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Abstract 

In this paper, we develop a polynomial time algorithm to find out all 
the minilnum cyclic edge cutsets of a 3-regular graph, and therefore to 
determine the cyclic edge connectivity of a cubic graph. The algorithm is 
recursive, with complexity bounded by O(n31og2 n). The algorithm shows 
that the number of mini~um cyclic edge cut sets of a 3-regular graph G 
is polynornial in v( G) and that the minimum cyclic edge cutsets can be 
found in polynomial time, and so the cyclic edge connectivity of G can be 
calculated. 

O. Introduction 
For a connected graph G, a vertex set S is said to be a vertex cutset of G, if G-S is not 

connected. The connectivity K(G) of G is the minimim cardinality of all the vertex cutsets 
of G Similarly, an edge cutset E of G is an edge set such that G-E is not connected, and 
the edge connectivity A.(G) of G is the minimum cardinality of all the edge cutsets of G 
Here we are going to discuss another type of connectivity of a graph, the cyclic edge 
connectivity, which is defined below. 

For a connected graph G, a cyclic edge cutset is an edge cutset whose deletion 
disconnects the graph and such that two of the components created each must contain at 
least one cycle. The cyclic edge connectivity CA(G) is the minimum cardinality of all the 

cyclic edge cutsets of G If no cyclic edge cutset exists, we set clt(G) =0. In this paper, we 
consider only simple, undirected graphs. All terminology and notation not defined in the 
paper can be found in [2]. 

The concept of cyclic edge connectivity was introduced by Tait[ 1 0] and studied, in 
particular, by Plummer[8], for planar graphs, with a slight difference: if no cyclic edge 
cutset exists, they set CA.-(G)==. In references [4), [5] and [7], the relation between cyclic 
edge connectivity and n-extendability of graphs is studied. In a paper of Peroche[9], 
several sorts of connectivity, including cyclic edge connectivity, and their relations are 
studied. The following upper bound for the cyclic edge connectivity of a graph G is given 
there. 

Australasian Journal of Combinatorics 24(2001). pp.247-259 



Theorem 1: If G=(V, E) is a simple graph with IVI=n, then CA-(C) ~ 3(n-3), for n;::: 6, 

and the bound is sharp. Equality holds when G=Kn. 

How to compute the cyclic edge connectivity of an arbitrary graph has not been 
studied in the literature as far as we know. Even for cubic graphs, the distribution of 
minimum cyclic edge cutsets is unknown. If there are polynomially many such cutsets in 
a cubic graph, is it possible to find them in polynomial time? This paper presents a 
recursive algorithm to find all the cyclic edge cutsets of an input cubic graph, with time 
complexity bounded by O(n3log2n). 

In this paper, we are going to develop a polynomial time algorithm that computes the 
cyclic edge connectivity of a cubic graph. We use the concept of removing an edge from a 
3-connected graphs. This was introduced and studied by Barnette and Grtinbaum[ 1]. The 
distribution of removable edges in 3-connected graphs was studied by Holton, Jackson, 
Saito and Wormald[3]. 

In the first and second sections, we introduce a necessary and sufficient condition for 
a cubic graph to have a cyclic edge cutset. Then the concept of removing an edge from a 
3-connected graph is presented, and how the removed edge is used in the algorithm to 
help compute the cyclic edge connectivity is discussed. In the third section, an algorithm 
that returns all the minimum cyclic edge cutsets of a given cubic graph is described. In 
the fourth section, we give an example of applying the algorithm. We find all the 
minimum cyclic edge cutsets of the Petersen graph, and show that the cyclic edge 
connectivity of the Petersen graph is 5. In the last section, the time complexity of the 
recursive program is analysed. 

1. Preliminaries 
Firstly, we give a necessary and sufficient condition for a cubic graph to have a cyclic 

edge cutset. 
Theorem 2: Let G be a 3-regular graph of order u, let g be the girth of G. Then G 

has a cyclic edge cutset if and only if v > 2g - 2 . 

Proof. 
If G has a cyclic edge cutset S, then let C be one of the cycles in G-S of length c. By 

the definition of cyclic edge cutset, G-V(C) must contain at least one cycle. Then, we 
have 

3( v - c) - c > 2( v - c - 1) 

v > 2c - 2 ~ 2g - 2 . 

Conversely, if v> 2g - 2, let C be a minimum cycle in G, then 

3(v-g)-g > 2(v-g-l). 

hence G-V(C) must contain at least one cycle and (V(C), V(G)\V(C» is a cyclic edge 

cutset of G. 

Now, we consider the cyclic edge connectivity of a cubic graph with vertex 
connectivity of 1 or 2. 

Lemma 3: Let G be a 3-regular graph. 
(1) If K(G)=l and CA-(C»O, then C4(C)=1; 

248 



(2) If K(G)=2 and CA(G»O, then cA(G)=2. 
Proof. 
If K(G)= I and CA( G) >0, let v be a cut vertex of G Then one of the components of G

v must be connected to v by only one edge e. So {e} is a cyclic edge cutset, since 3n-
1>2(n-l), where n is the cardinality of either component of G-e, then either component of 
G-e has a cycle. Hence CA(G)=1. 

If K(G)=2 and CA(G»O, let {u, v} be a vertex cut of G Then there are three cases for 

the edges adjacent to u and v, see figure 1. 

case 1 case 2 case 3 

Figure 1 

In each of the cases, there is at least one edge cutset S of cardinality 2. And such a 
cutset is a cyclic edge cutset, since 3n-2>2(n-1), where n is the cardinality of either 
component of G-S, then either component of G-S has a cycle. And since 
CA(G) ~ A(G) ~ K(G) = 2, we have cA(G)=2.D 

We now consider the concept of removing an edge from a 3-connected graph, as 
introduced and studied by Barnette and Grtinbaum[ I]. 

Let G be a 3-connected graph and e be an edge of G. We consider the following 
operation: 

(I) Delete e from G to get G-e; 
(2) If some end vertices of e have degree two in G-e, then suppress them; 
(3) If multiple edges occur after (2), then replace them by single edges to make the 

graph simple. 

The resulting graph is denoted by Gee and Gee is said to be obtained by removing e 
from G. 

2. Description of the algorithm 
The algorithm we are going to introduce is a recursive algorithm, it returns all the 

minimum cyclic edge cutsets of the input 3-regular graph G In our algorithm, we make 
use of the linear algorithm[5] to divide a graph into 3-connected components, denoted by 
"triconnect" . 

Firstly, our algorithm checks if the input graph G is Kt. If it is, then the empty set 
will be returned, since ~ has no cyclic edge cutsets. If K(G)=l or K(G)=2, by lemma3, 
the cyclic edge connectivity is 1 or 2 respectively, and all the cyclic edge cutsets can be 
found by checking all the minimum vertex cutsets. If G is 3-connected and G is not ~, 

then an edge e of G will be removed from G so that Gee is still 3-regular. If the resulting 

graph Gee is 3-connected, then the program will be recursively called with the input 
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graph Gee instead of G. After all the minimum cyclic edge cutsets of Gee have been 
returned, we compare them with the minimum cyclic edge cutsets of G. Then we find out 
and return all the minimum cyclic edge cutsets of G at the end of the algorithm. If after 

removing e from G, the resulting graph Gee has K=2, then in the next recursive step, all 

the minimum cyc1ic edge cutsets of Gee will be returned, and then we can get those of G. 

The main problem remaining is the relation between the minimum cyclic edge 

cutsets of Gee and those of G. We discuss this in three cases. Let S be a cyclic edge 
cutset of G, e be the removed edge in the algorithm, and S' be a cyclic edge cutset of 

Gee. 

Casel: 
If e is contained in the only cycle C in one of the components of G-S, say A, then 

(Gee)-S has a component which does not contain any cycle, hence the cyclic edge cutset 

S of G is not a cyclic edge cutset of Gee. If S is minimum, we have to consider it after 

the recursive calling on Gee. This case is illustrated in Fi ure 2. 
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Figure 2 
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If C is a cycle as above, then (V(C), V(G)\V(C)) is the minImUm cutset which 
satisfies that C is the only cycle in A, since G is 3-regular, and I(V(C), 
V(G)\V(C»I=IV(C)I. If there is more than one such cutset, the ones with cardinality of the 
length of the minimum cycles are those we need, others will be of larger cardinality. So, 
we can find all such cutsets by finding all the minimum cycles that contain e. To achieve 
this, we use a width-first search of the graph, starting from the two endpoints of e 
simultaneously, until an edge connecting the two sub-trees occurs, and each such edge 
together with the paths in the sub-trees forms a minimum cycle containing e. 

If a cycle appears before the edge connecting two sub-trees occurs, then 
minIV(C)I>g, where g is the girth of G, and g is equal to or larger than CA,(G) , so no such 

cutsets are minimum cyclic edge cutsets, and we discard them. 

Case2: 

If for any minimum cyclic edge cutset S' of Gee, S' U {e} is a cyclic edge cutset of 

G satisfying that the components of Gee-S' and G-(S' U {e}) are the same, then the 

cyclic edge connectivity of G may be larger than Gee by 1 if in Casel it does not find 
smaller cutsets. This case is illustrated in Figure 3. We determine whether the two 

endpoints of c lie in different components of Gee-S' by finding a path P connecting the 



two endpoints, then see if P passes through an odd number of edges in S'. 

e 

Figure 3 

Case3: 
Let e=xy. If there are e),e2E S' such that e) is obtained by suppressing x during the 

operation of removing e from G, and e2 is obtained by suppressing y, then S' corresponds 
to two cyclic edge cutsets of G, S I and S2, where e belongs to the two components A', B' 

of G8e-S' respectively. This case is illustrated in Figure 4. 

Figure 4 

In the following section, we will describe the algorithm in more detail using pseudo
PASCAL code. 

3. The algorithm for cyclic edge connectivity of cubic graphs 
Input: a 3-regular graph G 
output: all the minimum cyclic edge cutsets of G 

Cyclic_connectivity(G): 
0) if G=~ then return null; 
1) if triconnect(G)=false {G is not 3-connected} 
2) then 
3) if K(G)=l then 

4) if v>2*g(G)-2 then {O(v 2
), but this may be run only once during the 

algorithm} 
5) begin 
6) get all the cut vertices of G; {See[6]} 
7) S:= {Sj I Sj is a cut-edge derived from a cut vertex in the last step}; 
8) return S; 
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9) endthen 
10) else return null 
11) else {1\:(G)=2} 

12) if v>2g(G)-2 then {O( v 2
), but this may be run only once during the 

algorithm} 
13) begin 
14) divide G into 3-connected components; 
15) get all the vertex cutsets of order 2; {See[6]} 
16) S: = {Si I Si is an edge cutset of order 2 derived from a vertex cutset in the 

last step }; 
17) return S; 
IS) endthen 
19) else return null; 
20) choose an edge e=xy of G; {G is 3-connected, if we reach here} 
21) find out all the minimum cycles Ci that contain e, let c:=ICd, and C:={ (V(Ci), 

V(G)\V( Ci ) )}; {Case 1, see function Min_cycle(x,y), which carries out the task 
in detail and is described after the main procedure } 

22) G' :=Gge; 
23) S:=Cyclic_connectivity(G'), and s:=ISd, VS i E S {the algorithm is recursively 

called} 
24) if S= cD then 
25) if v>2c-2 then return C 
26) else return null; 
27) flag:=true; 
2S) for each SjE S do 
29) begin 
30) find out an xy-path Pin G, which is not the edge e; 
31) if IPnSd is odd 
32) then 

33) 
34) 
35) 
36) 
37) 

flag:=flag/\ true; {x and y lies in different components of Gge -Sd 
else begin {IPnSd is even} 

flag:=flag /\ false; 
mark Si as "remain"; 

endelse 
3S) endfor; 
39) if flag=true {Case 2 } 
40) then if c=s then return C {smaller cyclic edge cutsets are found in Case 1 } 
41) else begin {c>s, if we reach here} 
42) S:={SiU {e}1 SiES }; 
43) if c=s+ 1 then return C uS; 
44) else return S; 
45) endelse; 
46) S:={ Si I SjE Sand Si is marked as "remain"} 
47) For each SiE S do 
48) If there are Si1, Si2 such that Sil, Si2 are obtained from Si as in Case3 



49) then S:=S-{Sd+{ Sil, Si2}; {Case 3 } 
50) if c=s 
51) then return C u S 
52) else return S; {c>s, if we reach here} 
53) end-of-program. 

In step 20 of the main procedure, we must maintain the 3-regularity of Gee, so that 
the recursive calling of the algorithm can be continued. To achieve this, we choose an 
edge e such that neither of its endpoints is contained in a triangle. If the first edge we 
consider has one endpoint in a triangle, we can choose an edge in this triangle, and this 
edge must satisfy the requirement, or else G is not 3-connected. This operation of 
choosing an edge e to remove can be done in constant steps. 

The following Function is to find out all the minimum cycles that contain the edge 
e=xy. This is carried out by simutaneously growing width-first search trees from x and y, 
one level during each loop, see Figure 5 and Figure 6. The vertices in the left tree are 
marked as "left" while the ones in the right tree are marked as "right". If minimum cycles 
are found, the both trees do not need to grow any further, see Figure 5 and Figure 6. The 
algorithm is described in pseudo-PASCAL as below. 

Function Min_cycle(x,y): 
0) Begin 
1) mark x as "left"; 
2) mark y as "right"; 
3) push x to queue 1; 
4) push Y to queue2; 
5) C:=null; {C is the set of the minimum cycles} 
6) i:=O; {i is the level of the width-first search "tree"} 
7) even:=false; {true if minimum cycles of even length are found} 
8) odd:=false; {true if minimum cycles of odd length are found} 
9) While not(even) and not(odd) do 
10) Begin 
11) for j= 1 to zi do 
12) begin 
13) rl :=dequeue(queue 1); 
14) for each vertex v adjacent to rl do 
15) if v is not marked 
16) then mark v as "left" and enqueue(queuel, v); 
17) else if (v is marked "left") and (v is not the father of fl) 
18) then 
19) return null {no such cyclic edge cutsets are minimum} 
20) else begin {see Figure 5, v is marked "right"} 
21) even:=true; 
22) C:=C U {the cycle containing (r\ ,v)}; 
23) endelse 
24) endfor 
25) if not(even) 



26) then for j= 1 to t do 
27) begin 
28) r2:=dequeue(queue2); 
29) for each vertex v adjacent to r2 do 
30) if v is not marked 
31) then mark v as "right" and enqueue(queue2, v); 
32) else if (v is marked "right") and (v is not the father of r2) 
33) then return null {no such cyclic edge cutsets are minimum} 
34) else begin {see Figure 6, v is marked "left"} 
35) odd:=true; 
36) C:=C U {the cycle containing (r2,v)}; 
37) endelse 
38) endfor; 
39) i:=i+ 1; 
40) endwhile 
41) return C; 
42) End-of-function 

i=2 
i=2 

Figure 5 Figure 6 

Theorem 4: The algorithm Min_cycle(x,y) returns all the minimum cycles that 
contain edge (x,y). 

Proof. 
The algorithm Min_cycle(x,y) proceeds by growing two width-first search trees 

simultaneously. Since the trees are contructed by simultaneously applying width-first 
search of a graph, when an edge e=uv in E(G)\E(T) occurs, its two ends must lie in the 
same level (from left tree to right) or lie in two successive levels (from right tree to left). 
Otherwise, it joins two vertices in the same tree (left or right). 

If u and v are in the same level, e will be found while extending the next level in the 
left tree, and all such edges can be found after extending this level in the left tree, So if an 
even cycle is found, we don't need to extend the right tree any more, see line 24), Each of 
these edges corresponds to an even minimum cycle containing edge (x,y). 

If u and v are in successive levels, u in the left tree and level(u»level(v), then e will 
be found when extending the (u)th level in the right tree and all such edges can be found 
after extending this level in the right tree. Each of these edges corresponds to an odd 
minimum cycle containing edge (x,y). 

If we find an edge joining two vertices in the same tree (left or right) before we find 
an edge joining two vertices in different trees, then we find a cycle shorter than any cycle 
containing e=xy. When the input graph G has cyclic edge cutsets, i.e, v > 2g - 2 by 

Theorem 1, the edges incident with a shortest cycle form a cyclic edge cutset, hence 



CA(C) s g and the edges incident with a minimum cycle containing e=xy do not form a 

minimum cyclic edge cutset. That is why in line 17)-19) and line 32)-33) of Function 
Min_cycle(x, y), we return null instead of going further to find cycles containing e=xy. 0 

Theorem 5: The algorithm Cyclic_connectivity(G) returns all the minimum cyclic 
edge cutsets of G. 

Proof. 

The algorithm proceeds by comparing the minimum cyclic edge cutsets of Gee and 
those of G. 

Each time the program is recursively called, the input graph is smaller than the 
original one by two vertices. If the recursive calling continues, it will certainly stop when 
the input graph is 2-connected or it has shrunk to ~. So the algorithm will necessarily 
terminate with any input 3-regular graph. 

The relation between the minimum cyclic edge cutsets of Gee and those of G is 
described in the second section. 

In Case I, let C be a minimum cycle containing the removed edge, then 
S=(V(C),V(G)\V(C») is a minimum edge cutset of Case 1, i.e. C is the only cycle in one 
component A ( actually A=C) of G-S. If there are other edges in A, the component A will 
be a forest, in which the trees have their roots in C, and the edge cutset (V(A), 
V(G)\V(A)) must contain more edges than IV(C)I. So it is sufficient to find all the 
minimum cycles containing the removed edge to form the component A, which is 
described in the Function Min __ cycle(x, y). 

In Case2 and Case3, some steps are taken to convert certain cyclic edge cutsets of 

Gee into those of G. Others are cutsets both of Gee and G, and they will remain as they 
are returned. Finally, we should compare the edge cutsets in Casel with those derived 

from Gee, so that the program returns the minimum among them, this is done in Jines 
40),43), 50) in the main procedure. [J 

4. Cyclic edge cutsets of the Petersen graph found by applying the algorithm 
Here we apply the algorithm provided above to the well-known 3-connected, 3-regular 

graph, the Petersen graph. We get 6 minimum cyclic edge cutsets. The first two edge 

cutsets are found by adding (VI,V6) to the minimum cyClic edge cutsets of G8 (VI,V6), 
which is Case 2 of the algorithm; and the other four cutsets are found by finding 4 
minimum cycles containing (VI ,V6), which is Case 1 of the algorithm. We will run through 
the algorithm step by step. 



1) We choose (VI,V6) as the edge to remove, then Gee will look as the graph in Figure 
8; 

~ ____________ ~V5 

Figure 8 

2) Since the graph is still 3-connected, so we continue to choose an edge (V2,VS) to 

remove, and Gee will be K3,3, which is shown as below, removing (V7,VIO) will 
result in ~ which consists of Vg, V9, V3 and V4. 

Figure 9 

3) When the graph is ~, the algorithm returns an empty set, since K4 has no cyclic 
edge cutsets. In the graph in Figure 9, there are four minimum cycles contain 
(V7,VIO), they are V7V3V4VIO, V7V3VgVIO, V7V9V4VIO and V7V9VgVIO. In line 2l in the 
algorithm, c is 4, and in line 23, S is an empty set. Since v>2c-2 does not hold, in 
line 25 the algorithm returns an empty set to the caller. 

4) In the graph in Figure 8, there are two minimum cycles containing (V2,VS), they are 



V2V7VjOVS and V2V1V4VS. This time S is still an empty set, and v>2c-2 holds, in line 
25 the algorithm returns the set C= { (V2,V3), (V7,V9), (VjO,Vg), (VS,V4», «V2,V7), 
(V3,Vg), (V4,V9), (VS,VIO» }. 

5) In the original graph, there are four minimum cycles containing (V\,V6), they are 
VjV2V3VSV6, VjV2V7V9V6, VjVSVIOVgV6 and VjVSV4V9V6. Figure 10 shows how the 
minimum cycles are found by applying Function Min_cycle. In line 21, c=5, C= { 
«Vj,V5), (V2,V7), (V3,V4), (Vg,VIO), (V6,V9», «Vj,vs), (V2,V3), (V7,VIO), (V9,V4), (V6,Vg», 
(Vj,V2), (VS,V4), (VjO,V7), (Vg,V3), (V6,V9», «Vj,V2), (vs,Vjo), (V4,V3), (V9,V7), (V6,Vg) 
}. In line 23, s=4, S={ «V2,V3), (V7,V9), (VlO,Vg), (VS,V4», «V2,V7), (V3,Vg), (V4,V9), 
(VS,VIO» }. 

6) Since G-{ Sju(v\ ,V6)} and 08 (VI,V6)-Sj are the same for all Sj in S, in line 39, the 
flag is true. And line 41 is carried out. Then since c=s+ 1, CuS is returned as the set 
of all the minimum cyclic edge cutsets of the Petersen graph. These are shown in 
Figure 11, the first two cutsets are in S, the remaining are in C. 

v, v, 

v, v, v, 

Figure 1 J 

5. The time complexity the algorithm 
Lemma 6: The girth g of a 3-regular graph G is bounded by 2*log2n, where n is the 
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number of vertices of G. 
Proof. 
According to the Function Min_cyc1e(x,y), let c be the length of the minimum cycles 

containing edge (x,y). If c is even, see Figure 5, then 
c 

2(22-1):::;n 

g :::; c :::; 2 log (~+ 1). 
2 2 

If c is odd, see Figure 6, we get 

(2 l +1_1)+(2 l -l)~n 
2 1 2( n+2)+1 g ~ e ~ og 3 

Hence the lemma followsIl 

Lemma 7: The number en of minimum cycles found in the Function Min_cycle(x,y) 

is bounded by 2l~J, where c is the length of the cycles. 
Proof. 
In the Function Min_cyc1e(x,y), each leaf vertex of the width-first search tree can 

stretch out at most two edges to the other tree. If c is even, see Figure 5, then 

en ~ 2X2%-1 == 2l%J. 

If c is odd, see Figure 6, we have 

en ~ 2x 2l%J-! == 2l%J 0 

Hence the lemma follows. 0 

Only when c is equal to the girth of G, can these cycles each be incident to a 
minimum cyclic edge cutset of G, hence the number of minimum cyclic edge cutsets 
found in Case I is bounded by u, by lemma 6 and lemma 7. 

Theorem 8: In the worst situation, the time. complexity of the algorithm 

Cyclic_conncctivity(G) is bounded by O( n} ·!og2 n). 

Proof. 
The recursive program will stop recursive calling when either G is ~ or G is 1 or 2-

connected. Suppose G has n vertices and, when the program stops recursively calling, G' 
has r vertices. In the worst situation, each time when the program returns to the upper 

level, it returns sue, that is all the minimum cycles found are finally each incident to a 
minimum cyclic edge cutset of G. 

During each recursive step, the time needed by the algorithm is linear to the sum of 
edges of all the minimum cyclic edge cutsets. By Lemmas 6 and 7, the total time is 

O( r -21og2 r+ (r+ (r + 2))- 210g 2 (r+2) + ..... +(r+ (r + 2) + ... +n)· 2log2 n), 
where (r+(r+2)+ ... +i) is the possible number of minimum cyclic edge cutsets of the 

graph with i vertices, this is calculated by recursively adding the possible number of 

minimum cyclic edge cutsets of Gee and the number of those found in Case I; 2Iog2(i) is 



the upper bound of the girth of the graph with i vertices. The product of these two terms 
is an upper bound of the sum of edges of all the minimum cyclic edge cutsets. 

From the formula above, we have 
n-r (n-r-i+2) 

O( I [(r+i) ]·2·log 2 11) 

;=0 2 

11 - r + 2 Il-r 

~O( ·2·)og2 11 · I,(r+i» 
2 ;=0 

i IS even 

0(
11 - r + 2 2 I (n + 2)· n) 

~ 2" og2 11' 4 

To be simple, the time complexity is bounded by O( 11' ·10g2 11). [1 

Remark: The time complexity as analysed here provides only a very rough upper 
bound, which can be reduced by refined analysis. The problem is the difficulty of 
counting the minimum cyclic edge cutsets of a graph. 
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