difference between x and \bar{x} is said to be *mixed*, and is denoted by d_{01} (for the ordered pairs $(x, \bar{x} + \bar{d})$) or d_{10} (for the ordered pairs $(\bar{x}, x + d)$). Define:

$$\overline{A}[a, a+d] = (\overline{a}, -(\overline{a+1}), \cdots, (-1)^d (\overline{a+d}));$$

$$MA[a, a+d] = (a_{01}, -(a+1)_{10}, \cdots, (-1)^d (a+d)_{ij}), \text{ where } (i, j) = (1, 0) \text{ for odd}$$

$$d, \text{ or } (0, 1) \text{ for even } d;$$

$$MA[a, a+d] = (a_{10}, -(a+1)_{01}, \cdots, (-1)^d (a+d)_{ij}),$$
 where $(i, j) = (0, 1)$ for odd d , or $(1, 0)$ for even d .

And, define the following block families:

- $SDC_{\infty}(M) = (M, 0_{ij}, -\overline{M}^{-1}) = D$, where i = 0 or 1 follows $tail(\widetilde{M}_0) \in Z_{k-1} \times \{0\}$ or $Z_{k-1} \times \{1\}$. The corresponding number tuple family is $\{(\infty, \widetilde{D}_a); a \in Z_{k-1} \times \{t\}\}$, where t is determined by the first difference in M;
- $CDC_{\infty}(M)$, where M is a DP, the head and the tail of \widetilde{M}_a belong to different point-orbits, and $\sum_{d \in M} d$ is odd. The corresponding number tuple family is $\{(\infty, \widetilde{M}_a); a \in Z_{k-1} \times \{t\}\}$, where t is determined by the first difference in M.

For convenience, the subscript a in the above number tuple families is called the *starter*. Note that the terminology SDC_{∞} (and CDC_{∞}) excludes DC, since \widetilde{M}_a cannot be closed. Under the mapping f in this section, there are k-1 block-orbits corresponding to each SDC_{∞} and $\frac{k-1}{2}$ block-orbits corresponding to each CDC_{∞} . There is only one self-converse block in each block-orbit of $SDC_{\infty}(M)$. But there are two blocks in each block-orbit of $CDC_{\infty}(M)$ of which one is the f-converse of the other. Briefly, we gather all the blocks in these orbits and called them the *block family* corresponding to $SDC_{\infty}(M)$ or $CDC_{\infty}(M)$. The following Lemmas 5.1–5.2 are obvious.

Lemma 5.1 Let t be a positive integer. The point set is $X = \{\infty_1, \infty_2\} \cup (Z_{4t+2} \times Z_2)$ and the mapping is $f = (\infty_1)(\infty_2) \prod_{i=0}^{4t+1} (i, \overline{i})$. Then the following DCs are both $SDC_{\infty}s$ and the blocks in the block family cover each pair with pure difference in [1, 2t] and in $[\overline{1}, \overline{2t}]$ exactly once.

- (1) $SDC_{\infty_1}(A[1, 2t])$ with starters in [0, 4t + 1];
- (2) $SDC_{\infty_2}(\overline{A}[1, 2t])$ with starters in $[\overline{0}, \overline{4t+1}]$.

Lemma 5.2 Let t be a positive integer. The point set is $X = \{\infty_1, \infty_2\} \cup (Z_{4t} \times Z_2)$ and the mapping is $f = (\infty_1)(\infty_2) \prod_{i=0}^{4t-1} (i, \overline{i})$. Then, the following DCs in (1)–(4) are all $SDC_{\infty}s$ and the blocks in the block family cover each pair with pure difference in $[1, 2t] \setminus \{2t - 1\}$ and $[\overline{1}, 2t] \setminus \{2t - 1\}$ exactly once.

- (1) $SDC_{\infty_1}((2t)_{01}, \overline{A}[1, 2t-2])$ with starters in [0, 2t-1];
- (2) $SDC_{\infty_2}(\overline{2t}, \overline{A}[1, 2t-2])$ with starters in $[\overline{2t}, \overline{4t-1}]$;
- (3) $SDC_{\infty_1}(2t, A[1, 2t-2])$ with starters in [2t, 4t-1];
- (4) $SDC_{\infty_2}((2t)_{10}, A[1, 2t-2])$ with starters in $[0, \overline{2t-1}]$.

Note In the following theorems, the mentioned replacement for a block should be done for its f-converse as well.

Theorem 5.3 There exists an (8t + 3)-SCMD(16t + 6) for any positive integer t.

Construction. $X = \{\infty_1, \infty_2\} \cup (Z_{8t+2} \times Z_2), f = (\infty_1)(\infty_2) \prod_{i=0}^{8t+1} (i, \overline{i}).$

(1) $SDC_{\infty_2}(\overline{A}[1,4t])$ with starters in $[\overline{0},\overline{8t+1}]$, where the block with starter $\overline{4t}$, i.e., $\langle \infty_2,\overline{4t},\cdots \rangle$, is replaced by $\langle \infty_1,\overline{4t},\cdots \rangle$;

(2) $SDC_{\infty_1}(A[1, 4t])$ with starters in [0, 8t + 1];

(3) $CDC_{\infty_1}(\overline{M}A[1,4t],\overline{4t+1},-\overline{M}A[2,4t]^{-1},4t+1)$ with starters in $[\overline{1},\overline{8t+1}]_2$, where the block with starter $\overline{8t+1}$, i.e., $\langle \infty_1,\overline{8t+1},\cdots,\overline{1},8t+1,4t\rangle$, is replaced by $B = \langle \infty_1,\overline{8t+1},\cdots,\overline{1},4t,\infty_2\rangle$;

(4) $CDC_{\infty_2}((4t+1)_{01}, \overline{M}A[1, 4t-2], (4t+1)_{10}, (-1)_{01}, -\overline{M}A[2, 4t]^{-1}, -(4t)_{01})$ with starters in $[1, 8t+1]_2$;

(5) $C = \langle 8t+1, a_0, b_0, a_1, b_1, \dots, a_{4t}, b_{4t} \rangle$, where $a_i = 4(i+1)t$, $b_i = \overline{4(i+1)t+1}$, $0 \le i \le 4t$ and all a_i, b_i are in Z_{8t+2} .

Proof. The number of the blocks is $(8t + 2) + (8t + 2) + (4t + 4t + 1 + 1) \times 2 = \frac{(16t+6)(16t+5)}{8t+3}$, as expected.

By Lemma 5.1, (1) and (2) are both $SDC_{\infty}s$. By direct checking, (3) and (4) are both $CDC_{\infty}s$. Obviously, if $d \neq 1_{01}$ and $(4t - 1)_{10}$, each pair with difference $(\pm d)_{01}, (\pm d)_{10}, \pm d, \pm \overline{d}$ appears exactly once in (1)-(6) except for the pairs

 $(\overline{1}, 8t + 1), (8t + 1, 4t), (\overline{4t}, \overline{8t + 1})$ and $(\overline{8t + 1}, 1)$. If $d = 1_{01}$ or $(4t - 1)_{10}$, each pair with difference d appears exactly once in (1)-(6) except for the pairs in the set

 $S = \{(i, \overline{i+1}), (i+1, \overline{i}); i \in [0, 8t]_2\} \cup \{(\overline{i}, i+4t-1), (\overline{i+4t-1}, i); i \in [3, 8t+1]_2\}.$ Since $\gcd(1+4t-1, 8t+2) = 2$, all a_i , b_i in the construction can form directed cycle $D = \langle a_0, b_0, \cdots, a_{4t}, b_{4t} \rangle$ and its *f*-converse. Let $C = \langle a_0, b_0, \cdots, a_{4t}, b_{4t}, 8t+1 \rangle$. Note that $(b_{4t}, 8t+1, a_0) = (\overline{1}, 8t+1, 4t)$. Then, obviously, *C* and its *f*-converse cover all pairs in *S* and the pairs $(\overline{1}, 8t+1), (8t+1, 4t), (\overline{4t}, \overline{8t+1})$ and $(\overline{8t+1}, 1)$.

From the definition of SDC_{∞} and CDC_{∞} , we can see that the construction is an (8t+3)-SCMD(16t+6).

Theorem 5.4 There exists an (8t+7)-SCMD(16t+14) for any positive integer t.

Construction. $X = \{\infty_1, \infty_2\} \cup (Z_{8t+6} \times Z_2), f = (\infty_1)(\infty_2) \prod_{i=0}^{8t+5} (i, \overline{i}).$

(1) $SDC_{\infty_1}(A[1, 4t+2])$ with starters in [0, 8t+5];

(2) $SDC_{\infty_2}(\overline{A}[1, 4t+2])$ with starters in $[\overline{0}, \overline{8t+5}]$, where the block with starter $\overline{4t+2}$, i.e., $\langle \infty_2, \overline{4t+2}, \cdots \rangle$, is replaced by $\langle \infty_1, \overline{4t+2}, \cdots \rangle$;

(3) $CDC_{\infty_1}(\overline{4t+3}, \overline{M}A[1, 4t+2], -\overline{M}A[2, 4t+2]^{-1}, 4t+3)$ with starters in $[\overline{1}, \overline{8t+5}]_2$, where the block with starter $\overline{8t+5}$, i.e., $\langle \infty_1, \overline{8t+5}, \cdots, \overline{1}, 8t+5, 4t+2 \rangle$, is replaced by $B = \langle \infty_1, \overline{8t+5}, \cdots, \overline{1}, 4t+2, \infty_2 \rangle$;

(4) $CDC_{\infty_2}(1_{01}, -\overline{M}A[2, 4t+2]^{-1}, -(4t+2)_{01}, (4t+3)_{10}, MA[3, 4t]^{-1}, (4t+3)_{01}, (-1)_{10}, 2_{01})$ with starters in $[1, 8t+5]_2$;

(5) $C = \langle 8t+5, a_0, b_0, \underline{a_1, b_1, \cdots, a_{4t+2}, b_{4t+2}} \rangle$, where $a_i, b_i \in Z_{8t+6}$, $a_i = (i+1)(4t+2), b_i = \overline{(i+1)(4t+2)+1}, 0 \le i \le 4t+2$.

Proof. Similar to the proof of Theorem 5.3.

Theorem 5.5 There exists a 7-SCMD(14).

Construction. $X = \{\infty_1, \infty_2\} \cup (Z_6 \times Z_2), f = (\infty_1)(\infty_2) \prod_{i=0}^5 (i, \overline{i}).$

(1) $SDC_{\infty_1}(A[1,2])$ with starters in [0,5];

(2) $SDC_{\infty_2}(\overline{A}[1,2])$ with starters in $[\overline{0},\overline{5}]$, where the block with starter $\overline{2}$, i.e., $\langle \infty_2, \overline{2}, \overline{3}, \overline{1}, 1, 3, 2 \rangle$, is replaced by $\langle \infty_1, \overline{2}, \overline{3}, \overline{1}, 1, 3, 2 \rangle$;

(3) $CDC_{\infty_1}(\bar{3}, 1_{10}, (-2)_{01}, (-2)_{10}, 3)$ with starters in $[\bar{1}, \bar{5}]_2$, where the block with starter $\bar{5}$, i.e., $\langle \infty_1, \bar{5}, \bar{2}, 3, \bar{1}, 5, 2 \rangle$, is replaced by $B = \langle \infty_1, \bar{5}, \bar{2}, 3, \bar{1}, 2, \infty_2 \rangle$;

(4) $CDC_{\infty_2}(3_{01}, 2_{10}, 2_{01}, 3_{10}, 1_{01})$ with starters in $[1, 5]_2$;

(5) $C = \langle 5, 2, \bar{3}, 4, \bar{5}, 0, \bar{1} \rangle.$

Theorem 5.6 There exists an (8t + 5)-SCMD(16t + 10) for any positive integer $t \ge 3$.

Construction. $X = \{\infty_1, \infty_2\} \cup (Z_{8t+4} \times Z_2), f = (\infty_1)(\infty_2) \prod_{i=0}^{8t+3} (i, \overline{i}).$

(1) $SDC_{\infty_1}((4t+2)_{01}, \overline{A}[1, 4t])$ with starters in [0, 4t+1], where the block with starter 0, i.e., $\langle \infty_1, 0, \cdots \rangle$, is replaced by $\langle \infty_2, 0, \cdots \rangle$;

(2) $SDC_{\infty_1}(4t+2, A[1, 4t])$ with starters in [4t+2, 8t+3];

(3) $SDC_{\infty_2}((4t+2)_{10}, A[1, 4t])$ with starters in $[\bar{0}, \overline{4t+1}];$

(4) $SDC_{\infty_2}(\overline{4t+2}, \overline{A}[1, 4t])$ with starters in $[\overline{4t+2}, \overline{8t+3}]$;

(5) $CDC_{\infty_2}((4t-2)_{01}, -(4t+1), -\overline{M}A^{-1}[1, 4t+1], -MA[1, 4t-2], -(4t+1), -(4t-1)_{01})$ with starters in $[1, 8t+3]_2$, where the block with starter 1, i.e., $\langle \infty_2, 1, 4t-1, 8t+2, \cdots \rangle$, is replaced by $B = \langle \infty_1, \infty_2, 1, \overline{8t+2}, \cdots \rangle$;

(6) $CDC_{\infty_1}(\overline{M}A^{-1}[2,4t-3],-\overline{M}A^{-1}[4t-1,4t+1],-(4t+1),MA^{-1}[4t-1,4t+1],\overline{M}A[4,4t-2],1_{01},-\overline{4t+1},2_{10},(4t+1)_{01},-(4t)_{10})$ with starters in $[\overline{1},\overline{8t+3}]_2$; (7) $C = \langle \overline{4t-1},a_0,b_0,a_1,b_1,\cdots,a_{4t+1},b_{4t+1} \rangle$, where $a_i = -2(i+1)$, $b_i = -2(i+1)+1$, $0 \le i \le 4t+1$ and a_i , b_i are in Z_{8t+4} .

Proof. Similar to the proof of Theorem 5.3.

Theorem 5.7 There exists a 13-SCMD(26).

Construction. $X = \{\infty_1, \infty_2\} \cup (Z_{12} \times Z_2), f = (\infty_1)(\infty_2) \prod_{i=0}^{11} (i, \overline{i}).$

(1) $SDC_{\infty_1}(6_{01}, \overline{A}[1, 4])$ with starters in [0, 5], where the block with starter 0, i.e., $\langle \infty_1, 0, \cdots \rangle$, is replaced by $\langle \infty_2, 0, \cdots \rangle$;

(2) $SDC_{\infty_1}(6, A[1, 4])$ with starters in [6, 11];

(3) $SDC_{\infty_2}(6_{10}, A[1, 4])$ with starters in $[\bar{0}, \bar{5}]$;

(4) $SDC_{\infty_2}(\overline{6}, \overline{A}[1, 4])$ with starters in $[\overline{6}, \overline{11}]$;

(5) $CDC_{\infty_2}(2_{01}, \overline{-5}, -\overline{M}A^{-1}[1, 5], -5, (-3)_{01}, 4_{10}, (-1)_{01})$ with starters in $[1, 11]_2$, where the block with starter 11, i.e., $\langle \infty_2, 11, \overline{1}, \overline{8}, \cdots \rangle$, is replaced by $B = \langle \infty_1, \infty_2, 11, \overline{8}, \cdots \rangle$;

(6) $CDC_{\infty_1}(2_{10}, (-5)_{01}, 1_{10}, 5_{01}, (-4)_{10}, (-4)_{01}, \overline{-5}, 3_{10}, -5, 1_{01}, 2_{10})$ with starters in $[\overline{1}, \overline{11}]_2$;

(7) $C = \langle \overline{1}, \overline{8}, 1, \overline{10}, 3, \overline{0}, 5, \overline{2}, 7, \overline{4}, 9, \overline{6}, 11 \rangle.$

Theorem 5.8 There exists a 21-SCMD(42).

Construction. $X = \{\infty_1, \infty_2\} \cup (Z_{20} \times Z_2), f = (\infty_1)(\infty_2) \prod_{i=0}^{19} (i, \overline{i}).$

(1) $SDC_{\infty_1}(10_{01}, \overline{A}[1, 8])$ with starters in [0, 9], where the block with starter 0, i.e., $\langle \infty_1, 0, \cdots \rangle$, is replaced by $\langle \infty_2, 0, \cdots \rangle$;

(2) $SDC_{\infty_1}(10, A[1, 8])$ with starters in [10, 19];

(3) $SDC_{\infty_2}(10_{10}, A[1, 8])$ with starters in $[\bar{0}, \bar{9}]$;

(4) $SDC_{\infty_2}(\overline{10}, \overline{A}[1, 8])$ with starters in $[\overline{10}, \overline{19}]$;

(5) $CDC_{\infty_2}(6_{01}, \overline{-9}, -\overline{M}A^{-1}[1, 9], -MA[1, 6], -9, (-7)_{01})$ with starters in $[1, 19]_2$, where the block with starter 1, i.e., $\langle \infty_2, 1, \overline{7}, \overline{18}, \cdots \rangle$, is replaced by $B = \langle \infty_1, \infty_2, 1, \overline{18}, \cdots \rangle$;

(6) $CDC_{\infty_1}(\overline{M}A^{-1}[2,5], -\overline{M}A^{-1}[7,9], -9, -\overline{M}A[7,9], \overline{-9}, 2_{10}, 1_{01}, \overline{M}A[4,6], 9_{01}, (-8)_{10})$ with starters in $[\overline{1}, \overline{19}]_2$;

(7) $C = \langle \overline{7}, a_0, b_0, a_1, b_1, \cdots, a_4, b_4 \rangle$, where $a_i = -2(i+1), b_i = -2(i+1) + 1, 0 \le i \le 4$ and all a_i , b_i are in Z_{20} .

Theorem 5.9 There exists an (8t + 1)-SCMD(16t + 2) for any integer $t \ge 2$.

Construction. $X = \{\infty_1, \infty_2\} \cup (Z_{8t} \times Z_2), f = (\infty_1)(\infty_2) \prod_{i=0}^{8t-1} (i, \overline{i}).$

(1) $SDC_{\infty_1}((4t)_{01}, \overline{A}[1, 4t-2])$ with starters in [0, 4t-1];

(2) $SDC_{\infty_1}(4t, A[1, 4t - 2])$ with starters in [4t, 8t - 1], where the block with starter 4t, i.e., $\langle \infty_1, 4t, \cdots \rangle$, is replaced by $\langle \infty_2, 4t, \cdots \rangle$;

(3) $SDC_{\infty_2}((4t)_{10}, A[1, 4t-2])$ with starters in $[\overline{0}, \overline{4t-1}]$;

(4) $SDC_{\infty_2}(\overline{4t}, \overline{A}[1, 4t-2])$ with starters in $[\overline{4t}, \overline{8t-1}]$;

(5) $CDC_{\infty_2}((4t-4)_{01}, -(4t-1), \overline{M}A^{-1}[1, 4t-1], 1_{01}, \overline{4t-1}, \overline{M}A[2, 4t-3])$ with starters in $[1, 8t-1]_2$, where the block with starter 1, i.e., $\langle \infty_2, 1, \overline{4t-3}, \overline{8t-2}, \cdots \rangle$, is replaced by $B = \langle \infty_1, \infty_2, 1, \overline{8t-2}, \cdots \rangle$;

(6) $CDC_{\infty_1}(-\overline{M}A^{-1}[2,4t-5],-\overline{M}A[4t-2,4t-1],-\overline{M}A[4t-2,4t-1],-(\overline{4t-1}),$ $(-2)_{10},1_{01},\overline{M}A[4,4t-3],(4t-1)_{10},(4t-2)_{01},\overline{4t-1},-(4t-3)_{10})$ with starters in $[\overline{1},\overline{8t-1}]_2;$ (7) $C = \langle \overline{4t-3},a_0,b_0,a_1,b_1,\cdots,a_{4t-1},b_{4t-1}\rangle$, where $a_i = \overline{-2(i+1)}, b_i = \overline{-2(i+1$

 $(1) C = (4i - 3, a_0, o_0, a_1, b_1, \cdots, a_{4t-1}, b_{4t-1}), \text{ where } a_i = -2(i+1), (i-2(i+1) + 1, 0 \le i \le 4t - 1 \text{ and all } a_i, b_i \text{ are in } Z_{8t}.$

Proof. In the construction, we need 4t - 4 > 0, i.e., $t \ge 2$. The rest of the proof is similar to Theorem 5.3.

Theorem 5.10 There exists a 9-SCMD(18).

Construction. $X = \{\infty_1, \infty_2\} \cup (Z_8 \times Z_2), f = (\infty_1)(\infty_2) \prod_{i=0}^7 (i, \bar{i}).$

(1) $SDC_{\infty_1}(4_{01}, \overline{A}[1, 2])$ with starters in [0, 3], where the block with starter 2, i.e., $\langle \infty_1, 2, \cdots \rangle$, is replaced by $\langle \infty_2, 2, \cdots \rangle$;

(2) $SDC_{\infty_1}(4, A[1, 2])$ with starters in [4, 7];

(3) $SDC_{\infty_2}(4_{10}, A[1, 2])$ with starters in $[\overline{0}, \overline{3}]$;

(4) $SDC_{\infty_2}(\overline{4}, \overline{A}[1, 2])$ with starters in $[\overline{4}, \overline{7}]$;

(5) $CDC_{\infty_2}(2_{01}, \overline{-3}, 3_{10}, 1_{01}, (-2)_{10}, (-3)_{01}, \overline{3})$ with starters in $[1, 7]_2$, where the block with starter 1, i.e., $\langle \infty_2, 1, \overline{3}, \overline{0}, 3, \overline{4}, 2, \overline{7}, \overline{2} \rangle$, is replaced by $B = \langle \infty_1, \infty_2, 1, \overline{0}, 3, \overline{4}, 2, \overline{7}, \overline{2} \rangle$;

(6) $CDC_{\infty_1}((-3)_{10}, 2_{01}, \overline{3}, (-1)_{10}, 3_{01}, \overline{-3}, (-2)_{10})$ with starters in $[\overline{1}, \overline{7}]_2$;

(7) $C = \langle 1, \overline{3}, \overline{0}, 7, \overline{6}, 5, \overline{4}, 3, \overline{2} \rangle.$

The proof of Theorem 1.2:

Let k = 2t + 1 (t > 2). According to the value of t modulo 4 we have following cases:

If $t \equiv 1 \pmod{4}$, see Theorem 5.3; If $t \equiv 3 \pmod{4}$, see Theorem 5.4 and Theorem 5.5; If $t \equiv 2 \pmod{4}$, see Theorem 5.6–5.8; If $t \equiv 0 \pmod{4}$, see Theorem 5.9 and Theorem 5.10.

6 The proof of Theorem 1.3

Let $D = (d_1, d_2, \dots, d_k)$ be a CDC. If there are $d_i, d_{i+1}, d_{i+2}, d_{i+3} \in D$ such that $d_i \equiv d_{i+2}, d_{i+1} \equiv d_{i+3}$ and $d_i \not\equiv d_{i+1} \pmod{2}$, then the CDC is said to be of ALT-type and $(d_i, d_{i+1}, d_{i+2}, d_{i+3})$ is called the ALT-piece.

Lemma 6.1 Among the CDCs of each construction given in Section 4, there is at least one ALT-type CDC.

Proof. In section 4, we need to investigate all the constructions except for Theorem 4.5 in which there is no CDC. In fact we can point out the following ALT-type CDCs.

 $\begin{array}{l} \text{Theorem } 4.1 - U_1(2t+2s+1,4t,\frac{v}{4}+t) \quad (\text{for } t \geq 1); \\ \text{Theorem } 4.2 - U_1(4m+4n+3,8m+4,\frac{v}{4}-4m-3) \quad (\text{for } m \geq 1); \\ \text{Theorem } 4.3 - U_1(4t+3,4,14t+3) \quad (\text{for } t \geq 1); \\ \text{Theorem } 4.4 - U_1(4m+4n+3,8m,\frac{v}{4}+4m) \quad (\text{for } m \geq 1); \\ \end{array}$

Theorem 4.6— $U_1(2t+2s+1, 4t-2, \frac{v}{4}-t)$ (for $t \ge 1$);

Theorem 4.7-(3) in the first construction,

the difference cycle with i = 1 in part(II) (4) (for $m \ge 1$) in the second construction;

Theorem 4.8—the only CDC (for $t \ge 1$, so there is an ALT-piece in $-A([6t+3,8t+7] \setminus \{8t+5\})^{-1}$);

Theorem 4.9-(3) in the first construction,

the difference cycle with i = 1 in part(II) (5) (for $m \ge 2$) in the second construction;

Theorem 4.10—(2) (for $t \ge 1$);

Theorem 4.11—(1) (for $t \ge 2$);

Theorem 4.12—part(II) (2).

Theorem 6.2 For odd k > 5, let $v \equiv 1 \pmod{k}$, $v \neq k + 1$ and $v \equiv 0 \pmod{4}$. If there exist a k-SCMD(v) with ALT-type CDCs and a k-SCMD(2k), then there exists a k-SCMD(v + 2k).

Proof. Let k = 2t + 1 and t > 2. Let (X, \mathcal{B}, g) be a (2t + 1)-SCMD(v) with an ALT-type CDC and (Y, \mathcal{C}, h) be a (2t + 1)-SCMD(4t + 2), where $X = Z_v$, $g = (0, 1, \dots, v - 1)$, $Y = \{a_i, \overline{a_i}; 1 \le i \le 2t\} \cup \{\infty_1, \infty_2\}, h = (\infty_1)(\infty_2) \prod_{i=1}^{2t} (a_i, \overline{a_i})$.

Let $D = (d_1, d_2, d_3, d_4, \dots, d_{2t+1})$, where (d_1, d_2, d_3, d_4) is an *ALT*-piece. And, $B = \langle x_1, x_2, x_3, x_4, x_5, \dots, x_{2t+1} \rangle$ is a block in \mathcal{B} , where $x_i + d_i \equiv x_{i+1} \pmod{v}$, $i \in \mathbb{Z}_{2t+1}$. Let O(B) be the block-orbit containing B. For expressing the parity of all these x_i (suppose x_1 is even), we give the following table.

Γa	\mathbf{b}	le	В

	case I	case II
(d_1, d_2, d_3, d_4)	even, odd, even, odd	odd, even, odd, even
$(x_1, x_2, x_3, x_4, x_5)$	even, even, odd, odd, even	even, odd, odd, even, even

Define the following five basic blocks:

$$\begin{split} B_1 &= \langle x_1, x_2, a_1, y_1, a_2, \cdots, y_{t-2}, a_{t-1}, y_{t-1}, a_t \rangle; \\ B_2 &= \langle x_3, x_4, a_1, y_1 + 1, a_2, \cdots, y_{t-2} + 1, a_{t-1}, y_{t-1} + 1, a_t \rangle; \\ B_3 &= \langle x_2, x_3, a_{t+1}, y_1, a_{t+2}, \cdots, y_{t-2}, a_{2t-1}, y_{t-1}, a_{2t} \rangle; \\ B_4 &= \langle x_4, x_5, a_{t+1}, y_1 + 1, a_{t+2}, \cdots, y_{t-2} + 1, a_{2t-1}, y_{t-1} + 1, a_{2t} \rangle; \\ B_5 &= \langle \infty_1, z, \infty_2, x_5, x_6, \cdots, x_{2t+1}, x_1 \rangle, \end{split}$$

where $z = x_2$ (case I) or x_4 (case II) and these y_j , $1 \le j \le t-1$, are distinct elements from the set

 $\{2i; 0 \le i \le \frac{v-2}{2}\} \setminus \{x_1, x_2, x_3, x_3 - 1, x_4 - 1, x_5 - 1\}.$

Since $\frac{v}{2} - 6 > t - 1$, the required y_j can indeed be chosen. Obviously, the points in each B_i are mutually distinct. By Table B, in both cases, we have $x_1 \not\equiv x_3$, $x_2 \not\equiv x_4$, $x_3 \not\equiv x_5 \pmod{2}$ and $x_1 \equiv x_5 \equiv z \pmod{2}$. Therefore, each a_i appears in two basic blocks above, e.g. $\langle \cdots u, a_i, v, \cdots \rangle$ and $\langle \cdots u', a_i, v', \cdots \rangle$, such that $u \not\equiv u'$ and $v \not\equiv v' \pmod{2}$.

Define the mapping f on $X \cup Y$ as follows:

$$f(x) = \begin{cases} g(x); & x \in X \\ h(x); & x \in Y \end{cases}$$

Let G be the finite permutation group generated by Rf and let $O(B_i)$ $(1 \le i \le 5)$ be the block-orbit containing each B_i under the action of G. Let

$$\mathcal{J} = (\mathcal{B} \setminus O(B)) \cup \mathcal{C} \cup (\bigcup_{i=1}^{5} O(B_i)).$$

Obviously, $(X \cup Y, \mathcal{J}, f)$ is a k-SCMD(v + 2k).

Theorem 6.3 There exists a (4t+3)-SCMD(12t+10) for any positive integer t.

Proof. Let (X, \mathcal{B}, g) be a (4t+3)-SCMD(4t+4) as given in Theorem 4.5, where B contains only an SDC, and let (Y, \mathcal{C}, h) be a (4t+3)-SCMD(8t+6) as given in Theorem 1.2. To avoid confusion, denote $Y = \{\infty_1, \infty_2\} \cup \{a_i, b_i; i \in Z_{4t+2}\}$ and $h = (\infty_1)(\infty_2) \prod_{i=0}^{4t+1} (a_i, b_i)$. Now, we construct a (4t+3)-SCMD(12t+10) on $X \cup Y$. Define the mapping f by

$$f(x) = \begin{cases} g(x) & x \in X \\ h(x) & x \in Y \end{cases}.$$

We define five basic blocks B_1, B_2, \dots, B_5 in three cases:

(1) t is even.

Let $D = SDC(A[1, 2t+2], S[1, 2t]^{-1}, 2t+1)$. There is an ALT-piece $(d_1, d_2, d_3, d_4) = (1, -2, 3, -4)$ in A[1, 2t+2]. Let $B = \langle 0, 1, 4t+3, 2, 4t+2, x_1, \dots, x_{4t-2} \rangle$. Define the following five basic blocks:

$$\begin{split} B_1 &= \langle 0, 1, a_0, y_0, a_1, y_1, \cdots, a_{2t-1}, y_{2t-1}, a_{2t} \rangle, \\ B_2 &= \langle 4t+3, 2, a_0, y_0+1, a_1, y_1+1, \cdots, a_{2t-1}, y_{2t-1}+1, a_{2t} \rangle, \\ B_3 &= \langle 1, 4t+3, a_{2t+1}, y_0, a_{2t+2}, y_1, \cdots, a_{4t}, y_{2t-1}, a_{4t+1} \rangle, \\ B_4 &= \langle 2, 4t+2, a_{2t+1}, y_0+1, a_{2t+2}, y_1+1 \cdots, a_{4t}, y_{2t-1}+1, a_{4t+1} \rangle, \\ B_5 &= \langle \infty_1, 2, \infty_2, 4t+2, x_1, x_2, \cdots, x_{4t-2}, 0 \rangle, \end{split}$$

where $(y_0, y_1, \dots, y_{2t-1}) = (2, 3, \dots, 2t + 1).$

(2) t is odd and t > 1.

Now, the two *SDCs* both contain the interval $A[1, 2t + 1]_2$. For $t \ge 3$, there is an *ALT*-piece $(d_1, d_2, d_3, d_4) = (1, -3, 5, -7)$ in $A[1, 2t + 1]_2$. Let $B = \langle 0, 1, 4t + 2, 3, 4t, x_1, \dots, x_{4t-2} \rangle$. Define the following five basic blocks:

$$\begin{split} B_1 &= \langle 0, 1, a_0, y_0, a_1, y_1, \cdots, a_{2t-1}, y_{2t-1}, a_{2t} \rangle, \\ B_2 &= \langle 3, 4t, a_0, y_0 + 1, a_1, y_1 + 1, \cdots, a_{2t-1}, y_{2t-1} + 1, a_{2t} \rangle, \\ B_3 &= \langle 1, 4t + 2, a_{2t+1}, y_0, a_{2t+2}, y_1, \cdots, a_{4t}, y_{2t-1}, a_{4t+1} \rangle, \\ B_4 &= \langle 4t + 2, 3, a_{2t+1}, y_0 + 1, a_{2t+2}, y_1 + 1 \cdots, a_{4t}, y_{2t-1} + 1, a_{4t+1} \rangle, \\ B_5 &= \langle \infty_1, 4t + 2, \infty_2, 4t, x_1, x_2, \cdots, x_{4t-2}, 0 \rangle, \\ \text{where } (y_0, y_2, \cdots, y_{2t-1}) = (4, 5, \cdots, 2t+3). \end{split}$$

(3) t = 1.

Let D = SDC(1, -2, 4, 1, -2, 3, 3) and $B = \langle 0, 1, 7, 3, 4, 2, 5 \rangle$. Define the following five basic blocks:

 $\begin{array}{l} B_1 = \langle 7, 3, a_0, 2, a_1, 6, a_2 \rangle; \\ B_2 = \langle 4, 2, a_0, 3, a_1, 7, a_2 \rangle; \\ B_3 = \langle 3, 4, a_3, 2, a_4, 6, a_5 \rangle; \\ B_4 = \langle 2, 5, a_3, 3, a_4, 7, a_5 \rangle; \\ B_5 = \langle \infty_1, 3, \infty_2, 5, 0, 1, 7 \rangle. \end{array}$

Obviously, each a_i appears in two basic blocks above: $\langle \cdots u, a_i, v, \cdots \rangle$ and $\langle \cdots u', a_i, v', \cdots \rangle$, such that $u \not\equiv u'$ and $v \not\equiv v' \pmod{2}$. The blocks $B_5 = \langle \infty_1, u, \infty_2, v, \cdots, w \rangle$ in three cases satisfy $u \equiv v \equiv w \pmod{2}$. Then, let G be the finite permutation group generated by Rf. Let $O(B_i)$ be the block-orbit containing B_i under the action of G. It is easy to see that each ordered pair (x, y), which belongs to $X \times X$ or $X \times Y$, appears in exactly one block of $\bigcup O(B_i)$. Let

$$\mathcal{A} = \mathcal{C} \cup (\bigcup_{i=1}^{5} O(B_i)).$$

Obviously, $(X \cup Y, \mathcal{A}, f)$ is a (4t+3)-SCMD(12t+10).

Lemma 6.4 [5] Let (X, \mathcal{B}, f) be a k-SCMD(v).

(1) The self-converse block A in \mathcal{B} , i.e., $f(A)^{-1} = A$, must possess one of the following structures:

 $\begin{array}{ll} Type \ I. \ A = \langle a_1, a_2, \cdots, a_t, b_t, \cdots, b_2, b_1 \rangle, & t = \frac{k}{2}; \\ Type \ II. \ A = \langle \infty, a_1, \cdots, a_t, \infty', b_t, \cdots, b_1 \rangle, & t = \frac{k}{2} - 1; \\ Type \ III. \ A = \langle \infty, a_1, \cdots, a_t, b_t, \cdots, b_1 \rangle, & t = \frac{k-1}{2}, \end{array}$

where $f(a_i) = b_i$, $f(b_i) = a_i$ for $1 \le i \le t$ and $f(\infty) = \infty$, $f(\infty') = \infty'$.

(2) If f contains a transposition (a, b), then the block covering the ordered pair (a, b) must be self-converse of Type I (if k even) or Type III (if k odd).

(3) If \mathcal{B} contains a self-converse block, then

(for k even): f contains at least $\frac{k}{2}$ transpositions and \mathcal{B} contains at least $\frac{k}{2}$ self-converse blocks of Type I;

(for k odd): f contains at least $\frac{k-1}{2}$ transpositions and \mathcal{B} contains at least k-1 self-converse blocks of Type III.

Theorem 6.5 There exists no (4t+1)-SCMD(4t+2) for any positive integer t.

Proof. Suppose there is a (4t + 1)-SCMD $(4t + 2) = (X, \mathcal{B}, f)$, where $|\mathcal{B}| = 4t + 2 = |X|$. Obviously, the elements in any block of \mathcal{B} are $X \setminus \{a\}$ and the missing element x is distinct for different block. Let B_a be the block without point a. Then $\mathcal{B} = \{B_a; a \in X\}$. It is easy to see that, if f(a) = b then $f^{-1}(B_a) = B_b$. So we have (1) f contains no 1-cycle.

In fact, suppose $f = (\infty) \cdots$, then B_{∞} is self-converse. By Lemma 6.4 (1), f contains two fixed points. By Lemma 6.4 (3), there are at least 4t self-converse blocks of Type III in \mathcal{B} . But, this is impossible since $t \geq 2$.

(2) f contains no 2-cycle (i.e., transposition).

Suppose $f = (a, b) \cdots$, then, by Lemma 6.4 (2), there is a self-converse block containing the pair (a, b) in \mathcal{B} . Furthermore, by Lemma 6.4 (3), \mathcal{B} contains at least 4t self-converse blocks of Type III, which is impossible by (1).

(3) f contains no 3-cycle.

Suppose $f = (a, b, c) \cdots$, then under the action of the derived mapping $B \to f(B)^{-1}$, $B_a \to B_b \to B_c \to B_a$. So, we have $f^3(B_a)^{-1} = B_a$. Let $B_a = \langle b, x_1, \cdots, x_m, c, y_n, \cdots, y_1 \rangle$, where $x_i, y_j \notin \{a, b, c\}$, m+n = 4t-1 and $\{x_1, \cdots, x_m\}$ or $\{y_1, \cdots, y_n\}$ may be empty. The expression of the relation $f^3(B_a)^{-1} = \langle b, f^3(y_1), \cdots, f^3(y_n), c, f^3(x_m), \cdots, f^3(x_1) \rangle = B_a$ shows that m = n, which is impossible since m+n = 4t-1.

(4) f contains no (2s + 1)-cycle.

When s = 0 or 1, the conclusion is correct by (1) or (3). Now, let $s \ge 2$ and $f = (a_0, a_1, \dots, a_{2s}) \dots$. Obviously, if $B_{a_0} = \langle a_1, \dots, a_2, \dots, a_{2s}, \dots \rangle$, then $f^{2s+1}(B_{a_0})^{-1} = \langle a_{2s}, \dots, a_{2s}, \dots, a_{1}, \dots \rangle = B_{a_0}$. But, this is impossible since $2s \ge 4$.

(5) f contains no (4s + 2)-cycle.

Suppose $f = (a_0, a_1, \dots, a_{4s+1}) \cdots$. Let $B_x = \langle a_0, a_{2s+1}, \dots \rangle$ be the block containing the ordered pair (a_0, a_{2s+1}) . Obviously, the block $f^{2s+1}(B_x)^{-1}$ contains the ordered pair (a_0, a_{2s+1}) too. So $B_x = f^{2s+1}(B_x)^{-1}$, i.e., x must belong to an odd cycle of f, which is impossible by (4).

So f can only contain 4s-cycles. But $4t + 2 \equiv 2 \pmod{4}$, which is impossible. Thus, there exists no (4t + 1)-SCMD(4t + 2).

The proof of Theorem 1.3:

All possibilities are shown in the following table:

$k \equiv \pmod{4}$	$v = (4s+1)k + 1 \equiv \pmod{4}$	$v = (4s+3)k + 1 \equiv \pmod{4}$
1	2	0
3	0	2

In this table, two parts of $v \equiv 0 \pmod{4}$ have been solved in Theorem 1.1. By Lemma 6.1 and Theorem 6.2, the following recursive relations hold when there is at least one CDC in the original constructions:

 $(k \equiv 1 \pmod{4})$ k-SCMD $((4s+3)k+1) \rightarrow k$ -SCMD((4s+5)k+1);

 $(k \equiv 3 \pmod{4})$ k-SCMD $((4s+1)k+1) \rightarrow k$ -SCMD((4s+3)k+1). While the two exceptions have been solved:

k > 5 and there is no CDC in the original construction, see Theorem 6.3; there exists no (4t + 1)-SCMD(4t + 2), see Theorem 6.5.

References

- [1]C.J. Colbourn and J.H. Dinitz, The CRC Handbook of Combinatorial Designs, CRC Press, Inc., 1996.
- [2]C.J. Colbourn and A. Rosa, Directed and Mendelsohn triple systems, Chapter 4 of Contemporary Design Theory, Wiley Interscience Publication (1992), 97–136.
- [3]Yanxun Chang, Guihua Yang and Qingde Kang, The spectrum of self-converse MTS, Ars Combinatoria, 44 (1996), 273–281.
- [4] Jie Zhang, The spectrum of simple self-converse $MTS(v, \lambda)$, Acta Mathematic Applicate Sinica, Vol. 20, No. 4 (1997), 487–497.
- [5]Qingde Kang, Self-converse Mendelsohn designs with block size 4t + 2, Journal of Combinatorial Designs 7 (1999), 283–310.
- [6] Qingde Kang, Xiuling Shan and Qiujie Sun, The spectrum of self-converse Mendelsohn designs with block size 4 and 5, Journal of Combinatorial Designs 8 (2000), 411–418.

Appendix

1. 7-SCMD(36) (Theorem 4.1, let t = 1, s = 1). $X = Z_{36}$ and $f = (0, 1, \dots, 35)$. (I) SDC(1, -2, 10, 18, 1, -2, 10). (II) CDC(D), where D is taken as follows. (1) (A[5,8],-11,9,4);(2) (A[14, 17], -13, 12, 3).**2.** 15-SCMD(136) (Theorem 4.2, let t = 3, s = 2). $X = Z_{136}$ and $f = (0, 1, \dots, 135)$. (I) SDC(1, -3, 68, -3, 6, -4, 2, 5, 27, 1, 2, -4, 6, 5, 27). (II) CDC(D), where D is taken as follows. (1) (A[11, 22], -28, 26, 8);(2) (23, -24, A[34, 43], -29, 25, 10);(3) (A[44, 55], -32, 31, 7);(4) (A[56, 67], -33, 30, 9).**3.** 7-SCMD(64) (Theorem 4.3, let t = 1). $X = Z_{64}$ and $f = (0, 1, \dots, 63)$. (I) SDC(1, -2, 17, 32, 1, -2, 17). (II) CDC(D), where D is taken as follows. (1) (A[7,10], -18, 16, 4);(2) (A[11, 14], -19, 15, 6);(3) (A[24, 27], -22, 21, 3);(4) (A[28, 31], -23, 20, 5).4. 11-SCMD(56) (Theorem 4.4, let t = 2, s = 1). $X = Z_{56}$ and $f = (0, 1, \dots, 55)$. (1) SDC(1, -3, 28, -3, 18, 2, -4, 1, -4, 2, 18);(2) CDC(15, -16, A[22, 27], -21, 20, 5);(3) CDC(A[7, 14], -19, 17, 6). **5.** 5-SCMD(36) (Theorem 4.6, let t = 1, s = 1). $X = Z_{36}$ and $f = (0, 1, \dots, 35)$. (1) SDC(1, 8, 18, 1, 8);(2) CDC(5, -6, 7, -9, 3); (3) CDC(14, -15, 11, -12, 2); $(4) \ CDC(16, -17, 10, -13, 4).$ 6. 13-SCMD(248) (Theorem 4.7, let t = 3, s = 4). $X = Z_{248}$ and $f = (0, 1, \dots, 247)$. (I) $SDC(M, 124, M^{-1})$, where $M = (A[1, 7]_2, 23, 43)$. (II) CDC(D), where D is taken as follows. (1) $(A[2,8]_2, 11, -13, 22, -24, 56, -58, 57, -59, 12);$ (2) $(9, -10, A[39, 47] \setminus \{43\}, A[60, 63], -64, 55, 14);$ (3) (A[25, 34], -65, 54, 16);(4) (A[64, 73], -66, 60, 18);

(5) (A[74, 83], -67, 59, 20);(6) (A[84+10(i-1), 83+10i], -(47+i), 39-i, 13+2i). 7. 5-SCMD(20t+16). $X = Z_{20t+16}$ and $f = (0, 1, \dots, 20t + 15)$. (I) $\begin{cases} SDC(1,5t+3,10t+8,1,5t+3) & t \text{ is odd} \\ SDC(1,5t+3,10t+8,5t+3,1) & t \text{ is even} \end{cases}.$ (II) CDC(D), where D is taken as follows. (1) $(2t + 2i + 1, -(2t + 2i + 2), 5t - i + 3, -(5t + i + 3), 2i + 1), 1 \le i \le t;$ (2) $(8t + 2i + 4, -(8t + 2i + 5), 7t - i + 5, -(7t + i + 4), 2i), 1 \le i \le t + 1.$ 8. 17-SCMD(528) (Theorem 4.10, let t = 4, s = 7). $X = Z_{248}$ and $f = (0, 1, \dots, 527)$. (I) $SDC(M, 264, M^{-1})$, where $M = (1, -3, A[257, 263]_2, -43, -83)$. (II) CDC(D), where D is taken as follows. (1) $(-2, 4, A[256, 262]_2, -A[5, 10]^{-1}, -A[12, 15]^{-1}, 11);$ (2) $(A[39, 47] \setminus \{43\}, A[62, 67], -70, 61, 16);$ (3) $(30, -31, 68, -69, A[77, 87] \setminus \{83\}, -71, 60, 18);$ (4) (A[88+14(i-1), 87+14i], -(71+i), 60-i, 18+2i), 1 < i < 5;(5) $(A[158+14(i-1), 157+14i], -(47+i), 39-i, 15+2i), 1 \le i \le 7.$

(Received 19/1/2000)