Self-converse Mendelsohn designs with block size $6 q^{*}$

Caikun Liu, Qingde Kang and Zhifen Guo
Institute of Mathematics, Hebei Normal University Shijiazhuang 050016, P. R. China qdkang@public.sj.he.cn

Abstract

A Mendelsohn design $M D(v, k, \lambda)$ is a pair (X, \mathcal{B}) where X is a v-set together with a collection \mathcal{B} of cyclic k-tuples from X such that each ordered pair from X is contained in exactly λ cyclic k-tuples of \mathcal{B}. An $M D(v, k, \lambda)$ is said to be self-converse, denoted by $\operatorname{SCMD}(v, k, \lambda)=(X, \mathcal{B}, f)$, if there is an isomorphism f from (X, \mathcal{B}) to $\left(X, \mathcal{B}^{-1}\right)$, where $\mathcal{B}^{-1}=$ $\left\{\left\langle x_{k}, x_{k-1}, \ldots, x_{2}, x_{1}\right\rangle:\left\langle x_{1}, \ldots, x_{k}\right\rangle \in \mathcal{B}\right\}$. The existence of $\operatorname{SCMD}(v, 3, \lambda)$, $S C M D(v, 4,1)$ and $S C M D(v, 4 t+2,1)$ has been completely settled, where $2 t+1$ is a prime power. In this paper, we investigate the existence of $S C M D(v, 6 q, 1)$, where $\operatorname{gcd}(q, 6)=1$. In particular, when q is a prime power, the existence spectrum of $\operatorname{SCMD}(v, 6 q, 1)$ is solved, except possibly for two small subclasses. As well, our conclusion extends the existence results for $M D(v, k, 1)$.

1 Introduction

Let X be a v-set and $3 \leq k \leq v$. A cyclic k-tuple from X is a collection of k ordered pairs $\left(x_{0}, x_{1}\right),\left(x_{1}, x_{2}\right), \ldots,\left(x_{k-2}, x_{k-1}\right)$ and $\left(x_{k-1}, x_{0}\right)$, where $x_{0}, x_{1}, \ldots, x_{k-1}$ are distinct elements of X. It is denoted by $\left\langle x_{0}, x_{1}, \ldots, x_{k-1}\right\rangle$. A (v, k, λ)-Mendelsohn design, or $M D(v, k, \lambda)$, is a v-set together with a collection \mathcal{B} of cyclic k-tuples (blocks) from X, such that each ordered pair (x, y) with $x \neq y \in X$ is contained in λ blocks of \mathcal{B}.

For an $M D(v, k, \lambda)=(X, \mathcal{B})$, define

$$
\mathcal{B}^{-1}=\left\{\left\langle x_{k-1}, x_{k-2}, \ldots, x_{1}, x_{0}\right\rangle:\left\langle x_{0}, x_{1}, \ldots, x_{k-1}\right\rangle \in \mathcal{B}\right\} .
$$

Obviously, $\left(X, \mathcal{B}^{-1}\right)$ is also an $M D(v, k, \lambda)$, which is called the converse of (X, \mathcal{B}). If there exists an isomorphism f from (X, \mathcal{B}) to $\left(X, \mathcal{B}^{-1}\right)$, then the $M D(v, k, \lambda)$ is

[^0]called self-converse and this is denoted by $\operatorname{SCMD}(v, k, \lambda)=(X, \mathcal{B}, f)$. For a block $B=\left\langle x_{0}, x_{1}, \ldots, x_{k-1}\right\rangle$, the block $f(B)^{-1}=\left\langle f\left(x_{k-1}\right), \ldots, f\left(x_{1}\right), f\left(x_{0}\right)\right\rangle$ is called the f-converse of B. To prove a system (X, \mathcal{B}, f) is self-converse we only need to show that $f(B)^{-1} \in \mathcal{B}$ for any $B \in \mathcal{B}$. It is well known that a necessary condition for the existence of an $M D(v, k, \lambda)$ and $S C M D(v, k, \lambda)$ is
$$
\lambda v(v-1) \equiv 0(\bmod k) .
$$

The known existence results for $M D(v, k, \lambda)$ and $\operatorname{SCMD}(v, k, \lambda)$ can be summarized as follows.

Theorem 1.1 ([1]) The above necessary condition for the existence of an $M D(v, k, \lambda)$ is also sufficient, if one of the following cases holds.
(1) $k=3$ and $(v, \lambda) \neq(6,1)$;
(2) $k=4$ and $(v, \lambda) \neq(4,2 t+1)$ for any integer $t \geq 0$;
(3) $k=6$ and $(v, \lambda) \neq(6,1)$;
(4) $k \in\{5,7,8,10,12,14\}$;
(5) $k \geq 7, v \equiv 0,1(\bmod k)$.

Theorem 1.2 ([4],[5],[6])
(1) There exists a simple $\operatorname{SCMD}(v, 3, \lambda)$ if and only if $\lambda v(v-1) \equiv 0(\bmod 3)$, $\lambda \leq v-2, v \geq 3$ and $(v, \lambda) \neq(6,1),(6,3)$;
(2) There exists an $\operatorname{SCMD}(v, 4,1)$ if and only if $v \equiv 0,1(\bmod 4)$ and $v>5$;
(3) There exists an $\operatorname{SCMD}(v, 5,1)$ if and only if $v \equiv 0,1(\bmod 5), v \geq 5$ and $v \neq 6$;
(4) Let t be an odd integer and $t \geq 3$. There exists a self-converse $M D(v, 2 t, 1)$ for $v \equiv 0$ or $1(\bmod t)$ except for $v=2 t+1$ and $(v, t)=(6,3)$. In particular, when t is an odd prime power, the above condition for the existence of an $\operatorname{SCMD}(v, 2 t, 1)$ is also sufficient.

In this paper, our main goal is to solve the existence problem for $\operatorname{SCMD}(v, 6 q, 1)$, where $\operatorname{gcd}(q, 6)=1$. In particular, when q is a prime power, the existence spectrum of $\operatorname{SCMD}(v, 6 q, 1)$ is settled, except possibly for two small subclasses. As well, our conclusion extends the existence results for $M D(v, k, 1)$. Our main results are:

Theorem 1.3 Let q be positive integer with $\operatorname{gcd}(q, 6)=1$. There exists an $\operatorname{SCMD}(v, 6 q, 1)$ for the following q and v.
(1) $v \equiv 0,1(\bmod 3 q)$ except for $v=6 q+1$;
(2) $v \equiv q+1,2 q, 4 q+1,5 q(\bmod 6 q)$ and $q \equiv 5(\bmod 6)$;
(3) $v \equiv q, 2 q+1,4 q, 5 q+1(\bmod 6 q)$ and $q \equiv 1(\bmod 6)$ except possibly for

* $v=7 q$ and $q \equiv 1(\bmod 12)$ or $q \equiv 7(\bmod 48)$;
* $v \equiv q(\bmod 12 q), q \equiv 1(\bmod 6)$ where q is not a prime power.

Theorem 1.4 For prime power $q=p^{m}(p>3)$ and $v \neq 7 q(q \equiv 1(\bmod 12)$ and $q \equiv 7(\bmod 48))$, there exists $\operatorname{SCMD}(v, 6 q, 1)$ if and only if $v(v-1) \equiv 0(\bmod 6 q)$ except for $v=6 q+1$.

Let $\lambda D K_{n_{1}, n_{2}, \cdots, n_{h}}$ be the complete multipartite directed graph with vertex set $X=\bigcup_{i=1}^{h} X_{i}$, where $X_{i}(1 \leq i \leq h)$ are disjoint sets with $\left|X_{i}\right|=n_{i}$ and where two vertices x and y from different sets X_{i} and X_{j} are joined by exactly $\lambda \operatorname{arcs}$ from x to y and λ arcs from y to x. A holey Mendelsohn design, briefly denoted by (v, k, λ) $H M D$, is a trio $\left(X,\left\{X_{i}, 1 \leq i \leq h\right\}, \mathcal{A}\right)$ where X is a v-set, \mathcal{A} is a collection of cyclic k-tuples from X, which form an arc-disjoint decomposition of $\lambda D K_{n_{1}, \ldots, n_{h}}$. Each X_{i}, $1 \leq i \leq h$, is called a hole (or group) of the design and the multiset $\left\{n_{1}, n_{2}, \ldots, n_{h}\right\}$ is called the type of the design. Sometimes, we use an "exponential" notation to describe its type: a type $1^{i} 2^{j} 3^{s} \ldots$ denotes i occurrences of $1, j$ occurrences of 2 , etc. If there exists an isomorphism f from (X, \mathcal{A}) to $\left(X, \mathcal{A}^{-1}\right)$, then the (v, k, λ)-HMD is called a $(v, k, \lambda)-H S C M D=\left(X,\left\{X_{i} ; 1 \leq i \leq h\right\}, \mathcal{A}, f\right)$. A (v, k, λ)-HSCMD of type $a_{1}^{m_{1}} a_{2}^{m_{2}} \ldots a_{s}^{m_{s}}$ will be denoted by $(v, k, \lambda)-H S C M D\left(a_{1}^{m_{1}} \ldots a_{s}^{m_{s}}\right)$, in which $v=\sum_{i=1}^{s} m_{i} a_{i}$. When $\lambda=1$, we shall briefly denote $\operatorname{SCMD}(v, k, 1)$ and $(v, k, 1)-H S C M D(T)$ by $k-S C M D(v)$ and $k-H S C M D(T)$ respectively, where T represents the type of the $H S C M D$. A $k-H M D\left(1^{v-h} h^{1}\right)$ is also known as an incomplete Mendelsohn design and is denoted by $k-I M D(v, h)$. Similarly, a $k-H S C M D\left(1^{v-h} h^{1}\right)$ is known as an incomplete self-converse $M D$, and denoted by $k-I S C M D(v, h)$.

An m-cycle system of order v is a collection $C S(v, m)$ of undirected cycles with length m, whose (undirected) edges partition all edges of the complete graph K_{v} of order v. Obviously, if there exists a $C S(v, m)=(V, \mathcal{A})$, then an $m-S C M D(v)=$ (V, \mathcal{B}, f) exists. In fact, f can be the identity mapping and the block set \mathcal{B} can be defined as

$$
\left\{\left\langle a_{1}, \ldots, a_{m}\right\rangle,\left\langle a_{m}, \ldots, a_{1}\right\rangle ;\left(a_{1}, \ldots, a_{m}\right) \in \mathcal{A}\right\}
$$

2 Overall arrangement I

A necessary condition for the existence of a $6 q-S C M D(v)$ is $v(v-1) \equiv 0(\bmod 6 q)$. Let $\operatorname{gcd}(q, 6)=1$. By Theorem $1.2(4)$, there exists a $6 q-S C M D(v)$ for $v \equiv 0,1(\bmod$ $3 q)$ and $v \neq 6 q+1$. It is easy to see that, for general $6 q(g c d(q, 6)=1)$, the following orders v satisfy the necessary condition $v(v-1) \equiv 0(\bmod 6 q)$ besides $v \equiv 0,1(\bmod$ $3 q$).

$q \equiv(\bmod 6)$	$v \equiv(\bmod 6 q)$			
1	q	$2 q+1$	$4 q$	$5 q+1$
5	$q+1$	$2 q$	$4 q+1$	$5 q$

These orders v (and corresponding q) are just the range considered in this paper. For prime power q, the range is exactly all admissible v for the existence of a $6 q$ $S C M D(v)$.

Let $v=6 m q+h$, where m is a positive integer, $h \in\{2 q, 2 q+1,4 q, 4 q+1,5 q, 5 q+1\}$. Let

$$
V=X \cup Y \text { and } X \cap Y=\emptyset
$$

$$
\begin{aligned}
& X=Z_{m} \times Z_{3 q} \times Z_{2} \\
& Y=\left\{\begin{array}{ll}
Z_{\frac{h}{2}} \times Z_{2} & (h \text { even }) \\
\left(Z_{\frac{h-1}{2}} \times Z_{2}\right) \cup\{\infty\} & (h \text { odd })
\end{array}, \text { when } h>0\right. \\
& f: \begin{cases}(i, j, k) \rightarrow(i, j, 1-k) & (i, j, k) \in X \\
(a, b) \rightarrow(a, 1-b) & (a, b) \in Y \backslash\{\infty\} \\
\infty \rightarrow \infty\end{cases}
\end{aligned}
$$

Sometimes, we denote Y by $S=\left\{\infty_{1}, \infty_{2}, \ldots, \infty_{h}\right\}$ and denote the corresponding mapping by

$$
g=\left\{\begin{array}{l}
(i, j, k) \rightarrow(i, j, 1-k) \\
\infty_{i} \rightarrow \infty_{h+1-i}, \quad 1 \leq i \leq h
\end{array} \quad(i, j, k) \in X\right.
$$

The mapping is uniform for all constructions throughout our paper. Below, especially in section 6 , we will give the following results for different h :
(A) $6 q-H S C M D\left((6 q)^{m}\right)=\left(X,\left\{\{i\} \times Z_{3 q} \times Z_{2}: i \in Z_{m}\right\}, \mathcal{A}_{m}, f\right)$, where $m \geq 2$;
(B) $6 q-S C M D(6 q)=\left(\{i\} \times Z_{3 q} \times Z_{2}, \mathcal{B}_{i}, f\right), i \in Z_{m}$;
(C) $6 q-H S C M D\left(h^{1}(6 q)^{1}\right)=\left(\left(\{i\} \times Z_{3 q} \times Z_{2}\right) \cup Y,\left\{\{i\} \times Z_{3 q} \times Z_{2}, Y\right\}, \mathcal{C}_{i}, f\right)$, where $i \in Z_{m}$ and $3 q \leq h \leq 6 q$;
(D) $6 q-S C M D(6 q+h)=\left(\left(\{0\} \times Z_{3 q} \times Z_{2}\right) \cup Y, \mathcal{D}, f\right)$;
(E) $6 q-I S C M D(6 q+h, h)=\left(\left(\{i\} \times Z_{3 q} \times Z_{2}\right) \cup S, S, \Omega_{i}, g\right)$,
where $i \in Z_{m}$ and $h<3 q$;
(F) $6 q-S C M D(12 q+h)=\left(\left(Z_{2} \times Z_{3 q} \times Z_{2}\right) \cup Y, \mathcal{F}, f\right)$.

Then, each of the following block sets will form a $6 q-S C M D(v)$:

$$
\begin{aligned}
& \mathcal{A}_{m} \cup \mathcal{D} \cup\left(\bigcup_{i \in Z_{m}^{*}}\left(B_{i} \cup C_{i}\right)\right) \\
& \mathcal{A}_{m} \cup \mathcal{D} \cup\left(\bigcup_{i \in Z_{m}^{*}}^{\cup} \Omega_{i}\right) \\
& \left(\mathcal{A}_{m} \backslash \mathcal{A}_{2}\right) \cup \mathcal{F} \cup\left(\bigcup_{i \in Z_{m}^{*} \backslash\{1\}} \Omega_{i}\right), \text { when } m>2
\end{aligned}
$$

Here and below, Z_{m} denotes a residue class ring modulo m and $Z_{m}^{*}=Z_{m} \backslash\{0\}$.
Theorem 2.1 The following designs exist:
(1) $6 q-H S C M D\left((6 q)^{m}\right), m \geq 2$;
(denote the design by \mathcal{A}_{m}, then $\mathcal{A}_{2} \subset \mathcal{A}_{m}$ for $m>2$)
(2) $6 q-H S C M D\left(h^{1}(6 q)^{1}\right)$, where $3 q \leq h<6 q$;
(3) $6 q-S C M D(6 q)$.

Proof By [6], the designs $2 t-H S C M D\left((2 t)^{m}\right), m \geq 2 ; 2 t-H S C M D\left(h^{1}(2 t)^{1}\right), t \leq$ $h<2 t ; 2 t-S C M D(2 t)$ exist. We only need put $t=3 q$. In these self-converse designs given by [6], the mapping is the same as the uniform mapping defined by us.

By the above description and Theorem 2.1, in order to complete $6 q-S C M D(v)$, we only need construct
(D) and (E), when $v \equiv 2 q(\bmod 6 q)$;
(E) and (F), when $v \equiv 2 q+1(\bmod 6 q)$;
(D), when $v \equiv 4 q, 4 q+1,5 q, 5 q+1(\bmod 6 q)$.

3 Overall arrangement II

For some h (such as $h=q$ or $q+1$), it is difficult to construct the desired design under the overall arrangement I. Now, let us consider an other arrangement.

Let $v=12 m q+h$, where $h \in\{q, q+1,7 q\}$ and $m>0$ or $h \in\{7 q+1\}$ and $m \geq 0$. Let

$$
\begin{aligned}
& V=X \cup Y \text { and } X \cap Y=\emptyset ; \\
& X=Z_{m} \times Z_{6 q} \times Z_{2} ; \\
& Y=\left\{\begin{array}{ll}
Z_{\frac{h}{2}} \times Z_{2} \\
\left(Z_{\frac{h-1}{2}} \times Z_{2}\right) \cup\{\infty\} & (h \text { even })
\end{array}, \text { when } h>0 .\right.
\end{aligned}
$$

Below, especially in section 6 , we will give the following results for different h :
(A) $6 q-H S C M D\left((12 q)^{m}\right)=\left(X,\left\{\{i\} \times Z_{6 q} \times Z_{2}: i \in Z_{m}\right\}, \mathcal{A}, f\right)$, where $m \geq 2$;
(B) $6 q-H S C M D\left(h^{1}(12 q)^{1}\right)=\left(\left(\{i\} \times Z_{6 q} \times Z_{2}\right) \cup Y,\left\{\{i\} \times Z_{6 q} \times Z_{2}, Y\right\}, \mathcal{B}_{i}, f\right)$, where $i \in Z_{m}$ and $h \geq 3 q$;
(C) $6 q-S C M D(12 q)=\left(\{i\} \times Z_{6 q} \times Z_{2}, \mathcal{C}_{i}, f\right)$, where $i \in Z_{m}$;
(D) $6 q-S C M D(12 q+h)=\left(\{0\} \times Z_{6 q} \times Z_{2}, \mathcal{D}, f\right)$;
(E) $6 q-S C M D(h)=(Y, \mathcal{J}, f)$, where $h \geq 6 q$;
(F) $6 q-\operatorname{ISCMD}(12 q+h, h)=\left(\left(\{i\} \times Z_{6 q} \times Z_{2}\right) \cup S, S, \Omega_{i}, g\right)$, where $i \in Z_{m}$ and $h<3 q$.
Then, each of the following block sets will form a $6 q-S C M D(v)$:
$\mathcal{A} \cup \mathcal{J} \cup\left(\bigcup_{i \in Z_{m}}\left(\mathcal{B}_{i} \cup \mathcal{C}_{i}\right)\right) ;$
$\mathcal{A} \cup \mathcal{D} \cup\left(\cup_{i \in Z_{m}^{*}}\left(\mathcal{B}_{i} \cup \mathcal{C}_{i}\right)\right) ;$
$(\mathcal{A} \cup \mathcal{D}) \cup\left(\bigcup_{i \in Z_{m}^{*}} \Omega_{i}\right)$.
Theorem 3.1 The following designs exist:
(1) $6 q-H S C M D(12 q)^{m}, m \geq 2$;
(2) $6 q-S C M D(12 q)$;
(3) $6 q-H S C M D\left(h^{1}(12 q)^{1}\right), h \geq 3 q$.

Proof By [6], the designs $2 t-\operatorname{HSCMD}\left((4 t)^{m}\right)$ for $m \geq 2$, $2 t-\operatorname{HSCMD}\left(h^{1}(4 t)^{1}\right)$ for $h \geq t$, and $2 t-S C M D(4 t)$ exist. We only need put $t=3 q$. In these self-converse designs given by [6], the mapping is same as the uniform mapping defined by us.

By the above description and Theorem 3.1, in order to complete $6 q-S C M D(v)$, we only need construct
(D), when $v \equiv 7 q(\bmod 12 q)$;
(D) and (F), when $v \equiv q, q+1(\bmod 12 q)$;
(E), when $v \equiv 7 q+1(\bmod 12 q)$.

4 Notation and terminology

Consider the numbers and the differences in the set $Z_{n} \times Z_{2}$. In what follows, we will use the following notation and terminology, which was firstly introduced in [6].
(1) In $Z_{n} \times Z_{2}$, the number $(x, 0)$ is denoted by x_{0} or x, the number $(x, 1)$ is denoted by x_{1} or \bar{x}.
(2) The ordered pairs $\left(x_{i},(x+d)_{j}\right)$ belong to the difference $d_{i j}$, where $x, d \in$ $Z_{n}, i, j \in Z_{2}$ and $d \neq 0$ if $i=j$. A difference $d_{i j}$ is said to be pure if $i=j$, or mixed if $i \neq j$. The difference d_{00} (or d_{11}) is called 0 -pure (or 1 -pure) and is denoted by d_{0} (or d_{1}), respectively. Denote the set of all (pure and mixed) differences from $Z_{n} \times Z_{2}$ by $\left[Z_{n} \times Z_{2}\right]$.
(3) For integers $a, b, k, a<b$ and $k \geq 1, a \equiv b(\bmod k)$, define the integer intervals (as an ordered set under the natural ordering $<$):

$$
\begin{aligned}
& {[a, b]_{k}=(a, a+k, a+2 k, \cdots, b),} \\
& {[a, b]_{k}^{-1}=(b, b-k, \cdots, a+k, a) .}
\end{aligned}
$$

The subscript k can be omitted when $k=1$. For the numbers x_{i} in $Z_{n} \times Z_{2}$ and the differences $d_{i j}$ in $\left[Z_{n} \times Z_{2}\right]$, the range of x and d is uniformly taken as $\left[-\left\lfloor\frac{n-1}{2}\right\rfloor,\left\lceil\frac{n-1}{2}\right]\right]$, but $d \neq 0$ for the pure difference $d_{i i}$.
(4) Let $x_{1}, \ldots, x_{m} \in\left[Z_{n} \times Z_{2}\right]$. Call the ordered tuple $D=\left(x_{1}, \ldots, x_{m}\right)$ a differencetuple on $\left[Z_{n} \times Z_{2}\right]$. If $x_{1}=d_{i j}$, the corresponding number-tuple ($a_{i}, a_{i}+x_{1}, a_{i}+$ $\left.x_{1}+x_{2}, \ldots, a_{i}+x_{1}+\ldots+x_{m}\right)$ is denoted by \widetilde{D} or \widetilde{D}_{a}, where $a \in Z_{n}$. Note that $b_{i}+d_{i j}=(b+d)_{j}$ and $b_{i}+d_{s j}$ is undefined if $s \neq i$, where $b, d \in Z_{n}$ and $i, j, s \in Z_{2}$. Usually, we write $a_{i}=\operatorname{head}\left(\widetilde{D}_{a}\right), a_{i}+x_{1}+\ldots+x_{m}=\operatorname{tail}\left(\widetilde{D}_{a}\right)$ and $\widetilde{D}_{a}=\widetilde{D}_{0}+a$. For a difference-tuple D and corresponding number-tuple $\widetilde{D}=\left(y_{0}, y_{1}, \ldots, y_{m}\right)$, we have the unordered sets

$$
\{\widetilde{D}\}=\left\{y_{0}, y_{1}, \ldots, y_{m}\right\},\{\widetilde{D}\}_{0}=\{x ;(x, 0) \in \widetilde{D}\} \text { and }\{\widetilde{D}\}_{1}=\{x ;(x, 1) \in \widetilde{D}\}
$$

For example, if $D=\left(2_{00},(-1)_{01}, 2_{10},(-4)_{00}, 1_{01}, 2_{11},(-4)_{11}\right)$ and head $(\widetilde{D})=0$, then $\widetilde{D}=(0,2, \overline{1}, 3,-1, \overline{0}, \overline{2}, \overline{-2}),\{\widetilde{D}\}_{0}=\{-1,0,2,3\},\{\widetilde{D}\}_{1}=\{-2,0,1,2\}$ and $\operatorname{tail}(\widetilde{D})=\overline{-2}$.
(5) Define two mappings $F(x)$ and \bar{x} on $\left[Z_{n} \times Z_{2}\right]$ as follows.

$$
\begin{gathered}
F\left(d_{00}\right)=-d_{11}, F\left(d_{11}\right)=-d_{00}, F\left(d_{01}\right)=-d_{01}, F\left(d_{10}\right)=-d_{10}, \\
\overline{d_{00}}=d_{11}, \overline{d_{11}}=d_{00}, \overline{d_{01}}=d_{10}, \overline{d_{10}}=d_{01},
\end{gathered}
$$

where $-d_{i j}=(-d)_{i j}$. Let $D=\left(x_{1}, \ldots, x_{m}\right)$ be a difference-tuple. The following derived tuples are often useful:

$$
\begin{gathered}
-D=\left(-x_{1}, \ldots,-x_{m}\right), \quad D^{-1}=\left(x_{m}, \ldots, x_{2}, x_{1}\right), \\
F(D)=\left(F\left(x_{1}\right), F\left(x_{2}\right), \ldots, F\left(x_{m}\right)\right), \quad F^{-1}(D)=(F(D))^{-1} .
\end{gathered}
$$

(6) Let $a, s \in Z_{n}, i, j, x, y \in Z_{2}, D=[a, a+s]$ be a difference-tuple on $\left[Z_{n} \times Z_{2}\right]$. Define

$$
\begin{aligned}
& A_{i j}(D)=\left(a_{i j},-(a+1)_{j i}, \ldots,(-1)^{s}(a+s)_{[i j]^{s}}\right), \\
& -A_{i j}(D)=\left(-a_{i j},(a+1)_{j i}, \ldots,(-1)^{s-1}(a+s)_{\left[i j s^{s}\right.}\right) \text { and } \\
& A_{i j}\left(D^{-1}\right)=\left((a+s)_{i j},-(a+s-1)_{j i}, \ldots,(-1)^{s} a_{[i j]^{s}}^{s},\right.
\end{aligned}
$$

where the subscript $[i j]^{s}$ denotes $i j$ (if s even) or $j i$ (if s odd). When $i=j$, these symbols are briefly denoted by $A_{i}(D),-A_{i}(D), A_{i}\left(D^{-1}\right)$. As well, we define

$$
M A_{i j}(D)=\left(a_{i j},-(a+1)_{j i},(a+2)_{i j}, \ldots,(-1)^{s}(a+s)_{[i j]^{s}},\right.
$$

Similarly, $M A_{i j}\left(D^{-1}\right),-M A_{i j}(D)$ can be defined also.
(7) A difference tuple $D=\left(x_{1}, \ldots, x_{m}\right)$ is called a difference-path on $\left[Z_{n} \times Z_{2}\right]$, denoted by $D P(D)$, if the following conditions are satisfied:

$$
\left\{\begin{array}{l}
\text { The numbers in } \widetilde{D}_{0} \text { are distinct; } \\
\text { If } x_{s}=d_{i j} \text {, then } x_{s+1}=d_{j k}^{\prime} \text { for } 1 \leq s \leq m-1 .
\end{array}\right.
$$

(8) A $D P(D)=\left(x_{1}, \ldots, x_{m}\right)$ is called a difference-cycle on $\left[Z_{n} \times Z_{2}\right]$, denoted by $D C(D)$, if the additional conditions are satisfied:

$$
\left\{\begin{array}{l}
d_{1}+\ldots+d_{m} \equiv 0(\bmod n), \text { where } x_{s}=\left(d_{s}\right)_{i_{s} j_{s}}, d_{s} \in Z_{n}, i_{s}, j_{s} \in\{0,1\} \\
\text { If } x_{1}=d_{i j} \text { then } x_{m}=d_{s i}^{\prime} .
\end{array}\right.
$$

A $D C(D)$ is said to be complete, denoted by $C D C(D)$, if the differences in D are distinct. A $C D C(D)$ corresponds to a block-orbit $\operatorname{dev}\left(\widetilde{D}_{0}\right)=\left\{\widetilde{D}_{0}+a ; a \in Z_{n}\right\}$, which covers all ordered pairs $\left\{\left(a_{i}, a_{i}+d_{i j}\right) ; a \in Z_{n}, d_{i j} \in D\right\}$.
(9) In a $D C\left(d_{1}, \ldots, d_{k}\right)$, if $k=\lambda s, d_{1}, \ldots, d_{s}$ are distinct and $d_{i}=d_{i+s}, \forall 1 \leq i \leq$ $k-s$, then this $D C$ is called a λ-partite $D C$, denoted by $\lambda-D C\left(d_{1}, \ldots, d_{s}\right)$. It is not difficult to see that a difference-tuple $\lambda R=\left(d_{1}, \ldots, d_{s}, d_{1}, \ldots, d_{s}, \ldots \ldots, d_{1}, \ldots, d_{s}\right)$, where $R=\left(d_{1}, \ldots, d_{s}\right)$ is repeated λ times, forms a λ-partite $D C$ if and only if $g c d\left(d_{1}+\ldots+d_{s}, n\right)=\frac{n}{\lambda}, \lambda \mid n$ and $d_{1}, d_{1}+d_{2}, \ldots, d_{1}+d_{2}+\ldots+d_{s}$ are not congruent modulo $\frac{n}{\lambda}$. A $\lambda-D C\left(d_{1}, \ldots, d_{s}\right)$ corresponds to a block-orbit $\operatorname{dev}\left(\widetilde{N}_{0}\right)=\left\{\widetilde{N}_{0}+a ; 0 \leq a \leq \frac{n}{\lambda}-1\right\}$. When $\lambda=1$, the notation λ can be omitted and this $D C$ is just a $C D C$.
(10) Let Q be a $D P$ consisting of distinct differences in $\left[Z_{n} \times Z_{2}\right]$. If $Q \cap F(Q)=$ $\emptyset, \widetilde{Q}_{0} \cap f\left(\widetilde{Q}_{0}\right)=\emptyset$ and both head $\left(\widetilde{Q}_{0}\right)$ and $\operatorname{tail}\left(\widetilde{Q}_{0}\right)$ belong to the same set $Z_{n} \times\{j\}$ for some $j \in Z_{2}$, then $\left(Q, 0_{j, 1-j}, F^{-1}(Q), 0_{1-j, j}\right)$ forms a self-converse complete $D C$ on $\left[Z_{n} \times Z_{2}\right]$, which is denoted by $S D C(Q)$.
(11) Let N be a $D P$ consisting of distinct differences in $\left[Z_{n} \times Z_{2}\right]$. If $N \cap F(N)=\emptyset$ and both head (\widetilde{N}) and tail (\bar{N}) belong to the same set $Z_{n} \times\{j\}$ for some $j \in Z_{2}$, then $\langle\infty, \widetilde{N}\rangle$ forms a complete block-orbit. The corresponding $C D C$ is denoted by $C D C_{\infty}(N)$.
(12) Let N be a $D P$ consisting of distinct differences in $\left[Z_{n} \times Z_{2}\right]$, let a_{1}, a_{2}, \cdots, a_{h-1} be distinct numbers in $\left(Z_{n} \times Z_{2}\right) \backslash\left\{\widetilde{N}_{0}\right\}$, if $N \cap F(N)=\emptyset, a_{i}$ and a_{h-i} belong to the same set $Z_{n} \times\{j\}$ for some $j \in Z_{2}$, then $\left\langle\infty_{1}, a_{1}, \infty_{2}, a_{2}, \ldots, \infty_{h-1}, a_{h-1}, \infty_{h}, \widetilde{N}_{0}\right\rangle$ forms a complete block-orbit. The corresponding $C D C$ is denoted by $C D C_{\infty_{1}, \ldots, h}(N)$.

5 Some typical $D P$ and $D C$

Lemma 5.1 ([6]) (1) Let a, m, d, k be positive integers, $d<m$ and $a+k m \leq \frac{n}{2}$. If $N=[a, a+k m]_{k}$ or $[a, a+k m]_{k} \backslash\{a+k d\}$, then $\pm A_{i j}(N)$ is a $D P$ on $\left[Z_{n} \times Z_{2}\right]$.
(2) Suppose Q and N are both $D P$ on $Z_{n} \times Z_{2}, n$ even and $a, b \in Z_{n}$. If the members of $Q($ resp. $N)$ are distinct 0-pure differences, $\widetilde{Q}_{0} \cap\left(\widetilde{Q}_{0}+\frac{n}{2}\right)=\emptyset, \widetilde{N}_{0} \cap\left(\widetilde{N}_{0}+\frac{n}{2}\right)=\emptyset$ and $a+b+\sum_{d \in Q \cup N} d \equiv \frac{n}{2}(\bmod n)$, then $\left(Q, a_{01}, \bar{N}, b_{10}, Q, a_{01}, \bar{N}, b_{10}\right)$ forms a 2-partite $D C$ on $\left[Z_{n} \times Z_{2}\right]$, denoted briefly by $2-\left(Q, a_{01}, \bar{N}, b_{10}\right)$.
(3) Let n be an even integer, P be a DP consisting of distinct differences of $\left[Z_{n} \times Z_{2}\right]$. If $P \cap F(P)=\emptyset,\left(\frac{n}{2}\right)_{01},\left(\frac{n}{2}\right)_{10} \notin P$, head $\left(\widetilde{P}_{0}\right)$, tail $\left(\widetilde{P}_{0}\right) \in Z_{n} \times\{0\}$ and $\widetilde{P}_{0} \cap f\left(\widetilde{P}_{0}+\frac{n}{2}\right)=$ \emptyset, then
(a) $\left(P,\left(\frac{n}{2}\right)_{01}, F^{-1}(P),\left(\frac{n}{2}\right)_{10}\right)$ forms a complete $D C$ on $\left[Z_{n} \times Z_{2}\right]$, denoted by $F D C\left(P,\left(\frac{n}{2}\right)_{01}\right)$.
(b) Let $N=\left(P,\left(\frac{n}{2}\right)_{01}, F^{-1}(P), a_{10}\right), a_{10} \notin P \cup F(P)$ and $a \notin\left\{\widetilde{P}_{0}\right\}_{1} \cup\left(\left\{\widetilde{P}_{0}\right\}_{0}+\frac{n}{2}\right)$. Then, the blocks $\left\{\left\langle\infty, \widetilde{N}_{i}\right\rangle: 0 \leq i \leq \frac{n}{2}-1\right\}$ and their f-converse cover the differences $d \in P \cup F(P) \cup\left\{\left(\frac{n}{2}\right)_{01}\right\}$ and a half of the number pairs with differences a_{10} and $-a_{10}$. The tuple N is denoted by $F D C_{\infty}(N)$.
(4) Let $N=\left(A_{0}[a, a+r],(-1)^{r-1} A_{01}\left(\left[\frac{n}{2}-s-1, \frac{n}{2}-1\right]\right)\right), 2 a+r+2 s+2<n,|b| \neq$ $|c| \in\left[1, \frac{n}{2}-s-2\right], b, b+c \notin\{\widetilde{N}\}_{0} \cup\left(\{\widetilde{N}\}_{1}+\frac{n}{2}\right)$ and $c \notin\{\widetilde{N}\}_{1} \cup\left(\{\widetilde{N}\}_{0}+\frac{n}{2}\right)$, where head $(\widetilde{N})=0$. If $r \equiv s(\bmod 2)$, then $P=\left(\frac{n}{2}, N,\left(\frac{n}{2}\right)_{[10]}, F^{-1}(N), \frac{\bar{n}}{2}, b_{10}\right)$ and $Q=\left(-c_{01}, \bar{N},\left(\frac{n}{2}\right)_{[01]^{r}}, F^{-1}(\bar{N}), c_{01}, b_{10}\right)$ form a pair of $F D C_{\infty}$, where $[10]^{r}=01$ if r odd or 10 if r even.

Lemma 5.2 Let $\lambda \mid(k, n), i, j, s \in Z_{2}, c \in Z_{n}$ and $\left\lceil\frac{k}{2 \lambda}\right\rceil \leq \frac{n}{\lambda}$. Then for the following $R, \lambda R$ forms a λ-partite $D C$ if $\operatorname{tail}\left(\widetilde{R}_{0}\right)= \pm \frac{n}{\lambda}$.
(1) $R=\left(A_{i j}\left[a, a+\frac{k}{\lambda}-2\right], c_{x y}\right)$;
(2) $R=\left(A_{i j}\left(\left[a, a+\frac{k}{\lambda}-1\right] \backslash\{a+t\}\right), c_{x y}\right)$.
where the subscript $x y=j s($ or $x y=i s)$ if $\frac{k}{\lambda}$ even (or odd).
Proof (1) By Lemma $5.1(1), P=A_{i j}\left[a, a+\frac{k}{\lambda}-2\right]$ is a $D P$ and $\left\{\widetilde{P}_{0}\right\}_{i}=\left[-\left(\left\lceil\frac{k}{2 \lambda}\right]-\right.\right.$ 1), 0$],\left\{\tilde{P}_{0}\right\}_{j}=\left\lceil a, a+\left\lfloor\frac{k}{2 \lambda}\right\rfloor-1\right]$, and they are intervals with length $\left\lceil\frac{k}{2 \lambda}\right\rceil$ and $\left\lfloor\frac{k}{2 \lambda}\right\rfloor$ respectively. It is easy to see that $\left\lfloor\frac{k}{2 \lambda}\right\rfloor \leq\left\lceil\frac{k}{2 \lambda}\right\rceil \leq \frac{n}{\lambda}$, so they are not congurent modulo $\frac{n}{\lambda}$, thus λR indeed forms a $D C$.
(2) By Lemma $5.1(1), P=A_{i j}\left(\left[a, a+\frac{k}{\lambda}-1\right] \backslash\{a+t\}\right)$ forms a $D P$, and

$$
\begin{aligned}
& \left\{\widetilde{P}_{0}\right\}_{i}= \begin{cases}{\left[-\left(\left\lceil\frac{k}{2 \lambda}\right\rceil-1\right), 0\right]} & (t \text { even }) \\
{\left[-\left\lceil\frac{k}{2 \lambda}\right\rceil, 0\right] \backslash\left\{-\frac{t+1}{2}\right\}} & (t \text { odd })\end{cases} \\
& \left\{\widetilde{P}_{0}\right\}_{j}= \begin{cases}{\left[a, a+\left\lfloor\frac{k}{2 \lambda}\right]\right] \backslash\left\{a+\frac{t}{2}\right\}} & (t \text { even }) \\
{\left[a, a+\left\lfloor\frac{k}{2 \lambda}\right\rfloor-1\right]} & (t \text { odd })\end{cases}
\end{aligned}
$$

Thus, by the definition of λ-partite $D C$ (in (9) of section 4), it is easy to see that λR forms a $D C$.

Lemma 5.3 Let n, m, a, b, c, d be positive integers, n even, $1<d<m<\frac{n}{2}$ and $1<b, c, a+m<\frac{n}{2}$. Then for the following $R, 2 R$ forms a 2 -partite $D C$.
(1) $R=\left(\pm A_{0}([1, m] \backslash\{d\}), a_{01}, \pm A_{1}[1, c], b_{10}\right)$, where

$$
a+b=\frac{n}{2}-(-1)^{m-1}\left(\left\lceil\frac{m}{2}\right\rceil+\epsilon_{d}\right) \operatorname{sgn} A-(-1)^{c}\left\lceil\frac{c}{2}\right\rceil \operatorname{sgn} A
$$

(2) $R=\left(\pm A_{0}[a, a+m], b_{01}, c_{10}\right)$, where

$$
b+c= \begin{cases}\frac{n}{2}+(-1)^{m-1}\left\lceil\frac{m}{2}\right\rceil \operatorname{sgn} A & (m \text { odd }) \\ \frac{n}{2}+(-1)^{m-1}\left\lceil a+\frac{m}{2}\right\rceil \operatorname{sgn} A & (m \text { even })\end{cases}
$$

(3) $R=\left(\pm A_{0}([a, a+m] \backslash\{a+d\}), b_{01}, c_{10}\right)$, where

$$
b+c=\frac{n}{2}+\left\{\begin{array}{ll}
(-1)^{m-1}\left(\left\lceil\frac{m}{2}\right\rceil+\epsilon_{d}+a\right) \operatorname{sgn} A & (m \text { odd }) \\
(-1)^{m-1}\left(\left\lceil\frac{m}{2}\right\rceil+\epsilon_{d}\right) \operatorname{sgn} A & (m \text { even })
\end{array}\right. \text { and }
$$

$\epsilon_{d}=0$ (if d even) or $(-1)^{m}$ (if dodd).
Proof (1) By Lemma 5.1(1), both $Q= \pm A_{0}([1, m] \backslash\{d\})$ and $P= \pm A_{0}[1, c]$ are $D P$, head $\left(\widetilde{Q}_{0}\right)=0, \operatorname{tail}\left(\widetilde{Q}_{0}\right)=(-1)^{m}\left(\left\lceil\frac{m}{2}\right\rceil+\epsilon_{d}\right) \operatorname{sgn} A$, and \widetilde{Q}_{0} is contained in a interval with length $m+1\left(\leq \frac{n}{2}\right)$, thus $\widetilde{Q}_{0} \cap\left(\tilde{Q}_{0}+\frac{n}{2}\right)=\emptyset$. As well, $\operatorname{head}\left(\widetilde{P}_{0}\right)=0$, $\operatorname{tail}\left(\widetilde{P}_{0}\right)=(-1)^{c-1}\left\lceil\frac{c}{2}\right\rceil \operatorname{sgn} A$ and \widetilde{P}_{0} is contained in a interval with length $c+1\left(\leq \frac{n}{2}\right)$, thus $\tilde{P}_{0} \cap\left(\widetilde{P}_{0}+\frac{n}{2}\right)=\emptyset$. By Lemma 5.1(2), for the given value of $a+b, 2 R$ forms a 2-partite DC.
(2) By Lemma $5.1(1), Q= \pm A_{0}[a, a+m]$ forms a $D P, \widetilde{Q}$ is contained in a interval with length $m+1\left(\leq \frac{n}{2}\right)$, thus $\left(\widetilde{Q}_{0}+\frac{n}{2}\right) \cap \widetilde{Q}_{0}=\emptyset$, $\operatorname{head}\left(\widetilde{Q}_{0}\right)=0$ and

$$
\operatorname{tail}\left(\widetilde{Q}_{0}\right)= \begin{cases}-\left(a+\frac{m}{2}\right) \operatorname{sgn} A & (m \text { even }) \\ \left\lceil\frac{m}{2}\right\rceil \operatorname{sgn} A & (m \text { odd }) .\end{cases}
$$

Thus, for the given value of $b+c, 2 R$ forms a 2-partite $D C$.
(3) By Lemma 5.1(1), $Q= \pm A_{0}([a, a+m] \backslash\{a+d\})$ forms a $D P$, head $\left(\widetilde{Q}_{0}\right)=0$ and

$$
\operatorname{tail}\left(\tilde{Q}_{0}\right)= \begin{cases}(-1)^{m-1}\left(\left\lceil\frac{m}{2}\right\rceil+\epsilon_{d}+a\right) \operatorname{sgn} A & (m \text { odd }) \\ (-1)^{m-1}\left(\left\lceil\frac{m}{2}\right\rceil+\epsilon_{d}\right) \operatorname{sgn} A & (m \text { even }) .\end{cases}
$$

Thus, for the given value of $b+c, 2 R$ forms a 2 -partite $D C$.
Lemma 5.4 Let n be odd, a be even and $a<\frac{n-3}{2}$. Then the following difference-tuple N forms a SDC:
(1) $N=\left(-\left(\frac{n-a+1}{2}\right)_{0}, A_{0}[1, a], M A_{01}\left[a+1, \frac{n-1}{2}\right],-A_{0}[1, a-1]^{-1}\right)$;
(2) $N=\left(-\left(\frac{n-a+3}{2}\right)_{0}, A_{0}[1, a], M A_{01}\left[a+1, \frac{n-1}{2}\right],-A_{01}[a-1, a]^{-1},-A_{0}[1, a-3]^{-1}\right)$.

Proof (1) Since $\{\tilde{N}\}_{0}=\left[-\frac{n-1}{2}, \frac{a}{2}\right] \cup\left[\frac{n-a+1}{2}, \frac{n-1}{2}\right],\{\widetilde{N}\}_{1}=\left[\frac{a}{2}+1, \frac{n-a-1}{2}\right]$, head $(\widetilde{N})=$ $\left(\frac{n-a+1}{2}\right)_{0}$ and $\operatorname{tail}(\widetilde{N})=-\left(\frac{n-1}{2}\right)_{0}, N$ satisfies the conditions of SDC.
(2) Since $\{\widetilde{N}\}_{0}=\left[-\frac{n-1}{2}, \frac{a}{2}\right] \cup\left[\frac{n-a+3}{2}, \frac{n-1}{2}\right],\{\widetilde{N}\}_{1}=\left[\frac{a}{2}+1, \frac{n-a-1}{2}\right]$, head $(\widetilde{N})=\left(\frac{n-a+3}{2}\right)_{0}$ and $\operatorname{tail}(\widetilde{N})=-\left(\frac{n-1}{2}\right)_{0}, N$ satisfies the conditions of SDC.

Lemma 5.5 Let n be odd, b be even and $b<\frac{n-3}{2}$, then

$$
D=\left(A_{0}\left[1, \frac{n-1}{2}\right],(-1)^{\frac{n-3}{2}} A_{0}\left[b, \frac{n-1}{2}-1\right]^{-1}\right)
$$

forms a $C D C_{\infty}$.
Proof Obviously D forms a $D P$ and satisfies the conditions of $C D C_{\infty}$, since

$$
\widetilde{D}_{0}=\left\{\begin{array}{lll}
{\left[-\frac{n-b-1}{2}, \frac{n-b+1}{2}\right] \backslash\left\{\frac{n+3}{4}\right\}} & \left(\frac{n-1}{2} \text { even }\right) & \text { tail }\left(\widetilde{D}_{0}\right)=-\left(\frac{n-b-1}{2}\right)_{0} \\
{\left[-\frac{n-b+1}{2}, \frac{n-b-1}{2}\right] \backslash\left\{-\frac{n+1}{4}\right\}} & \left(\frac{n-1}{2} \text { odd }\right) & \text { tail }\left(\widetilde{D}_{0}\right)=-\left(\frac{n-b+1}{2}\right)_{0} .
\end{array}\right.
$$

Lemma 5.6 Let a be even, n, t be odd, $1<s<t<\frac{n-1}{2}-a$ and $\frac{n+1}{2} \leq h \leq n$, then $N=\left(A_{0}\left(\left[a, \frac{n-3}{2}\right] \backslash\{a+s\}\right),(-1)^{\frac{n-1}{2}} A_{0}\left(\left[a+t, \frac{n-1}{2}\right] \backslash\{a+s\}\right)^{-1},(a+s)_{0},(-1)^{\frac{n+1}{2}}\left(\frac{n-1}{2}\right)_{0}\right)$ forms a $C D C_{\infty_{1, \ldots, h}}(N)$.

Proof From the following table, it is easy to see that N forms a $D P$.

$\frac{n-1}{2}$	s	
even	even	$\left(\left[\frac{a}{2}, \frac{n-a-t-2}{2}\right] \backslash\left\{\frac{a+s}{2}\right\}\right) \cup\left(\left[-\frac{n-a-t+2}{2},-\frac{a}{2}\right] \backslash\left\{-\frac{n-a-s+1}{2},-\frac{n+1}{4}\right\}\right)$
	odd	$\left(\left[\frac{a}{2}, \frac{n-a-t-2}{2}\right] \backslash\left\{\frac{n-a-s-2}{2}\right\}\right) \cup\left(\left[-\frac{n-a-t-2}{2},-\frac{a}{2}\right] \backslash\left\{-\frac{s+a}{2},-\frac{n+3}{4}\right\}\right)$
odd	even	$\left(\left[\frac{a}{2}, \frac{n-a-t}{2}\right] \backslash\left\{\frac{a+s}{2}, \frac{n+1}{4}\right\}\right) \cup\left(\left[-\frac{n-a-t}{2},-\frac{a}{2}\right] \backslash\left\{-\frac{n-a-s-1}{2}\right\}\right)$
	odd	$\left(\left[\frac{a}{2}, \frac{n-a-t}{2}\right] \backslash\left\{\frac{n-a}{2}, \frac{a-3}{4}\right\}\right) \cup\left(\left[-\frac{n-a-t}{2},-\frac{a}{2}\right] \backslash\left\{-\frac{s+a}{2}\right\}\right)$

where head $(\widetilde{N})=-\left(\frac{a}{2}\right)_{0}$ and

$$
\operatorname{tail}(\widetilde{N})= \begin{cases}(-1)^{\frac{n-3}{2}\left(\frac{n-3}{2}\right)_{0}} & (s \text { even }) \\ (-1)^{\frac{n-3}{2}}\left(\frac{n-1}{2}\right)_{0} & (s \text { odd }) .\end{cases}
$$

Finally, in order to construct $C D C_{\infty_{1, \ldots, h}}(N)$, we take $\left\langle\infty_{1}, 1_{1}, \infty_{2}, 2_{1}, \ldots, \infty_{h-1},(h-\right.$ $\left.1)_{1}, \infty_{h}, \widetilde{N}_{0}\right\rangle$ as the base block of a corresponding block-orbit.

6 Constructions of $S C M D$

In all constructions of this section, we will use the notation $D C$ of various kinds: $\lambda R, F D C, F D C_{\infty}, S D C, C D C, C D C_{\infty}, C D C_{\infty_{1}, \ldots, h}$ defined in the above section. Each $D C$ represents one (or $\frac{1}{\lambda}$) block-orbit and their f-converse (except $S D C$, which is self-converse). Therefore, each $D C$ will correspond to the following number of blocks from $Z_{n} \times Z_{2}$:

λR	$F D C$	$F D C_{\infty}$	$S D C$	$C D C$	$C D C_{\infty}$	$C D C_{\infty_{1}, \ldots, h}$
$\frac{n}{\lambda} \times 2$	$\frac{n}{2} \times 2$	$\frac{n}{2} \times 2$	$n \times 1$	$n \times 2$	$n \times 2$	$n \times 2$

Theorem 6.1 There exists a $6 q-S C M D(14 q+1)$ for $q \equiv 1(\bmod 6)$.
Construction Let $q=6 t+1$ and $t \geq 1$. Construct a $(36 t+6)-S C M D(84 t+15)=$ (X, \mathcal{B}) as follows. The point set is $X=\left(Z_{42 t+7} \times Z_{2}\right) \cup\{\infty\}$, the block set \mathcal{B} consists of three parts:
(I) $(6 t+1)$-partite $D C:(6 t+1)-D C\left(A_{01}\left(R_{i}\right)\right), 0 \leq i \leq\left\lfloor\frac{5 t}{2}\right\rfloor$,

$$
(6 t+1)-D C\left(A_{10}\left(R_{j}\right)\right), 0 \leq j \leq\left\lceil\frac{5 t}{2}-1\right\rceil
$$

where $R_{0}=\{1,2,3,4,5,10\}, R_{i}=\{6 i, 6 i+1,6 i+2,6 i+3,6 i+5,6 i+10\}, i \geq 1$;
(II) $C D C_{\infty}\left(A_{0}[1,21 t+3],(-1)^{t} A_{0}[6 t+2,21 t+2]^{-1}\right)$;
(III) $S D C\left((-1)^{t-1}(21 t+3)_{0},-A_{0}[1,6 t+1], P\right)$, where $P=M A_{01}([15 t+3,21 t+$ $3] \backslash\{15 t+7\})$ for odd t or $\left(A_{01}([15 t+1,15 t+5] \backslash\{15 t+4\}), M A_{01}([15 t+6,21 t+\right.$ $\left.3] \backslash\{15 t+10\}),(15 t+10)_{01},(15 t)_{10}\right)$ for even t.
Proof The number of $6 q$-blocks in part (I)-(III) is $(42 t+7) \times(2+1)+(5 t+1) \times 7 \times 2=$ $196 t+35$, as expected. It is not difficult to see that all differences are contained in (I)-(III) exactly once. As for the correctness of each part, we can show it as follows.
(I) By Lemma $5.2\left(\left\lceil\frac{36 t+6}{12 t+2}\right\rceil \leq \frac{42 t+7}{6 t+1}\right)$.
(II) By Lemma 5.5.
(III) We only verify the case: t even. Denote $R=-A_{0}[1,6 t+1]$ and $M=$ $\left(A_{01}([15 t+1,15 t+5] \backslash\{15 t+4\}), M A_{01}([15 t+6,21 t+3] \backslash\{15 t+10\})\right)$. Then

$$
\begin{aligned}
& \left\{\tilde{R}_{0}\right\}_{0}=[-(3 t+1), 3 t], \text { tail }\left(\widetilde{R}_{0}\right)=c=-(3 t+1)_{0}, \\
& \left\{\widetilde{M}_{c}\right\}_{0}=[-(9 t+1),-(3 t+2)] \backslash\{-(3 t+3)\}, \\
& \left\{\widetilde{M}_{c}\right\}_{1}=[12 t, 36 t] \backslash\{12 t+4,18 t-2\}, \\
& \text { tail }\left(\bar{M}_{c}\right)=-(9 t+1)_{0} .
\end{aligned}
$$

Furthermore, it is easy to see that the last two values of \tilde{P}_{c} are $(6 t+9)_{1}$ and $-(21 t-$ $2)_{0}$. Obviously, the first number of the corresponding number-tuple of (III) is $(21 t+$ $3)_{0}$. By the list value, it is not difficult to see that the difference-tuple given by (III) satisfies the conditions of an $S D C$.

Theorem 6.2 There exists a $6 q-S C M D(10 q)$ for $q \equiv 1(\bmod 6)$.
Construction
(Case 1) Let $q=12 t+1$ and $t \geq 1$. Construct a $(72 t+6)-S C M D(120 t+10)=(X, \mathcal{B})$ as follows. The point set is $X=Z_{60 t+5} \times Z_{2}$, the block set \mathcal{B} consists of three parts:
(I) $(12 t+1)$-partite $D C:(12 t+1)-D C\left(A_{01}\left(R_{i}\right)\right)$,

$$
(12 t+1)-D C\left(A_{10}\left(R_{i}\right)\right), 0 \leq i \leq t-1,
$$

where $R_{0}=\{1,2,3,4,5,8\}, R_{i}=\{6 i, 6 i+1,6 i+3,6 i+4,6 i+5,6 i+8\}, i \geq 1$;
(II) $C D C(P)$, where $P=\left(M A_{01}\left([6 t, 30 t+2] \backslash\{6 t+2\},(30 t+2)_{0}, A_{0}[1,24 t]^{-1}\right.\right.$, $\left.-(18 t)_{0}\right)$;
(III) $S D C(Q)$, where $Q=\left(A_{0}[18 t+1,30 t+2],-A_{0}[24 t+1,30 t+1]^{-1}\right.$,

$$
\left.A_{0}[1,18 t-1]^{-1}\right) .
$$

(Case 2) Let $q=12 t+7$ and $t \geq 0$. Construct a $(72 t+42)-S C M D(120 t+70)=$ (X, \mathcal{B}) as follows.
When $t=0$, a $42-S C M D(70)$ is given in Appendix 1. Below, suppose $t>0$. The point set is $X=Z_{60 t+35} \times Z_{2}$, the block set \mathcal{B} consists of three parts:
(I) $(12 t+7)$-partite $D C:(12 t+7)-D C\left(A_{01}\left(R_{i}\right)\right), 0 \leq i \leq t$,

$$
(12 t+7)-D C\left(A_{10}\left(R_{j}\right)\right), 0 \leq j \leq t-1,
$$

where $R_{0}=\{1,2,3,4,5,8\}, R_{i}=\{6 i, 6 i+1,6 i+3,6 i+4,6 i+5,6 i+8\}, i \geq 1$;
(II) $C D C\left(M A_{01}[6 t+9,30 t+17],-A_{01}([6 t, 6 t+8] \backslash\{6 t+2\})^{-1},(30 t+17)_{0}\right.$,

$$
\left.A_{0}[2,24 t+15]^{-1},-(18 t+11)_{0}\right) ;
$$

(III) $S D C\left(-A_{0}([1,30 t+16] \backslash[18 t+11,24 t+15]),-A_{0}[18 t+12,30 t+17]^{-1}\right.$,

$$
\left.-(6 t+7)_{01},-(6 t+6)_{10}, 1_{0}\right)
$$

Proof We only verify case 1 . The number of blocks is $(60 t+5) \times 3+2 t \times 5 \times 2=$ $200 t+15$, as expected. The correctness of each orbit is shown as follows.
(I) By Lemma $5.2\left(\left\lceil\frac{72 t+6}{24 t+2}\right\rceil \leq \frac{60 t+5}{12 t+1}\right)$.
(II) Since $\{\tilde{P}\}_{0}=[-(24 t+2), 0] \cup[6 t, 30 t],\{\tilde{P}\}_{1}=\{-(30 t+2)\} \cup([6 t, 30 t+$ $1] \backslash\{6 t+1\}$ and $\operatorname{head}(\tilde{P})=\operatorname{tail}(\widetilde{P})=0_{0}$.
(III) Since $\widetilde{Q}_{0}=[-(30 t+2),-(15 t+3)] \cup[-(9 t+1), 0] \cup[18 t+1,30 t+2]$ and $\operatorname{tail}\left(\widetilde{Q}_{0}\right)=-(24 t+2)_{0}$.

Theorem 6.3 There exists a $6 q-S C M D(11 q+1)$ for $q \equiv 1(\bmod 6)$.

Construction

(Case 1) Let $q=12 t+7$ and $t \geq 0$. Construct a $(72 t+42)-S C M D(132 t+78)=(X, \mathcal{B})$ as follows.
When $t=0$, a 42-SCMD(78) is given in Appendix 2. Below, suppose $t>0$. The point set is $X=Z_{66 t+39} \times Z_{2}$, the block set \mathcal{B} consists of three parts:
(I) 3-partite $D C: 3-D C\left(A_{01}[1,24 t+13]\right.$, $\left.(32 t+19)_{10}\right)$;
(II) $C D C(M)$, where $M=\left(A_{0}[1, a], A_{01}([1, a] \backslash\{24 t+13\})^{-1}\right.$,

$$
\left.A_{01}[32 t+20,33 t+18]^{-1},-(24 t+13)_{10}, A_{01}[b, 32 t+18]^{-1},(22 t+12)_{0}\right) ;
$$

(III) $S D C(N)$, where $N=\left(P, A_{01}[24 t+14, b-1],-(33 t+19)_{10}\right.$,

$$
\left.-A_{0}[22 t+13,33 t+19]^{-1}\right)
$$

$$
(a, b)=\left\{\begin{array}{ll}
(33 t+19,27 t+15) & t \text { even } \\
(33 t+18,27 t+14) & t \text { odd }
\end{array}\right. \text { and }
$$

$$
P= \begin{cases}-A_{0}[1,22 t+11] & t \text { even } \\ \left((33 t+19)_{0},-A_{0}[1,22 t+11]\right) & t \text { odd }\end{cases}
$$

(Case 2) Let $q=12 t+1$ and $t \geq 1$. Construct a $(72 t+6)-S C M D(132 t+12)=(X, \mathcal{B})$ as follows. The point set is $X=Z_{66 t+6} \times Z_{2}$, the block set \mathcal{B} consists of four parts:
(I) 6-partite $D C: 6-D C\left(A_{01}[1,12 t],-(5 t+1)_{0}\right)$,

$$
6-D C\left(A_{10}[1,12 t],-(5 t+1)_{1}\right) ;
$$

(II) 2-partite $D C: 2-D C\left((-1)^{t-1} A_{0}([1,33 t+2] \backslash\{5 t+1\}),(12 t+1)_{01}\right.$,

$$
\left.(-1)^{t-1} A_{1}[1,3 t],-c_{10}\right) ;
$$

(III) $F D C\left(M A_{01}([15 t+1,33 t+2] \backslash\{c\})^{-1},(33 t+3)_{01}\right)$;
(IV) $S D C(Q)$, where $Q=\left(-A_{0}[5 t+2,33 t+3]^{-1}, c_{01}, A_{10}[d, 15 t]^{-1}\right.$,

$$
(c, d)=\left\{\begin{array}{cl}
\left.-A_{0}[3 t+1,5 t]^{-1},-A_{01}\left[d+(-1)^{t-1}, 15 t\right]^{-1}\right) \text { and } \\
(30 t+2,12 t+2) & t \text { even } \\
(30 t+3,12 t+1) & t \text { odd }
\end{array}\right.
$$

Proof The number of blocks is

$$
\left\{\begin{array}{l}
(22 t+13) \times 2+(66 t+39) \times(2+1)=242 t+143 \\
(11 t+1) \times(2+2)+(66 t+6) \times(1+1+1)=242 t+22 \quad(\text { case 1) } \\
(\text { case })
\end{array}\right.
$$

as expected. For case 1 , the correctness of each orbit is shown as follows.
(I) By Lemma 5.2(1) $\left(\left\lceil\frac{72 t+42}{6}\right\rceil \leq \frac{66 t+39}{3}\right)$.
(II) We only verify the case: t even. Since $\{\widetilde{M}\}_{0}=\left[-\left(\frac{33}{2} t+9\right), 33 t+19\right] \cup[-(33 t+$ 19), $\left.-\left(\frac{65}{2} t+21\right)\right] \cup\left[-\left(\frac{49}{2} t+14\right),-(22 t+12)\right],\{\widetilde{M}\}_{1}=\left[5 t+3, \frac{15}{2} t+4\right] \cup\left[-\left(\frac{t}{2}+1\right),-2\right] \cup$ $\left.\left[-(33 t+19),-\left(\frac{33}{2} t+10\right)\right] \backslash\{-(21 t+13)\}\right)$ and $\operatorname{head}(\widetilde{M})=\operatorname{tail}(\widetilde{M})=0_{0}$.
(III) We only verify the case: t even. Since $\left\{\widetilde{N}_{0}\right\}_{0}=\left[-\left(\frac{25}{2} t+6\right), 11 t+5\right] \cup[-(24 t+$ 14), $\left.-\left(\frac{37}{2} t+11\right)\right] \cup\left[\frac{29}{2} t+9,20 t+12\right],\left\{\widetilde{N}_{0}\right\}_{1}=\left[13+8, \frac{29}{2} t+8\right]$ and $\operatorname{tail}\left(\widetilde{N}_{0}\right)=(20 t+12)_{0}$. As for case 2 , the correctness of each orbit is shown as follows.
(I) By Lemma 5.2(1) $\left.\left(\left\lceil\frac{72 t+6}{12}\right\rceil \leq \frac{66 t+6}{6}\right)\right)$.
(II) By Lemma 5.3(1).
(III) We only verify the case: t even. Let $R=M A_{01}([15 t+1,33 t+2] \backslash\{30 t+2\})^{-1}$, then $\left\{\widetilde{R}_{0}\right\}_{0}=[-(27 t+4),-(18 t+4)] \cup[0,9 t], \quad\left\{\widetilde{R}_{0}\right\}_{1}=[15 t, 33 t+2] \backslash\left\{\frac{33}{2} t, \frac{63}{2} t+2\right\}$ and $\operatorname{tail}\left(\widetilde{R}_{0}\right)=-(18 t+4)_{0}$. We see that $R \cap F(R)=\emptyset,\left\{\widetilde{R}_{0}\right\} \cap f\left(\left\{\widetilde{R}_{0}\right\}+33 t+3\right)=\emptyset$.
(IV) We only verify the case: t even. Since $\left\{\widetilde{Q}_{0}\right\}_{0}=[-(33 t+3),-(19 t+3)] \cup$ $[-(14 t+1), 0] \cup\left[\frac{49}{2} t+2, \frac{51}{2} t+1\right] \cup\left[27 t+2, \frac{59}{2} t+2\right],\left\{\widetilde{Q}_{0}\right\}_{1}=\left[\frac{27}{2} t+2,15+1\right] \cup\left[16 t+1, \frac{35}{2} t\right]$ and $\operatorname{tail}\left(\widetilde{Q}_{0}\right)=(27 t+2)_{0}$.

Theorem 6.4 There exists a $6 q-S C M D(8 q)$ for $q \equiv 5(\bmod 6)$.
Construction Let $q=6 t+5$ and $t \geq 0$. Construct a $(36 t+30)-S C M D(48 t+40)=$ (X, \mathcal{B}) as follows. When $t=0$, a $30-S C M D(40)$ is given in Appendix 3. Below, suppose $t>0$. The point set is $X=Z_{24 t+20} \times Z_{2}$, the block set \mathcal{B} consists of four parts:
(I) $(6 t+5)$-partite $D C:(6 t+5)$-DC $\left(A_{01}\left(R_{i}\right)\right), 0 \leq i \leq\left\lceil\frac{t}{2}\right\rceil$,

$$
\begin{aligned}
& (6 t+5)-D C\left(A_{10}\left(R_{i}\right)\right), 0 \leq i \leq\left[\frac{t}{2}\right]-1 \\
& (6 t+5)-D C\left(A_{01}\left(S_{j}\right)\right), 0 \leq j \leq\left\lfloor\frac{t}{2}\right] \\
& (6 t+5)-D C\left(A_{10}\left(S_{j}\right)\right), 0 \leq j \leq\left\lceil\frac{t}{2}\right\rceil-1
\end{aligned}
$$

where $S_{j}=[12 j+1,12 j+7] \backslash\{12 j+6\}, R_{i}=[12 i+6,12 i+12] \backslash\{12 i+7\}$;
(II) $(12 t+10)$-partite $D C:(12 t+10)-D C\left(P,-1_{0}\right)$;
(III) $F D C\left(M,(12 t+10)_{01}\right)$, where $M=\left(A_{01}[6 t+7,12 t+9]^{-1},(12 t+9)_{10}\right.$,

$$
\left.-A_{0}[1,12 t+10]^{-1}\right)
$$

(IV) $S D C(N)$, where $N=\left(A_{0}[2,12 t+9], Q\right)$ and

$$
(P, Q)=\left\{\begin{array}{ll}
\left(-A_{01}[6 t+5,6 t+6]^{-1},-A_{01}([6 t+1,12 t+8] \backslash\{6 t+5,6 t+7\})^{-1}\right) & t \text { even } \\
\left(A_{01}[6 t+2,6 t+3],\left(-A_{01}[6 t+4,12 t+8]^{-1},(6 t)_{10}\right)\right) & t \text { odd }
\end{array} .\right.
$$

Proof The number of blocks is $(2 t+1) \times 4 \times 2+2 \times 2+(24 t+20) \times 2=64 t+52$, as expected. The correctness of each orbit is shown as follows.
(I) By Lemma $5.2\left(\left\lceil\frac{36 t+30}{12 t+10}\right\rceil \leq \frac{24 t+20}{6 t+5}\right)$.
(II) By Lemma 5.2(1) $\left(\left\lceil\left[\frac{36 t+30}{24 t+20}\right\rceil \leq \frac{24 t+20}{12 t+10}\right)\right.$.
(III) Since $\left\{\widetilde{M}_{0}\right\}_{0}=[0,3 t+1] \cup[9 t+7,12 t+10] \cup[-(12 t+9),-(3 t+3)]$, $\left\{\widetilde{M}_{0}\right\}_{1}=[9 t+8,12 t+9]$ and $\operatorname{tail}(\widetilde{M})=-(9 t+8)_{0}$, we have $M \cap F(M)=\emptyset$, $\left\{\widetilde{M}_{0}\right\} \cap f\left(\left\{\widetilde{M}_{0}\right\}+12 t+10\right)=\emptyset$.
(IV) We only verify the case: t even. Since $\left\{\widetilde{N}_{0}\right\}_{0}=[-(9 t+8), 6 t+5] \backslash\{-(9 t+$ 5), 1$\},\left\{\widetilde{N}_{0}\right\}_{1}=[6 t+8,9 t+11] \backslash\{9 t+9\}$ and $\operatorname{tail}\left\{\widetilde{N}_{0}\right\}=-(9 t+8)_{0}$.

Theorem 6.5 There exists a $6 q-S C M D(10 q+1)$ for $q \equiv 5(\bmod 6)$.
Construction Let $q=6 t+5$ and $t \geq 0$. Construct a $(36 t+30)-S C M D(60 t+51)=$ (X, \mathcal{B}) as follows. When $t=0$, a $30-S C M D(51)$ is given in Appendix 4. Below, suppose $t>0$. The point set is $X=\left(Z_{30 t+25} \times Z_{2}\right) \cup\{\infty\}$, the block set \mathcal{B} consists of three parts:
(I) $6 t+5$-partite $D C:(6 t+5)-D C\left(A_{01}\left(R_{i}\right)\right), 0 \leq i \leq\left\lfloor\frac{t}{2}\right\rfloor$,

$$
\left.(6 t+5)-D C\left(A_{10}\left(R_{j}\right)\right), 0 \leq j \leq\left\lceil\frac{t}{2}\right\rceil-1\right)
$$

where $R_{0}=\{1,2,3,4,5,8\}, R_{i}=\{6 i, 6 i+1,6 i+3,6 i+4,6 i+5,6 i+8\}, i \geq 1$;
(II) $S D C(M)$, where $M=\left((-1)^{t-1} A_{0}[1,15 t+12], a_{01}, b_{10},(-1)^{t} A_{0}[1,3 t]\right)$;
(III) $C D C_{\infty}(N)$, where $N=\left(M A_{01}[c, 15 t+12], P,-A_{0}[3 t+1,15 t+12]^{-1}\right)$,

$$
\begin{aligned}
& (a, b, c)=\left\{\begin{array}{ll}
(3 t+7,3 t+6,3 t+9) & t \text { even } \\
(3 t+3,3 t+4,3 t+6) & t \text { odd }
\end{array},\right. \text { and } \\
& P= \begin{cases}-A_{01}([3 t, 3 t+4] \backslash\{3 t+2\})^{-1} & t \text { even } \\
-A_{01}[3 t+3,3 t+4]^{-1} & t \text { odd }\end{cases}
\end{aligned}
$$

Proof The number of blocks is $(t+1) \times 5 \times 2+(30 t+25) \times(2+1)=100 t+85$, as expected. The correctness of each orbit is shown as follows.
(I) By Lemma $5.2\left(\left\lceil\frac{36 t+30}{12 t+10}\right\rceil \leq \frac{30 t+25}{6 t+5}\right)$.
(II) We only verify the case: t even. Since $\left\{\widetilde{M}_{0}\right\}_{0}=\left[-\left(\frac{15}{2} t+6\right), \frac{15}{2} t+6\right] \cup[12 t+$ 19, 15t +19$],\left\{\widetilde{M}_{0}\right\}_{1}=\left\{\frac{21}{2} t+13\right\}$ and tail $\left\{\widetilde{M}_{0}\right\}=(12 t+19)_{0}$.
(III) We only verify the case: t even. Since $\left\{\widetilde{N}_{0}\right\}_{0}=[-(15 t+12), 0] \cup[3 t+5,9 t+$ $10] \cup[12 t+11,15 t+12],\left\{\widetilde{N}_{0}\right\}_{1}=[3 t+9,15 t+12] \cup([-(15 t+12),-(15 t+8)] \backslash\{-(15 t+9)\}$ and $\operatorname{tail}\left(\bar{N}_{0}\right)=(12 t+11)_{0}$.

Theorem 6.6 There exists a $6 q-S C M D(11 q)$ for $q \equiv 5(\bmod 6)$.

Construction

(Case 1) Let $q=12 t+5$ and $t \geq 0$. Construct a $(72 t+30)-S C M D(132 t+55)=(X, \mathcal{B})$ as follows.
When $t=0$, a $30-S C M D(55)$ is given in Appendix 5. Below, suppose $t>0$. The point set is $X=\left(Z_{66 t+27} \times Z_{2}\right) \cup\{\infty\}$, the block set \mathcal{B} consists of three parts:
(I) 3-partite $D C: 3-D C\left(A_{01}[1,24 t+9],(32 t+13)_{10}\right)$;
(II) $S D C(M)$, where $M=\left(P,(-1)^{t-1}(32 t+13)_{01}, Q\right)$;
(III) $C D C_{\infty}(N)$, where $N=\left(A_{0}[1, a], M A_{01}([24 t+10,33 t+13] \backslash\{32 t+13\})\right.$,
$\left.A_{01}[b, 24 t+9]\right)$,

$$
\begin{gathered}
(a, b)=\left\{\begin{array}{ll}
(33 t+12,3 t) & t \text { even } \\
(32 t+13,3 t+1) & t \text { odd }
\end{array}\right. \text { and } \\
(P, Q)= \begin{cases}\left.\left((33 t+13)_{0},-A_{0}[1,33 t+13]\right), A_{0}[1,3 t-1]^{-1}\right) & t \text { even } \\
\left(-A_{0}[1,33 t+13],-A_{0}[1,3 t]^{-1}\right) & t \text { odd }\end{cases}
\end{gathered}
$$

(Case 2) Let $q=12 t+11$ and $t \geq 0$. Construct a $(72 t+66)-S C M D(132 t+121)=$ (X, \mathcal{B}) as follows. The point set is $X=\left(Z_{66 t+60} \times Z_{2}\right) \cup\{\infty\}$, the block set \mathcal{B} consists of three parts:
(I) 6-partite $D C: 6-D C\left(A_{01}[2,12 t+11],-(5 t+5)_{0}\right)$,

$$
6-D C\left(A_{10}[2,12 t+11],-(5 t+5)_{1}\right)
$$

(II) $S D C(R)$, where $R=\left(A_{01}[12 t+12,30 t+26], 1_{10}, A_{01}[12 t+12,30 t+27]^{-1}\right)$;
(III) $F D C_{\infty}\left((33 t+30)_{0}, N,(33 t+30)_{[01]^{t}}, F^{-1}(N),(33 t+30)_{1},(30 t+27)_{10}\right)$, $F D C_{\infty}\left(-1_{01}, \bar{N},(33 t+30)_{\left[10^{t}\right.}, F^{-1}(\bar{N}), 1_{01},(30 t+27)_{10}\right)$, where $N=\left(A_{0}([1,33 t+29] \backslash\{5 t+5\}),(-1)^{t} A_{01}[30 t+28,33 t+29]\right),[01]^{t}=01(t$ even $)$ or 10 (t odd).

Proof The number of blocks is

$$
\begin{cases}(22 t+9) \times 2+(66 t+27) \times(2+1)=242 t+99 & (\text { case } 1) \\ (11 t+10) \times 4+(66 t+60) \times(2+1)=242 t+220 & (\text { case } 2)\end{cases}
$$

as expected. For case 1, the correctness of each orbit is shown as follows.
(I) By Lemma $5.2(1)\left(\left\lceil\frac{72 t+30}{6}\right\rceil \leq \frac{66 t+27}{3}\right)$.
(II) We only verify the case: t even. Since $\{\widetilde{M}\}_{0}=\left[-\left(\frac{33}{2} t+7\right), \frac{33}{2} t+6\right] \cup[19 t+$ $\left.7, \frac{41}{2} t+6\right] \cup\{-(33 t+13)\},\{\widetilde{M}\}_{1}=\left[\frac{35}{2} t+7,19 t+6\right], h e a d(\widetilde{M})=-(33 t+13)_{0}$ and $\operatorname{tail}(\widetilde{M})=(19 t+7)_{0}$.
(III) We only verify the case: t even. Since $\left\{\widetilde{N}_{0}\right\}_{0}=\left(\left[-(33 t+13), \frac{33}{2} t+\right.\right.$ $\left.6] \backslash\left\{-\left(\frac{41}{2} t+8\right)\right\}\right) \cup[30 t+11,33 t+13],\left\{\widetilde{N}_{0}\right\}_{1}=\left[\frac{15}{2} t+4, \frac{33}{2} t+6\right] \cup\left[-\left(\frac{45}{2} t+11\right),-(12 t+7)\right]$
and $\operatorname{tail}\left(\widetilde{N}_{0}\right)=(30 t+11)_{0}$.
As for case 2, the correctness of each orbit is shown as follows.
(I) By Lemma $5.2(1)\left(\left\lceil\frac{72 t+66}{12}\right\rceil \leq \frac{66 t+60}{6}\right)$.
(II) Since $\left\{\widetilde{R}_{0}\right\}_{0}=[-(9 t+7), 0] \cup[21 t+20,30 t+28],\left\{\widetilde{R}_{0}\right\}_{1}=[-(24 t+20),-(15 t+$ 13) $] \cup[12 t+12,21 t+19]$, and $\operatorname{tail}\left(\tilde{R}_{0}\right)=(30 t+28)_{0}$.
(III) By Lemma 5.1(4).

Theorem 6.7 There exists a $6 q-S C M D(7 q+1)$ for $q \equiv 5(\bmod 6)$.

Construction

(Case 1) Let $q=12 t+5$ and $t \geq 0$. Construct a $(72 t+30)$-SCMD $(84 t+36)=(X, \mathcal{B})$ as follows.
When $t=0$, a $30-S C M D(36)$ is given in Appendix 6. Below, suppose $t>0$. The point set is $X=Z_{42 t+18} \times Z_{2}$, the block set \mathcal{B} consists of three parts:
(I) 6-partite $D C: 6-D C\left(A_{01}[9 t+5,21 t+8],-(t+1)_{0}\right)$;
(II) $F D C\left(N,(21 t+9)_{01}\right)$, where $N=\left(A_{0}[t+1,21 t+9], P, A_{0}[1, t]^{-1}\right)$;
(III) $S D C(M)$, where $M=\left(Q, A_{01}([1,21 t+8] \backslash[9 t+5,15 t+5])^{-1}\right)$,

$$
\begin{gathered}
P=\left\{\begin{array}{ll}
\left(-A_{01}[2,15 t+5], 1_{0}\right) & t \text { even } \\
-A_{01}[1,15 t+5] & t \text { odd }
\end{array}\right. \text { and } \\
Q= \begin{cases}\left(1_{10},-A_{0}([2,21 t+8] \backslash\{t+1\})\right. & t \text { even } \\
-A_{0}([1,21 t+8 \backslash\{t+1\}) & t \text { odd } .\end{cases}
\end{gathered}
$$

(Case 2) Let $q=12 t+11$ and $t \geq 0$. Construct a $(72 t+66)-S C M D(84 t+78)=(X, \mathcal{B})$ as follows. The point set is $X=Z_{42 t+39} \times Z_{2}$, the block set \mathcal{B} consists of three parts:
(I) 3-partite $D C: 3-D C\left(A_{01}[2, a],-A_{0}[1, b]^{-1},-(16 t+15)_{0}\right)$,

$$
3-D C\left(A_{10}[2, a],-A_{1}[1, b]^{-1},-(16 t+15)_{1}\right) ;
$$

(II) $S D C(D)$, where $D=\left(A_{0}[3 t+4,21 t+19] \backslash\{16 t+15\}\right), c_{01}$,

$$
\begin{aligned}
&\left.A_{1}[b+1,16 t+14]^{-1}, \quad c_{10},(-1)^{t-1} A_{0}[16 t+16,21 t+19]^{-1}, R\right), \\
&(a, b, c)=\left\{\begin{array}{ll}
(21 t+19,3 t+3,1) & t \text { even } \\
(21 t+18,3 t+4,-(42 t+40)) & t \text { odd }
\end{array}\right. \text { and } \\
& R= \begin{cases}\emptyset & t \text { even } \\
\left(-1_{01},-11_{10}\right) & t \text { odd } .\end{cases}
\end{aligned}
$$

Proof The number of blocks is

$$
\begin{cases}(7 t+3) \times 2+(42 t+18) \times 2=98 t+42 & (\text { case } 1) \\ (14 t+13) \times 2 \times 2+(42 t+39)=98 t+91 & (\text { case } 2)\end{cases}
$$

as expected. For case 1 , the correctness of each orbit is shown as follows.
(I) By Lemma $5.2(1)\left(\left\lceil\frac{72 t+30}{12}\right\rceil \leq \frac{42 t+18}{6}\right)$.
(II) We only verify the case: t even. Since $\left\{\widetilde{N}_{0}\right\}_{0}=[-(10 t+4), 0] \cup\left[t+1, \frac{39}{2} t+8\right]$, $\left\{\widetilde{N}_{0}\right\}_{1}=\left[\frac{7}{2} t+2,11 t+3\right]$ and $\operatorname{tail}\left(\widetilde{N}_{0}\right)=(19 t+8)_{0}$.
(III) We only verify the case: t even. Since $\{\widetilde{M}\}_{0}=\left(\left[-\left(\frac{21}{2} t+4\right), 21 t+\right.\right.$ $\left.9] \backslash\left\{-1, \frac{t}{2}\right\}\right) \cup[-(21 t+8),-(18 t+10)],\{\widetilde{M}\}_{1}=\left[-(18 t+9),-\left(\frac{21}{2} t+6\right)\right] \cup\{-1\}$,
$\operatorname{head}(\widetilde{M})=-1_{1}$ and $\operatorname{tail}(\widetilde{M})=-(18 t+9)_{1}$.
As for case 2, the correctness of each orbit is shown as follows.
(I) Let $S=\left(A_{01}[2,21 t+19],-A_{0}[1,3 t+3]^{-1}\right)$, then $\left.\{\widetilde{S}\}_{0}=\left[-\frac{27}{2} t+12\right), 0\right]$, $\{\widetilde{S}\}_{1}=\left[2, \frac{21}{2} t+10\right]$. Obviously they are not congruent modulo $14 t+13$ and $\operatorname{tail}(\widetilde{S})-$ $(16 t+15)=14 t+13$.
(II) We only verify the case: t even. Since $\left\{\widetilde{D}_{0}\right\}_{0}=[-(9 t+8), 0] \cup\left(\left[\frac{t}{2}+\right.\right.$ $1,12 t+11] \backslash\{3 t+3\}) \cup[19 t+18,21 t+19] \cup\left[-(21 t+19),-\left(\frac{41}{2} t+19\right],\left\{\widetilde{D}_{0}\right\}_{1}=\right.$ $\left[-\left(\frac{41}{2} t+18\right),-(14 t+13)\right] \cup\left[12 t+12, \frac{37}{2}+17\right]$, and $\operatorname{tail}\left(\widetilde{D}_{0}\right)=(19 t+18)_{0}$.

Theorem 6.8 There exists a $6 q-S C M D(13 q+1)$ for $q \equiv 5(\bmod 6)$.

Construction

(Case 1) Let $q=12 t+5$ and $t \geq 0$. Construct a $(72 t+30)-S C M D(156 t+66)=(X, \mathcal{B})$ as follows.
When $t=0$, a $30-S C M D(66)$ is given in Appendix 7. Below, suppose $t>0$. The point set is $X=Z_{78 t+33} \times Z_{2}$, the block set \mathcal{B} consists of three parts:
(I) 3-partite $D C: 3-D C\left(A_{01}[1,24 t+9],-(38 t+16)_{10}\right)$,

$$
3-D C\left(A_{10}[1,24 t+9],-(38 t+16)_{01}\right)
$$

(II) $S D C(M)$, where $M=\left(A_{0}[a, 39 t+14]^{-1},-b_{0},-(39 t+15)_{0}\right.$,

$$
\left.A_{0}[3 t+3, a-2]^{-1}, 1_{0}\right)
$$

(III) $C D C(N)$, where $N=\left(M A_{01}([24 t+10,39 t+16] \backslash\{38 t+16\})\right.$,

$$
\left.-A_{0}[2,39 t+16]^{-1},(39 t+16)_{0}, A_{0}[3,3 t+2]^{-1}, c_{0},-(a-1)_{0}\right) \text { and }
$$

$$
(a, b, c)= \begin{cases}(6 t+4,1,2) & t \text { even } \\ (6 t+5,2,-1) & t \text { odd }\end{cases}
$$

(Case 2) Let $q=12 t+11$ and $t \geq 0$. Construct a $(72 t+66)-S C M D(156 t+144)=$ (X, \mathcal{B}) as follows. The point set is $X=Z_{78 t+72} \times Z_{2}$, the block set \mathcal{B} consists of four parts:
(1) 6-partite $D C: 6-D C\left(A_{01}[2,12 t+11],-(7 t+7)_{0}\right)$;
(II) 2-partite $D C: 2-D C\left(A_{0}([3 t+4,39 t+35] \backslash\{7 t+7\}), a_{01}, b_{10}\right)$,

$$
2-D C\left(-A_{0}([3 t+4,39 t+35] \backslash\{7 t+7\}),-b_{01},-a_{10}\right) ;
$$

(III) $F D C\left(P,(39 t+36)_{01}\right)$, where $P=\left(M A_{01}[21 t+20,39 t+35]^{-1}\right)$;
(IV) $S D C(Q)$, where $Q=\left(A_{0}[1,3 t+3],-M A_{01}([12 t+12,21 t+19] \backslash\{18 t+16\})\right.$, $\left.A_{01}[2,12 t+11]^{-1},(39 t+36)_{0},(7 t+7)_{0},-A_{0}[1,3 t+3]^{-1}\right)$ and

$$
(a, b)=\left\{\begin{array}{ll}
(1,18 t+16) & t \text { even } \\
(18 t+16,1) & t \text { odd }
\end{array} .\right.
$$

Proof The number of blocks is

$$
\left\{\begin{array}{l}
(26 t+11) \times 2 \times 2+(78 t+33) \times(2+1)=338 t+143 \quad(\text { case } 1) \\
(13 t+12) \times 2+(78 t+72) \times(2+1+1)=338 t+312 \quad(\text { case } 2)
\end{array},\right.
$$

as expected. For case 1, the correctness of each orbit is shown as follows.
(I) By Lemma 5.2(1) $\left(\left\lceil\frac{72 t+30}{6}\right\rceil \leq \frac{78 t+33}{3}\right)$.
(II) We only verify the case: t even. Since $\widetilde{N}_{0}=\left[0, \frac{33}{2} t+5\right] \cup\left[\frac{45}{2} t+8,39 t+14\right] \cup$ $\left[-\left(\frac{33}{2} t+7\right),-(15 t+6)\right] \cup\left[-(12 t+4),-\left(\frac{21}{2} t+5\right)\right]$ and $\operatorname{tail}\left(\widetilde{N}_{0}\right)=-(15 t+6)_{0}$.
(III) We only verify the case: t even. Since $\{\widetilde{M}\}_{0}=\left([-(39 t+16), 0] \backslash\left\{-\left(\frac{69}{2} t+\right.\right.\right.$ 14) $\}) \cup[24 t+11,39 t+16] \cup\left(\left[\frac{9}{2} t+1, \frac{15}{2} t+3\right] \backslash\{6 t+2\}\right),\{\widetilde{M}\}_{1}=\{-(39 t+16)\} \cup$ $([24 t+10,39 t+16] \backslash\{31 t+13\})$ and $\operatorname{head}(\widetilde{M})=\operatorname{tail}\{\widetilde{M}\}=0_{0}$.
As for case 2, the correctness of each orbit is shown as follows.
(I) By Lemma $5.2(1)\left(\left\lceil\frac{72 t+66}{12}\right\rceil \leq \frac{78 t+72}{6}\right)$.
(II) By Lemma 5.3(3).
(III) Since $\left\{\widetilde{P}_{0}\right\}_{0}=[0,18 t+16],\left\{\widetilde{P}_{0}\right\}_{1}=[-(21 t+19),-(12 t+12)] \cup[30 t+$ $28,39 t+35]$ and $\operatorname{tail}\left\{\widetilde{P}_{0}\right\}=(18 t+16)_{0}$.
(IV) We only verify the case: t even. Since $\left\{\widetilde{Q}_{0}\right\}_{0}=\left[-(36 t+33),-\left(\frac{51}{2} t+25\right] \cup\right.$ $\left[-\left(\frac{3}{2} t+1\right), 6 t+5\right] \cup\left[\frac{35}{2} t+15, \frac{41}{2} t+18\right] \cup\left\{\frac{27}{2} t+11\right\},\left\{\widetilde{Q}_{0}\right\}_{1}=\left[-\left(\frac{51}{2} t+23\right),-\left(\frac{21}{2} t+\right.\right.$ $10)] \backslash\left\{-\left(\frac{27}{2} t+12,-\left(\frac{33}{2} t+16\right)\right\}\right.$ and $\operatorname{tail}\left(\widetilde{Q}_{0}\right)=(19 t+16)_{0}$.

Theorem 6.9 There exists a $6 q-S C M D(13 q)$ for $q \equiv 1(\bmod 6)$. Construction
(Case 1) Let $q=12 t+7$ and $t \geq 0$. Construct a $(72 t+42)-S C M D(156 t+91)=(X, \mathcal{B})$ as follows. The point set is $X=\left(Z_{78 t+45} \times Z_{2}\right) \cup\{\infty\}$, the block set \mathcal{B} consists of three parts:
(I) 3-partite $D C: 3-D C\left(A_{01}[1,24 t+13],-(38 t+22)_{10}\right)$,

$$
3-D C\left(A_{10}[1,24 t+13],-(38 t+22)_{01}\right)
$$

(II) $C D C_{\infty}\left(A_{0}[1,39 t+22],(-1)^{t-1} A_{0}[6 t+4,39 t+21]^{-1}\right)$;
(III) $S D C(P)$, where $P=\left((-1)^{t}(39 t+22)_{0},-A_{0}[1,6 t+3]\right.$,

$$
M A_{01}([24 t+14,39 t+22] \backslash\{38 t+22\})
$$

(Case 2) Let $q=12 t+1$ and $t \geq 1$. Construct a $(72 t+6)-S C M D(156 t+13)=$ (X, \mathcal{B}) as follows. The point set is $\bar{X}=\left(Z_{78 t+6} \times Z_{2}\right) \cup\{\infty\}$, the block set \mathcal{B} consists of three parts:
(I) 3-partite $D C: 3-D C\left(A_{01}[2,24 t+2],-(38 t+4)_{10}\right)$, $3-D C\left(A_{10}[2,24 t+2],-(38 t+4)_{01}\right) ;$
(II) $S D C(Q)$, where $Q=\left(A_{0}[1,4 t],(24 t+3)_{01},-M A_{10}[24 t+4,38 t+3], 1_{10}\right.$,

$$
\left.A_{0}[1,4 t]^{-1}\right)
$$

(III) $F D C_{\infty}\left((39 t+3)_{0}, N,(39 t+3)_{01}, F^{-1}(N),(39 t+3)_{1},(24 t+3)_{10}\right)$, $F D C_{\infty}\left(-1_{01}, \bar{N},(39 t+3)_{10}, F^{-1}(\bar{N}), 1_{01},(24 t+3)_{10}\right)$,
where $N=\left(A_{0}[4 t+1,39 t+2],(-1)^{t} A_{01}[38 t+5,39 t+2]\right)$.
Proof The number of blocks is

$$
\begin{cases}(26 t+15) \times 2 \times 2+(78 t+45) \times(2+1)=338 t+195 & (\text { case } 1) \\ (26 t+2) \times 2 \times 2+(78 t+6) \times(1+1+1)=338 t+26 & (\text { case } 2)\end{cases}
$$

as expected. For case 1 , the correctness of each orbit is shown as follows.
(I) By Lemma $5.2(1)\left(\left\lceil\frac{72 t+42}{6}\right\rceil \leq \frac{78 t+45}{3}\right)$.
(II) By Lemma 5.5.
(III) We only verify the case: t even. Since $\{\tilde{P}\}_{0}=[-(18 t+10), 3 t+1] \cup\{-(39 t+$ $22)\},\{\widetilde{P}\}_{1}=[21 t+12,36 t+21] \backslash\{28 t+16,29 t+17\}$, head $(\widetilde{P})=-(39 t+22)_{0}$ and
$\operatorname{tail}(\tilde{P})=-(18 t+10)_{0}$.
As for case 2, the correctness of each orbit is shown as follows.
(I) By Lemma 5.2(1).
(II) Since $\left\{\widetilde{Q}_{0}\right\}_{0}=[-9 t, 2 t] \cup[-(18 t-1),-11 t] \cup[-(39 t+2),-(38 t+2)] \cup[36 t+$ $4,39 t+3],\left\{\widetilde{Q}_{0}\right\}_{1}=[22 t+3,36 t+3]$ and $\operatorname{tail}\left(\widetilde{Q}_{0}\right)=(38 t+4)_{0}$.
(III) By Lemma 5.1(4).

Theorem 6.10 There exists a $6 q-S C M D(19 q)$ for $q \equiv 1(\bmod 6)$.

Construction

(Case 1) Let $q=12 t+1$ and $t \geq 1$. Construct a $(72 t+6)-S C M D(228 t+19)=(X, \mathcal{B})$ as follows. The point set is $X=\left(Z_{114 t+9} \times Z_{2}\right) \cup\{\infty\}$, the block set \mathcal{B} consists of four parts:
(I) 3-partite $D C: 3-D C\left(A_{01}[1,24 t+1],-(50 t+4)_{10}\right)$,

$$
3-D C\left(A_{10}[1,24 t+1],-(50 t+4)_{01}\right)
$$

(II) $C D C(N)$, where $N=\left(M A_{01}([24 t+2,57 t+4] \backslash\{50 t+4\})\right.$,

$$
\left.-A_{0}[1,6 t+1]^{-1},(36 t+3)_{0}\right)
$$

(III) $C D C_{\infty}(R)$, where $R=\left((-1)^{t-1}(57 t+4)_{0}, A_{0}[6 t+2,57 t+4]\right.$,

$$
\left.(-1)^{t} A_{0}[36 t+4,57 t+3]^{-1}\right)
$$

(IV) $S D C\left(A_{0}[1,36 t+2]\right)$.
(Case 2) Let $q=12 t+7$ and $t \geq 0$. Construct a $(72 t+42)-S C M D(228 t+133)=$ (X, \mathcal{B}) as follows. When $t=0$, a $42-S C M D(133)$ is given in Appendix 8. Below, suppose $t>0$. The point set is $X=\left(Z_{114 t+66} \times Z_{2}\right) \cup\{\infty\}$, the block set \mathcal{B} consists of five parts:
(I) 3-partite $D C: 3-D C\left(A_{01}[1,24 t+13],-(50 t+29)_{10}\right)$,

$$
3-D C\left(A_{10}[1,24 t+13],-(50 t+29)_{01}\right)
$$

(II) 2-partite $D C: 2-D C\left(A_{0}[1,36 t+19],-(51 t+29)_{01},-(24 t+14)_{10}\right)$;
(III) $F D C\left(-A_{0}[6 t+7,42 t+26],(57 t+33)_{01}\right)$;
(IV) $C D C_{\infty}(M)$, where $M=\left((24 t+14)_{01},-M A_{10}([24 t+15,57 t+32] \backslash\{50 t+\right.$

$$
\left.29,51 t+29\}),-(51 t+29)_{10},-A_{0}[1,6 t+6]\right)
$$

(V) $S D C(Q)$, where $Q=\left(-A_{0}[36 t+20,57 t+33],(-1)^{t} A_{0}[42 t+27,57 t+32]^{-1}\right)$.

Proof The number of blocks is

$$
\begin{cases}(38 t+3) \times 2 \times 2+(114 t+9) \times(2+2+1)=722 t+57 & (\text { case } 1) \\ (38 t+22) \times 2 \times 2+(114 t+66) \times(2+2+1)=722 t+418 & (\text { case } 2)\end{cases}
$$

as expected. For case 1, the correctness of each orbit is shown as follows.
(I) By Lemma $5.2(1)\left(\left\lceil\frac{72 t+6}{6}\right\rceil \leq \frac{114 t+9}{3}\right)$.
(II) Since $\{\widetilde{N}\}_{0}=[-(39 t+3), \overline{0}],\left\{\frac{3}{N}\right\}_{1}=([24 t+2,57 t+4] \backslash\{37 t+3,44 t+4\}) \cup$ $\{-(57 t+4)\}$ and head $(\widetilde{N})=\operatorname{tail}(\widetilde{N})=0_{0}$.
(III) We only verify the case: t even. Since $\{\widetilde{R}\}=\left(\left[-\left(\frac{73}{2} t+2\right), 0\right] \backslash\left\{-\left(\frac{51}{2} t+\right.\right.\right.$ 2) $\}) \cup[6 t+2,42 t+3] \cup\{57 t+4\}$, head $(\widetilde{R})=(57 t+4)_{0}$ and $\operatorname{tail}(\widetilde{R})=(42 t+3)_{0}$.
(IV) It is trivial by Lemma $5.1(1)$.

As for case 2, the correctness of each orbit is shown as follows.
(I) By Lemma 5.2(1) $\left(\left\lceil\frac{72 t+42}{6}\right\rceil \leq \frac{114 t+66}{3}\right)$.
(II) By Lemma 5.3(2).
(III) It is trivial by Lemma 5.1(1).
(IV) Since $\{\widetilde{M}\}_{0}=[-(9 t+7),-(3 t+1)] \cup([-(45 t+26),-(12 t+7)] \backslash\{-(25 t+$ 15), $\left.\left.-\left(\frac{57}{2} t+17\right),-(32 t+19)\right\}\right),\{\widetilde{M}\}_{1}=[12 t+7,45 t+25] \backslash\left\{\frac{51}{2} t+14, \frac{63}{2} t+18\right\}$, $\operatorname{head}(\widetilde{M})=-(12 t+7)_{0}$ and $\operatorname{tail}(\widetilde{M})=-(3 t+1)_{0}$.
(V) Since $\widetilde{Q}_{0}=[-(54 t+29),-(36 t+20)] \cup[0,18 t+10]$ and $\operatorname{tail}(\widetilde{Q})=(18 t+10)_{0}$.

7 Constructions of ISCMD

Theorem 7.1 There exists a $6 q-I S C M D(6 q+2 q+1,2 q+1)$ for $q \equiv 1(\bmod 6)$.

Construction

(Case 1) Let $q=12 t+1$ and $t \geq 1$. Construct a $(72 t+6)-I S C M D(96 t+9,24 t+3)=$ (X, \mathcal{B}) as follows. The point set is $X=\left(Z_{36 t+3} \times Z_{2}\right) \cup\left\{\infty_{1}, \ldots, \infty_{24 t+3}\right\}$, the block set \mathcal{B} consists of three parts:
(I) $(36 t+3)$-partite $D C:(36 t+3)-D C\left(A_{01}[i, i+1]\right), i \in[1,6 t+1]_{2}$,

$$
(36 t+3)-D C\left(A_{10}[j, j+1]\right), j \in[1,6 t-1]_{2}
$$

(II) $S D C\left(-(15 t+2)_{0}, A_{0}[1,6 t+2], M A_{01}[6 t+3,18 t+1]\right.$,

$$
\left.-A_{01}[6 t+1,6 t+2]^{-1},-A_{0}[1,6 t-1]^{-1}\right)
$$

(III) $C D C_{\infty_{1, \ldots, 24 t+3}}\left(A_{0}([6 t, 18 t] \backslash\{15 t+2\}),-A_{0}([6 t+3,18 t+1] \backslash\{15 t+2\})^{-1}\right.$,

$$
\left.(15 t+2)_{0},(18 t+1)_{0}\right)
$$

(Case 2) Let $q=12 t+7$ and $t \geq 0$. Construct a (72t+42)-ISCMD $96 t+57,24 t+$ $15)=(X, \mathcal{B})$ as follows. The point set is $X=\left(Z_{36 t+21} \times Z_{2}\right) \cup\left\{\infty_{1}, \ldots, \infty_{24 t+15}\right\}$, the block set \mathcal{B} consists of three parts:
(I) $(36 t+21)$-partite $D C:(36 t+21)-D C\left(A_{01}[i, i+1]\right), i \in[1,6 t+3]_{2}$, $(36 t+21)-D C\left(A_{10}[i, i+1]\right), \quad i \in[1,6 t+3]_{2} ;$
(II) $S D C\left(-(15 t+9)_{0}, A_{0}[1,6 t+4], M A_{01}[6 t+5,18 t+10],-A_{0}[1,6 t+3]^{-1}\right)$;
(III) $C D C_{\infty, \ldots, 24 t+15}\left(A_{0}([6 t+4,18 t+9] \backslash\{15 t+9\})\right.$,

$$
\left.A_{0}([6 t+5,18 t+10] \backslash\{15 t+9\})^{-1},(15 t+9)_{0},-(18 t+10)_{0}\right)
$$

Proof The number of blocks is

$$
\begin{cases}(36 t+3) \times(2+1)+(6 t+1) \times 2=120 t+11 & \text { (case 1) } \\ (36 t+21) \times(2+1)+(6 t+4) \times 2=120 t+71 & (\text { case } 2)\end{cases}
$$

as expected. The correctness of each orbit is shown as follows.
(I) It is trivial.
(II) By Lemma 5.4(1)(2).
(III) By Lemma 5.6.

Theorem 7.2 There exists a $6 q-I S C M D(6 q+2 q, 2 q)$ for $q \equiv 5(\bmod 6)$.

Construction

(Case 1) Let $q=12 t+5$ and $t \geq 0$. Construct a $(72 t+30)-I S C M D(96 t+40,24 t+$ $10)=(X, \mathcal{B})$ as follows. When $t=0$, a $30-I S C M D(40,10)$ is given in Appendix 9. Below, suppose $t>0$. The point set is $X=\left(Z_{36 t+15} \times Z_{2}\right) \cup\left\{\infty_{1}, \ldots, \infty_{24 t+10}\right\}$, the block set \mathcal{B} consists of three parts:
(I) $(36 t+15)$-partite $D C:(36 t+15)-D C\left(A_{01}[i, i+1]\right), i \in[1,6 t+1]_{2}$,

$$
(36 t+15)-D C\left(A_{10}[i, i+1]\right), i \in[1,6 t+1]_{2} ;
$$

(II) $S D C\left(-(15 t+7)_{0}, A_{0}[1,6 t+2], M A_{01}[6 t+3,18 t+7],-A_{0}[1,6 t+1]^{-1}\right)$;
(III) $C D C_{\infty_{1}, \ldots, 24 t+10}\left(A_{0}([6 t+2,18 t+6] \backslash\{15 t+7\})\right.$,

$$
\left.-A_{0}([6 t+3,18 t+7] \backslash\{15 t+7\})^{-1},(15 t+7)_{0},(18 t+7)_{0}\right) .
$$

(Case 2) Let $q=12 t+7$ and $t \geq 0$. Construct a (72t+66)-ISCMD $(96 t+88,24 t+$ $22)=(X, \mathcal{B})$ as follows. The point set is $X=\left(Z_{36 t+33} \times Z_{2}\right) \cup\left\{\infty_{1}, \ldots, \infty_{24 t+22}\right\}$, the block set \mathcal{B} consists of three parts:
(I) $(36 t+33)$-partite $D C:(36 t+33)-D C\left(A_{01}[i, i+1]\right), i \in[1,6 t+5]_{2}$,

$$
(36 t+33)-D C\left(A_{10}[j, j+1]\right), j \in[1,6 t+3]_{2} ;
$$

(II) $S D C\left(-(15 t+15)_{0}, A_{0}[1,6 t+6], M A_{01}[6 t+7,18 t+16]\right.$,

$$
\left.-A_{01}[6 t+5,6 t+6]^{-1},-A_{0}[1,6 t+3]^{-1}\right)
$$

(III) $C D C_{\infty_{1, \ldots, 24 t+22}}\left(A_{0}([6 t+4,18 t+15] \backslash\{15 t+15\})\right.$,

$$
\left.A_{0}([6 t+7,18 t+16] \backslash\{15 t+15\})^{-1},(15 t+15)_{0},-(18 t+16)_{0}\right) .
$$

Proof The number of blocks is

$$
\left\{\begin{array}{l}
(36 t+15) \times(2+1)+(6 t+2) \times 2=120 t+49 \quad(\text { case } 1) \\
(36 t+33) \times(2+1)+(6 t+5) \times 2=120 t+109 \quad(\text { case } 2)
\end{array}\right.
$$

as expected. The correctness of each orbit is shown as follows.
(I) It is trivial.
(II) By Lemma 5.4(1)(2).
(III) By Lemma 5.6.

Lemma 7.3 Let q be prime power and $q \equiv 1(\bmod 6)$; then there are at least $\frac{q+1}{2}$ integers d_{j} such that $q \leq d_{j} \leq 3 q$ and $g c d\left(d_{j}, 6 q\right)=1$ for each j.

Proof Let $q=p^{n}$. Since $\phi\left(6 p^{n}\right)=2 p^{n-1}(p-1)$, there are $p^{n-1}(p-1)$ integers w_{j} such that $1 \leq w_{j} \leq 3 q$ and $\operatorname{gcd}\left(w_{j}, 6 q\right)=1$ for each j.
Let $S=\{d \mid \operatorname{gcd}(d, 6 q)=1, q \leq d \leq 3 q\}$. Note that $\phi\left(p^{n}\right)=p^{n-1}(p-1)$, so we have

$$
\begin{aligned}
|S| & =p^{n-1}(p-1)-\left\lfloor\phi\left(p^{n}\right)-\left(\left\lfloor\frac{p^{n}}{2}\right\rfloor+\left\lfloor\frac{p^{n}}{3}\right\rfloor\right)+\left(\left\lfloor\frac{p^{n}}{6}\right\rfloor+\left\lfloor\frac{p^{n}}{2 p}\right\rfloor+\left\lfloor\frac{p^{n}}{3 p}\right\rfloor\right)-\left\lfloor\frac{p^{n}}{6 p}\right\rfloor\right] \\
& =\left\lfloor\frac{p^{n}}{2}\right\rfloor+\left\lfloor\frac{p^{n}}{3}\right\rfloor-\left\lfloor\frac{p^{n}}{6}\right\rfloor-\left\lfloor\frac{p^{n}}{2 p}\right\rfloor-\left\lfloor\frac{p^{n}}{3 p}\right\rfloor+\left\lfloor\frac{p^{n}}{6 p}\right\rfloor \\
& =\frac{p^{n}-1}{2}+\frac{p^{n}-1}{3}-\frac{p^{n-1}}{6}-\left(\left\lfloor\frac{p^{n-1}}{2}\right\rfloor+\left\lfloor\frac{p^{n-1}}{3}\right\rfloor-\left\lfloor\frac{p^{n-1}}{6}\right\rfloor\right) \\
& =\frac{2}{3}\left(p^{n}-1\right)-\left(\left\lfloor\frac{p^{n-1}}{2}\right\rfloor+\left\lfloor\frac{p^{n-1}}{3}\right\rfloor-\left\lfloor\frac{p^{n-1}}{6}\right\rfloor\right) .
\end{aligned}
$$

Obviously, $p^{n-1} \equiv 1$ or $5(\bmod 6)$ when $p^{n} \equiv 1(\bmod 6)$.
If $p^{n-1} \equiv 1(\bmod 6)$, then

$$
\begin{aligned}
|S|-\frac{p^{n}+1}{2} & =\frac{2}{3}\left(p^{n}-1\right)-\left(\frac{p^{n-1}-1}{2}+\frac{p^{n-1}-1}{3}-\frac{p^{n-1}-1}{6}\right)-\frac{p^{n}+1}{2} \\
& =\frac{2}{3}\left(p^{n}-1\right)-\frac{2}{3}\left(p^{n-1}-1\right)-\frac{p^{n}+1}{2} \\
& =\frac{1}{6}\left[p^{n-1}(p-4)-3\right] \geq 0
\end{aligned}
$$

If $p^{n-1} \equiv 5(\bmod 6)$, then

$$
\begin{aligned}
|S|-\frac{p^{n}+1}{2} & =\frac{2}{3}\left(p^{n}-1\right)-\left(\frac{p^{n-1}-1}{2}+\frac{p^{n-1}-2}{3}-\frac{p^{n-1}-5}{6}\right)-\frac{p^{n}+1}{2} \\
& =\frac{1}{6}\left[p^{n-1}(p-4)-5\right] \geq 0
\end{aligned}
$$

Therefore, $|S| \geq \frac{p^{n}+1}{2}$ in both cases. The conclusion holds.
Theorem 7.4 There exists a $6 q-I S C M D(12 q+q, q)$, where q is prime power and $q \equiv 1(\bmod 6)$.
Construction Let $q=6 t+1$ and $t \geq 1$. Construct a $(36 t+6)-\operatorname{ISCMD}(78 t+$ $13,6 t+1)=(X, \mathcal{B})$ as follows. The point set is $X=\left(Z_{36 t+6} \times Z_{2}\right) \cup\left\{\infty_{1}, \ldots, \infty_{6 t+1}\right\}$, the block set \mathcal{B} consists of five parts:
(I) 6-partite $D C: 6-D C\left(A_{01}[1,6 t],(9 t+1)_{0}\right)$;
(II) $6 q-D C\left(d_{j}\right)$ and $6 q-D C\left(-d_{j}\right), 1 \leq j \leq 3 t$, where $q \leq d_{j} \leq 3 q$,

$$
d_{j} \neq 9 t+1, \operatorname{gcd}\left(d_{j}, 6 q\right)=1 \text { and } 1 \leq j \leq 3 t
$$

(III) $F D C\left(A_{0}[1,6 t-1],-(9 t+1)_{0}, A_{01}[6 t+1,18 t+2],(18 t+3)_{01}\right)$;
(IV) $S D C\left(A_{01}[1,18 t+2]^{-1}\right)$;
(V) $C D C_{\infty_{1}, \ldots, 6 t+1}\left(-A_{0}([1,18 t+3] \backslash\{S\}),(-1)^{t} A_{0}([6 t, 18 t+2] \backslash\{S\})^{-1}\right)$, where

$$
S=\left\{d_{1}, d_{2}, \cdots, d_{3 t}, 9 t+1\right\}
$$

Proof The number of blocks is $(6 t+1) \times 2+6 t \times 2+(36 t+6) \times 4=168 t+26$, as expected. The correctness of each orbit is shown as follows.
(I) By Lemma 5.2(1) ($\left.\int \frac{36 t+6}{12} \leq \frac{36 t+6}{6}\right)$.
(II) By Lemma 5.7.
(III) Let $P=\left(A[1,6 t-1],-(9 t+1), A_{01}[6 t+1,18 t+2]\right)$, then $\left\{\tilde{P}_{0}\right\}_{0}=[-(3 t-$ 1), $3 t] \cup[-(12 t+2),-(6 t+1)],\left\{\tilde{P}_{0}\right\}_{1}=[0,6 t]$, and $\operatorname{tail}(\tilde{P})=-(12 t+2)_{0}$. Obviously $P \cap F(P)=\emptyset$, and it is easy to see $\widetilde{P}_{0} \cap f\left(\widetilde{P}_{0}+18 t+3\right)=\emptyset$.
(IV) By Lemma 5.1(1), $N=A_{01}[1,18 t+2]^{-1}$ forms a $D P$.
(V) Let $\left.N=\left(-A_{0}([1,18 t+3]] \backslash\{S\}\right),(-1)^{t} A_{0}([6 t, 18 t+2] \backslash\{S\})^{-1}\right)$, then $\widetilde{N}_{0}=$ $(0,-1,1,-2, \cdots)=\left(c_{1}, b_{1}, c_{2}, b_{2}, \cdots\right)$. Obviously the sequences c_{i} and b_{i} are monotone increasing and decreasing respectively, and they are mutually distinct, so N forms a $D P$. Finally, when constructing $C D C_{\infty_{1}, \ldots, 6 t+1}$, we take $\left\langle\infty_{1}, 1_{1}, \infty_{2}, 2_{2}, \ldots,(6 t+\right.$ 1) $\left., \infty_{6 t+1}, \widetilde{N}_{0}\right\rangle$ as the base block of the corresponding block-orbit.

Theorem 7.5 There exists a $6 q-I S C M D(12 q+q+1, q+1)$ for $q \equiv 5(\bmod 6)$. Construction Let $q=6 t+5$ and $t \geq 0$. Construct a $(36 t+30)-$ ISCMD $(78 t+$ $66,6 t+6)=(X, \mathcal{B})$ as follows. The point set is $X=\left(Z_{36 t+30} \times Z_{2}\right) \cup\left\{\infty_{1}, \ldots, \infty_{6 t+6}\right\}$, the block set \mathcal{B} consists of five parts:
(I) $3-D C\left(A_{0}[1,12 t+9],(18 t+15)_{0}\right)$;
(II) $6 q-D C(-1)$;
(III) $F D C\left(A_{01}[1,18 t+14],(18 t+15)_{01}\right)$;
(IV) $S D C\left(A_{01}[1,18 t+14]^{-1}\right)$;
(V) $C D C_{\infty_{1}, \ldots, 6 t+6}\left(-(18 t+14)_{0}, A_{0}[2,18 t+14], A_{0}[12 t+10,18 t+13]^{-1}\right)$.

Proof The number of blocks is $(12 t+10) \times 2+1 \times 2+(36 t+30) \times 4=168 t+142$, as expected. The correctness of each orbit is shown as follows.
(I) By Lemma 5.1(1), $D=A_{0}[1,12 t+9]$ forms a $D P$, and $\widetilde{D}_{0}=[-(6 t+4), 6 t+5]$ is a interval with length $12 t+10$, so they are not congruent modulo $12 t+10$.
(II) It is trivial.
(III) It is trivial by Lemma 5.1(1).
(IV) It is trivial by Lemma 5.1(1).
(V) Let $N=\left(-(18 t+14)_{0}, A_{0}[2,18 t+14], A_{0}[12 t+10,18 t+13]^{-1}\right), \widetilde{N}_{0}=$ $([-(12 t+10), 12 t+10] \backslash\{1,-(9 t+7),-(9 t+8)\}) \cup\{18 t+14\}$. Obviously N forms a $D P$. Finally, when constructing $C D C_{\infty_{1}, \ldots, 6 t+6}$, we take $\left\langle\infty_{1}, 1_{1}, \infty_{2}, 2_{2}, \ldots,(6 t+\right.$ $\left.6)_{1}, \infty_{6 t+6}, \widetilde{N}_{0}\right\rangle$ as the base block of the corresponding block-orbit.

8 The proof of Theorem 1.3 and 1.4

By [7] and all the Theorems in sections 6 and 7, we have the following table (the block size is $6 q$):

$q \equiv(\bmod 6)$	$v \equiv(\bmod -)$	$S C M D(v)$	$I S C M D(v, h)$	$C S(v, 6 q, 1)$	Theorems
1	$2 q+1(6 q)$	$14 q+1$	$(8 q+1,2 q+1)$	$8 q+1$	$\begin{aligned} & 6.1 \\ & 7.1 \\ & {[7]} \\ & \hline \end{aligned}$
1	$4 q(6 q)$	$10 q$			6. 2
1	$5 q+1(6 q)$	$11 q+1$			6.3
5	$2 q(6 q)$	$8 q$	$(8 q, 2 q)$		$\begin{aligned} & \hline 6.4 \\ & 7.2 \end{aligned}$
5	$4 q+1(6 q)$	$10 q+1$			6.5
5	$5 q(6 q)$	$11 q$			6.6
5	$7 q+1(12 q)$	$7 q+1$			6.7
5	$q+1(12 q)$	$13 q+1$	$(13 q+1, q+1)$		$\begin{aligned} & 6.8 \\ & 7.5 \end{aligned}$
1	$q(12 q)$	$13 q$	* (13q, q)		$\begin{aligned} & \hline 6.9 \\ & 7.4 \end{aligned}$
1	$7 q(12 q)$	$19 q$		* $7 q$	$\begin{aligned} & 6.10 \\ & {[7]} \end{aligned}$

The proof of Theorem 1.3 is trivial by section 2, 3 and the above table. Theorem 1.4 is a consequence of Theorem 1.3.

The conclusion of Theorem 1.3 extends the existence results for $M D(v, k, 1)$ as well (refer to Theorem 1.1). Two possible exceptions in Theorem 1.3 correspond to the two "*"s in the table. For the first " $*$ ", the construction of Theorem 7.4, i.e. $6 q-I S C M D(13 q, q)$, holds only for odd prime powers $q=p^{m}(p \geq 3)$. For the second "*", the existence of a $C S(7 q, 6 q, 1)$ has not been completely settled. These two parts are still open.

References

[1] C.J. Colbourn and J.H. Dinitz, The CRC Handbook of Combinatorial Designs, CRC Press, Inc., 1996.
[2] C.J. Colbourn and A. Rosa, Directed and Mendelsohn triple systems, in Chapter 4 of Contemporary Design Theory, Wiley Interscience Publication (1992), 97136.
[3] Yanxun Chang, Guihua Yang and Qingde Kang, The spectrum of self-converse MTS, Ars Combinatoria, 44(1996), 273-281.
[4] Jie Zhang, The spectrum of simple self-converse $M T S(v, \lambda)$, Acta Mathematicae Applicatae Sinica 20(1997), 487-497.
[5] Qingde Kang, Xiuling Shan and Qiujie Sun, Self-converse Mendelsohn designs with block size 4 and 5, J. Combin. Designs 8(2000), 411-418.
[6] Qingde Kang, Self-converse Mendelsohn designs with block size $4 t+2$, J. Combin. Designs 7(1999), 283-310.
[7] Caikun Liu, Zhifen Guo and Qingde Kang, Some results for cycle system with block size $6 q$, Bulletin ICA $30(2000)$, 79-90.

Appendix

1. $42-S C M D(70)$

The point set is $X=Z_{35} \times Z_{2}$, the block set:
(I) 7-partite $D C: 7-D C\left(A_{01}[1,5],-8_{10}\right)$;
(II) $S D C\left(-A_{0}[1,17] \backslash\{11,12\},-16_{0}, 12_{0}, 7_{01},-6_{10}, 1_{0}\right)$;
(III) $C D C\left(M A_{01}[9,17],-A_{01}[1,8]^{-1}, 17_{0}, A_{0}[2,15]^{-1},-11_{0}\right)$.
2. $42-S C M D(78)$

The point set is $X=Z_{39} \times Z_{2}$, the block set:
(I) 3-partite $D C: 3-D C\left(A_{01}[1,13], 19_{10}\right)$;
(II) $S D C\left(-19_{0},-A_{0}[1,17],-A_{01}[14,15]^{-1}\right)$;
(III) $C D C\left(A_{0}[1,19], A_{01}[1,18]^{-1}, A_{01}[16,19]^{-1}, 18_{0}\right)$.
3. $30-S C M D(40)$

The point set is $X=Z_{20} \times Z_{2}$, the block set:
(I) 5-partite $D C: 5-D C\left(A_{01}[1,5], 1_{10}\right)$;
(II) 10-partite $D C: 10-D C\left(A_{01}[2,3],-1_{0}\right)$;
(III) $F D C\left(10_{0}, A_{0}[1,9],-A_{01}[4,5],-A_{01}[8,9], 10_{01}\right)$;
(IV) $S D C\left(A_{0}[2,9],-9_{01}, A_{10}[6,8],-A_{01}[6,7]\right)$.
4. $30-S C M D(51)$

The point set is $X=\left(Z_{25} \times Z_{2}\right) \cup\{\infty\}$, the block set:
(I) 5-partite $D C: 5-D C\left(A_{01}[1,5], 7_{01}\right)$;
(II) $S D C\left(-A_{0}[1,12],-A_{01}[1,2]\right)$;
(III) $C D C_{\infty}\left(30_{0}, A_{0}[1,12], M A_{01}[8,12],-A_{01}[6,7]^{-1}, A_{01}[4,6]\right)$.
5. 30-SCMD (55)

The point set is $X=\left(Z_{27} \times Z_{2}\right) \cup\{\infty\}$, the block set:
(I) 3 -partite $D C: 3-D C\left(A_{01}[1,9], 13_{10}\right)$;
(II) $S D C\left(13_{0},-A_{0}[1,13]\right)$;
(III) $C D C_{\infty}\left(A_{0}[1,12], M A_{01}[10,12],(13)_{01}, 9_{10}, A_{01}[4,8]^{-1}, A_{10}[1,3]\right)$.
6. $30-S C M D(36)$

The point set is $X=Z_{18} \times Z_{2}$, the block set:
(I) 6 -partite $D C: 6-D C\left(A_{01}[1,4],-1_{0}\right)$;
(II) $F D C\left(A_{0}[1,8], A_{01}[2,7]\right)$;
(III) $S D C\left(8_{01},-1_{10}, A_{01}[5,8],-A_{0}[2,9]^{-1}\right)$.
7. $30-S C M D(66)$

The point set is $X=Z_{33} \times Z_{2}$, the block set:
(I) 3-partite $D C: 3-D C\left(A_{01}[1,9],-16_{10}\right)$ and $3-D C\left(A_{10}[1,9],-16_{01}\right)$;
(II) $S D C\left(-15_{0},-1_{0}, A_{0}[4,14], 1_{0}\right)$;
(III) $C D C\left(M A_{01}[10,15],-A_{0}[2,16]^{-1}, 16_{0}, 2_{0},-3_{0}\right)$.
8. $42-S C M D(133)$

The point set is $X=\left(Z_{66} \times Z_{2}\right) \cup\{\infty\}$, the block set:
(I) 3partite $D C: 3-D C\left(A_{01}[1,13],-29_{10}\right)$ and $3-\mathrm{DC}\left(A_{10}[1,13],-29_{01}\right)$;
(II) $2-D C\left(A_{0}[1,19],-28_{01},-15_{10}\right)$;
(III) $F D C\left(-A_{0}[7,26], 33_{01}\right)$;
(IV) $C D C_{\infty}\left(M A_{01}\left([14,32] \backslash\{15,28\}, 15_{01}, 28_{10},-A_{0}[1,6]\right)\right.$;
(V) $S D C\left(-A_{0}[20,33], A_{0}[27,32]^{-1}\right)$.
9. $30-I S C M D(40,10)$

The point set is $X=\left(Z_{15} \times Z_{2}\right) \cup\left\{\infty_{1}, \ldots, \infty_{10}\right\}$, the block set:
(I) 15-partite $D C: 15-D C\left(1_{01},-2_{10}\right)$ and 15-DC $\left(1_{10},-2_{01}\right)$;
(II) $S D C\left(-7_{0}, A_{0}[1,2], M A_{01}[3,7],-1_{0}\right)$;
(III) $C D C_{\infty \infty_{1, \ldots, 10}}\left(A_{0}[2,6], A_{0}[3,7]^{-1}\right)$.

[^0]: *Research supported by NSFC Grant 19831050 and 19771028

