# On a conjecture of Hilton 

Jiping Liu*<br>Department of Mathematics and Computer Sciences<br>University of Lethbridge<br>Lethbridge, Alberta, Canada, T1K 3M4<br>liu@cs.uleth.ca<br>\section*{Cheng Zhao}<br>Department of Mathematics and Computer Sciences<br>Indiana State University<br>Terre Haute, IN 47809 USA<br>cheng@laurel.indstate.edu


#### Abstract

We show that if $\mathcal{A}_{1}, \mathcal{A}_{2}, \cdots, \mathcal{A}_{k}$ are collections of distinct subsets from an $n$-element set such that these collections are incomparable and uncomplemented, then $\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right| \leq 2^{n-1}$ under certain conditions. Upper bounds are also given for $\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right|$ with or without the "uncomplemented" condition.


## 1 Introduction

Let $\mathcal{A}_{1}, \cdots, \mathcal{A}_{k}$ be $k$ collections of distinct subsets of $S=\{1,2, \ldots, n\}$. These $k$ collections of distinct subsets are called incomparable if $A_{i} \in \mathcal{A}_{i}$ and $A_{j} \in \mathcal{A}_{j}$, $(i \neq j)$, then $A_{i} \not \subset A_{j}$. A collection of subsets $\mathcal{C}$ is called uncomplemented if $A \in \mathcal{C}$, then $\bar{A} \notin \mathcal{C}$, where $\bar{A}=S \backslash A$.

It is well known that if $\mathcal{C}$ is a collection of distinct subsets of $\{1,2, \ldots, n\}$ which are uncomplemented, then $|\mathcal{C}| \leq 2^{n-1}$. Hilton extended this result to two incomparable, uncomplemented collections

Theorem 1 [2] If $\mathcal{A}_{1}$ and $\mathcal{A}_{2}$ are collections of distinct subsets of $S$ such that these collections are incomparable and uncomplemented, then

$$
\left|\mathcal{A}_{1}\right|+\left|\mathcal{A}_{2}\right| \leq 2^{n-1} .
$$

[^0]He also posed the following conjecture.
Conjecture 1 [4] If $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{k}$ are collections of distinct subsets of $n$-element set $S$ such that these collections are incomparable and uncomplemented, then

$$
\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right| \leq 2^{n-1}
$$

In this paper, we will investigate this conjecture. We give an upper bound and show that this conjecture is true under certain conditions. We also discuss the case when $k=3$.

The following lemma from Kleitman will be used in our proof.
Lemma 2 [3] Let $\mathcal{U}$ and $\mathcal{V}$ be collections of subsets of an $n$ element set $S$, such that
(i) if $X \in \mathcal{U}$ and $X \subset Y \subset S$, then $Y \in \mathcal{U}$,
(ii) if $X \in \mathcal{V}$ and $Y \subset X \subset S$, then $Y \in \mathcal{V}$. Then

$$
|\mathcal{U} \cap \mathcal{V}| \cdot 2^{n} \leq|\mathcal{U}||\mathcal{V}| .
$$

## 2 Main results

Theorem 3 Let $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{k}$ be incomparable collections of distinct subsets of $n$-element set $S$. Then for any $1 \leq j \leq k$,

$$
\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right|+2\left[\left|\mathcal{A}_{j}\right| \sum_{i \neq j}\left|\mathcal{A}_{i}\right|\right]^{\frac{1}{2}} \leq 2^{n} .
$$

Proof. Without loss of generality, we will show

$$
\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right|+2\left[\left|\mathcal{A}_{1}\right| \sum_{i \neq 1}\left|\mathcal{A}_{i}\right|\right]^{\frac{1}{2}} \leq 2^{n}
$$

Let

$$
\begin{aligned}
& \mathcal{H}=\left\{Z: \exists A_{1} \in \mathcal{A}_{1}, A_{1} \subseteq Z, \exists D \in \cup_{i=2}^{k} \mathcal{A}_{i}, D \subseteq Z\right\}, \\
& \mathcal{I}_{i}=\left\{Z: \exists A_{i} \in \mathcal{A}_{i}, A_{i} \subseteq Z, \nexists D \in \cup_{j \neq i} \mathcal{A}_{j}, D \subseteq Z\right\}, \\
& \mathcal{L}=\left\{Z: \nexists A_{i} \in \mathcal{A}_{i}, A_{i} \subseteq Z, 1 \leq i \leq k\right\} .
\end{aligned}
$$

Then clearly, $\mathcal{H} \cap \mathcal{L}=\emptyset, \mathcal{H} \cap \mathcal{I}_{i}=\emptyset, \mathcal{L} \cap \mathcal{I}_{i}=\emptyset$ for $1 \leq i \leq k$ and $\mathcal{I}_{i} \cap \mathcal{I}_{j}=\emptyset$ for any $i \neq j$. Therefore,

$$
|\mathcal{H}|+\sum_{i=1}^{k}\left|\mathcal{I}_{i}\right|+|\mathcal{L}| \leq 2^{n}
$$

Let $\mathcal{U}=\mathcal{H} \cup \mathcal{I}_{1}$ and $\mathcal{V}=\mathcal{L} \cup \mathcal{I}_{1}$. We claim that both $\mathcal{U}$ and $\mathcal{V}$ satisfy the conditions in Lemma 2. Let $X \in \mathcal{U}$ and $X \subset Y \subset S$. Then there exists an $A_{1} \in \mathcal{A}_{1}$ such that $A_{1} \subset X \subset Y$ by the definitions of $\mathcal{H}$ and $\mathcal{I}_{1}$. If there is a $D \in \cup_{i=2}^{k} \mathcal{A}_{i}$ such that $D \subseteq X \subset Y$, then $Y \in \mathcal{H} \subset \mathcal{U}$. Otherwise, $Y \in \mathcal{I}_{1} \subset \mathcal{U}$.

Now let $X \in \mathcal{V}$ and $Y \subset X$. If there is no $A_{1} \in \mathcal{A}_{1}$ such that $A_{1} \subset Y$, then $Y \in \mathcal{L}$ and hence $Y \in \mathcal{V}$. Otherwise, $X \in \mathcal{I}_{1}$. This implies that there is no $D \in \cup_{j \neq 1} \mathcal{A}_{j}$ with $D \subseteq Y$. Therefore, $Y \in \mathcal{I}_{1} \subset \mathcal{V}$.

By Lemma 2, we have

$$
|\mathcal{U} \cap \mathcal{V}| 2^{n} \leq|\mathcal{U}||\mathcal{V}| .
$$

That is,

$$
\left|\mathcal{I}_{1}\right| \cdot 2^{n} \leq\left(|\mathcal{H}|+\left|\mathcal{I}_{1}\right|\right)\left(|\mathcal{L}|+\left|\mathcal{I}_{1}\right|\right) .
$$

Then

$$
\left|\mathcal{I}_{1}\right|\left(|\mathcal{H}|+\sum_{i=1}^{k}\left|\mathcal{I}_{i}\right|+|\mathcal{L}|\right) \leq\left(|\mathcal{H}|+\left|\mathcal{I}_{1}\right|\right)\left(|\mathcal{L}|+\left|\mathcal{I}_{1}\right|\right)
$$

Simplify,

$$
\left|\mathcal{I}_{1}\right|\left(\sum_{i=2}^{k}\left|\mathcal{I}_{i}\right|\right) \leq|\mathcal{H}||\mathcal{L}| \leq\left[\frac{|\mathcal{H}|+|\mathcal{L}|}{2}\right]^{2} \leq\left[\frac{2^{n}-\sum_{i=1}^{k}\left|\mathcal{I}_{i}\right|}{2}\right]^{2}
$$

Therefore,

$$
\sum_{i=1}^{k}\left|\mathcal{I}_{i}\right|+2\left[\left|\mathcal{I}_{1}\right| \sum_{i \neq 1}\left|\mathcal{I}_{i}\right|\right]^{\frac{1}{2}} \leq 2^{n}
$$

We note that $\mathcal{A}_{i} \subseteq \mathcal{I}_{i}$ for any $i=1, \ldots, k$ as $\mathcal{A}_{1}, \ldots \mathcal{A}_{k}$ are incomparable collections. Hence $\left|\mathcal{A}_{i}\right| \leq\left|\mathcal{I}_{i}\right|$ for $1 \leq i \leq k$. Therefore,

$$
\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right|+2\left[\left|\mathcal{A}_{1}\right| \sum_{i \neq 1}\left|\mathcal{A}_{i}\right|\right]^{\frac{1}{2}} \leq 2^{n}
$$

This completes the proof.
Corollary 4 Let $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{k}$ be incomparable collections of distinct subsets of $n$-element set $S$. Let $I$ and $J$ be any partition of $\{1, \ldots, k\}$. Then

$$
\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right|+2\left[\left.\sum_{j \in J}\left|\mathcal{A}_{j}\right| \sum_{i \in I}\left|\mathcal{A}_{i}\right|\right|^{\frac{1}{2}} \leq 2^{n}\right.
$$

Proof. The corollary follows from the fact that $\cup_{i \in I} \mathcal{A}_{i}$ and $\cup_{j \in J} \mathcal{A}_{j}$ are incomparable.
The following theorem gives an upper bound if there is no $\mathcal{A}_{i}$ having its cardinality too large.

Theorem 5 Let $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{k}$ be incomparable collections of distinct subsets of $n$-element set $S$. If there is an $I \subset\{1, \ldots, k\}$ such that $\frac{\sum_{i=\mid}^{k}\left|\mathcal{A}_{i}\right|}{k} \leq \sum_{i \in I}\left|\mathcal{A}_{i}\right| \leq$ $\frac{\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right|}{2}$, then

$$
\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right| \leq \frac{k}{2 \sqrt{k-1}+k} 2^{n}
$$

Proof. From Corollary 4,

$$
\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right|+2\left[\left.\sum_{j \in J}\left|\mathcal{A}_{j}\right| \sum_{i \in I}\left|\mathcal{A}_{i}\right|\right|^{\frac{1}{2}} \leq 2^{n}\right.
$$

where $J=\{1, \ldots, k\}-I$. That is,

$$
\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right|+2\left[\sum_{i \in I}\left|\mathcal{A}_{i}\right|\left(\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right|-\sum_{i \in I}\left|\mathcal{A}_{i}\right|\right)\right]^{\frac{1}{2}} \leq 2^{n}
$$

The function $f(x)=\sqrt{x(a-x)}$, where $a=\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right|$ is a constant, is an increasing function for $0 \leq x \leq \frac{a}{2}$. Therefore, we can replace $\sum_{i \in I}\left|\mathcal{A}_{i}\right|$ by the average $\frac{\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right|}{k}$ in the above inequality. We have

$$
\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right|+2\left[\frac{\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right|}{k}\left(\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right|-\frac{\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right|}{k}\right)\right]^{\frac{1}{2}} \leq 2^{n} .
$$

Solving for $\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right|$ yields

$$
\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right| \leq \frac{k}{2 \sqrt{k-1}+k} 2^{n}
$$

This completes the proof.
Corollary 6 If $\mathcal{A}_{1}$ and $\mathcal{A}_{2}$ are incomparable collections of distinct subsets of $n$ element set $S$ with $\left|\mathcal{A}_{1}\right|=\left|\mathcal{A}_{2}\right|$, then

$$
\left|\mathcal{A}_{1}\right|+\left|\mathcal{A}_{2}\right| \leq 2^{n-1}
$$

Corollary 7 If $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{k}$ are incomparable and uncomplemented collections of distinct subsets of $n$-element set $S$, then either

$$
\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right| \leq \frac{k}{2 \sqrt{k-1}+k} 2^{n}
$$

or

$$
\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right|<\frac{k}{k-1} 2^{n-1}
$$

Proof. Without loss of generality, we assume $\left|\mathcal{A}_{1}\right| \leq\left|\mathcal{A}_{2}\right| \leq \cdots \leq\left|\mathcal{A}_{k}\right|$. If $\left|\mathcal{A}_{k}\right| \leq$ $\sum_{i=1}^{k-1}\left|\mathcal{A}_{i}\right|$, then we take $I=\{k\}$ in Theorem 5, we have $\frac{\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right|}{k} \leq \sum_{i \in I}\left|\mathcal{A}_{i}\right| \leq$ $\frac{\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right|}{2}$. Therefore,

$$
\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right| \leq \frac{k}{2 \sqrt{k-1}+k} 2^{n}
$$

Thus, we may assume $\left|\mathcal{A}_{k}\right|>\sum_{i=1}^{k-1}\left|\mathcal{A}_{i}\right|$. If $\frac{\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right|}{k} \leq \sum_{i=1}^{k-1}\left|\mathcal{A}_{i}\right|$, then we take $I=\{1, \ldots, k-1\}$ and have $\frac{\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right|}{k} \leq \sum_{i \in I}\left|\mathcal{A}_{i}\right| \leq \frac{\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right| \text {. Hence }}{2}$.

$$
\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right| \leq \frac{k}{2 \sqrt{k-1}+k} 2^{n}
$$

by Theorem 5 again.
Therefore, $\frac{\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right|}{k}>\sum_{i=1}^{k-1}\left|\mathcal{A}_{i}\right|$. That is $\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right|>k \sum_{i=1}^{k-1}\left|\mathcal{A}_{i}\right|$. Thus, $\left|\mathcal{A}_{k}\right|>$ $(k-1) \sum_{i=1}^{k-1}\left|\mathcal{A}_{i}\right|$. This is equivalent to $k\left|\mathcal{A}_{k}\right|>(k-1) \sum_{i=1}^{k}\left|\mathcal{A}_{i}\right|$. But $\left|\mathcal{A}_{k}\right| \leq 2^{n-1}$ as $\mathcal{A}_{k}$ is uncomplemented. Therefore,

$$
\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right|<\frac{k}{k-1} 2^{n-1}
$$

This completes the proof.
In [5], Seymour proved the following result.
Theorem 8 If $\mathcal{A}$ is a collection of subsets of $n$-set $S$ such that for all $A, B \in \mathcal{A}$, $A \cap B \neq \emptyset$ and $A \cup B \neq S$, then $|\mathcal{A}| \leq 2^{n-2}$.

Combining Theorems 5 and 8 , we have the following result.
Theorem 9 Let $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{k}$ be incomparable collections of distinct subsets of $n$-element set $S$. If for each $\mathcal{A}_{i}, A, B \in \mathcal{A}_{i}, A \cap B \neq \emptyset$ and $A \cup B \neq S$, then

$$
\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right| \leq \frac{k}{2 \sqrt{k-1}+k} 2^{n}
$$

Proof. We have that for each $i,\left|\mathcal{A}_{i}\right| \leq 2^{n-2}$ by Seymour's result. Let $a=\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right|$. If $a \leq 2^{n-1}$, then we are done. Otherwise, we have that for any $i,\left|\mathcal{A}_{i}\right| \leq \frac{a}{2}$ from Theorem 8. Therefore,

$$
\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right| \leq \frac{k}{2 \sqrt{k-1}+k} 2^{n}
$$

by Theorem 5 .
Lemma 10 Let $\mathcal{A}_{1}$ and $\mathcal{A}_{2}$ be collections of distinct subsets of $n$-element set $S$ such that $\mathcal{A}_{1}$ and $\mathcal{A}_{2}$ are incomparable and $\mathcal{A}_{1}$ is uncomplemented. Then
(a) $\left|\mathcal{A}_{1}\right| \leq 2^{n-1}-2^{\left\lfloor\frac{n}{2}\right\rfloor}-2^{\left[\frac{n}{2}\right\rceil}+2$ if $\mathcal{A}_{2}$ contains a pair of complemented sets.
(b) $\left|\mathcal{A}_{1}\right| \leq 2^{n-1}-2^{\left\lfloor\frac{n}{2}\right\rfloor}-2^{\left[\frac{n}{2}\right\rceil}-2^{\left\lfloor\frac{n}{2}\right\rfloor-1}+2$ if $\mathcal{A}_{2}$ contains more than one pair of complemented sets.

Proof. (a) Let $\mathcal{A}_{1 i}(1 \leq i \leq 2)$ and $\mathcal{A}_{2 j}(1 \leq j \leq 3)$ be such that

$$
\left\{\begin{array}{l}
\mathcal{A}_{1}=\mathcal{A}_{11} \cup \mathcal{A}_{12}, \\
\mathcal{A}_{2}=\mathcal{A}_{21} \cup \mathcal{A}_{22} \cup \mathcal{A}_{23} \cup \overline{\mathcal{A}}_{23},
\end{array}\right.
$$

where $\mathcal{A}_{12}=\overline{\mathcal{A}}_{21}, \mathcal{A}_{11} \cap \mathcal{A}_{12}=\emptyset, \mathcal{A}_{2 i} \cap \mathcal{A}_{2 j}=\emptyset$ for $i \neq j$ and $1 \leq i, j \leq 3$, $\mathcal{A}_{2 i} \cap \overline{\mathcal{A}}_{23}=\emptyset$ for $1 \leq i \leq 3$, and $\mathcal{A}_{2} \cap \overline{\mathcal{A}}_{22}=\emptyset$.

Since $\left|\mathcal{A}_{23}\right| \neq 0$, we can choose $A_{23} \in \mathcal{A}_{23}$. Clearly, $S=A_{23} \cup \bar{A}_{23}$. We let $A_{23}=\left\{a_{1}, \cdots, a_{k}\right\}$ and $\bar{A}_{23}=\left\{a_{k+1}, \cdots, a_{n}\right\}$. Without loss of generality, we assume that $1 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$.

We have that, for any $A_{1} \in \mathcal{A}_{1}$,

$$
\left\{\begin{array}{l}
A_{1} \cap A_{23} \neq \emptyset,  \tag{*}\\
A_{1} \cap \bar{A}_{23} \neq \emptyset, \\
\bar{A}_{1} \cap A_{23} \neq \emptyset, \\
\bar{A}_{1} \cap \bar{A}_{23} \neq \emptyset .
\end{array}\right.
$$

This claim is true since otherwise $\mathcal{A}_{1}$ and $\mathcal{A}_{2}$ are not incomparable, which contradicts our assumption.

It follows from ( ${ }^{*}$ ) that any element $A_{1}$ of $\mathcal{A}_{1}$ can be written as $A_{1}=A_{11} \cup A_{12}$, where $A_{11}$ and $A_{12}$ are proper subsets of $A_{23}$ and $\bar{A}_{23}$, respectively. Obviously, $1 \leq\left|A_{11}\right| \leq k-1$ and $1 \leq\left|A_{21}\right| \leq n-k-1$. It is easy to see that there are at most

$$
\sum_{j=1}^{n-k-1} \sum_{i=1}^{k-1}\binom{k}{i}\binom{n-k}{j}=\left(2^{k}-2\right)\left(2^{n-k}-2\right)
$$

such subsets satisfying the property ( ${ }^{*}$ ).
Note that if $A_{1}=A_{11} \cup A_{12}$, where $A_{11} \subset A_{23}$ and $A_{12} \subset \bar{A}_{23}$, then $\left(A_{23} \backslash A_{11}\right) \cup$ $\left(\bar{A}_{23} \backslash A_{12}\right)$ is also a subset satisfying the property ( ${ }^{*}$ ). Since $\mathcal{A}_{1}$ is uncomplemented, we have that

$$
\begin{align*}
\left|\mathcal{A}_{1}\right| & \leq \frac{1}{2}\left(2^{k}-2\right)\left(2^{n-k}-2\right) \\
& =2^{n-1}-2^{k}-2^{n-k}+2 . \tag{**}
\end{align*}
$$

It is easy to verify that the function $2^{x}+2^{n-x}$ is a decreasing function if $1 \leq x \leq\left\lfloor\frac{n}{2}\right\rfloor$. Therefore, taking $x=\left\lfloor\frac{n}{2}\right\rfloor$, we have

$$
\begin{aligned}
\left|\mathcal{A}_{1}\right| & \leq 2^{n-1}-2^{\left\lfloor\frac{n}{2}\right\rfloor}-2^{n-\left\lfloor\frac{n}{2}\right\rfloor}+2 \\
& =2^{n-1}-2^{\left\lfloor\frac{n}{2}\right\rfloor}-2^{\left\lceil\frac{n}{2}\right\rceil}+2 .
\end{aligned}
$$

This completes the proof of (a).
(b) We divide the proof of (b) into two cases.

Case 1. $1 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor-1$.
Taking $x=\left\lfloor\frac{n}{2}\right\rfloor-1$ in ( ${ }^{* *}$ ), we have

$$
\begin{aligned}
\left|\mathcal{A}_{1}\right| & \leq 2^{n-1}-2^{\left\lfloor\frac{n}{2}\right\rfloor-1}-2^{n-\left\lfloor\frac{n}{2}\right\rfloor+1}+2 \\
& =2^{n-1}-2^{\left\lfloor\frac{n}{2}\right\rfloor-1}-2^{\left[\frac{n}{2}+1\right.}+2 \\
& \leq 2^{n-1}-2^{\lfloor n / 2\rfloor}-2^{[n / 2\rceil}-2^{\lfloor n / 2\rfloor-1}+2 .
\end{aligned}
$$

Case 2. $k=\left\lfloor\frac{n}{2}\right\rfloor$.

In this case, we have, that for any $A_{23} \in \mathcal{A}_{23},\left|A_{23}\right|=\left\lfloor\frac{n}{2}\right\rfloor$. We pick a $B_{1} \in \mathcal{A}_{23}$ and a $B_{2} \in \mathcal{A}_{23}$ where $B_{1} \neq \overline{B_{2}}, B_{1} \neq B_{2}$, and $\left|B_{1}\right|=\left|B_{2}\right|=\left\lfloor\frac{n}{2}\right\rfloor$.
Case 2.1. $n \equiv 1(\bmod 2)$.
Observe that $B_{1} \cap B_{2}<\left\lfloor\frac{n}{2}\right\rfloor$. Otherwise we would have a contradiction. First we assume that $1 \leq\left|B_{1} \cap B_{2}\right|=x<\left\lfloor\frac{n}{2}\right\rfloor$. Then $\left|B_{1} \cap \overline{B_{2}}\right|=\left\lfloor\frac{n}{2}\right\rfloor-x$. By repeating the argument in the proof of (a) we deduce that the number of $A$ 's which intersect $B_{1}$ and $\overline{B_{1}}$ properly, and do not contain all, is $\left(2^{\left\lfloor\frac{n}{2}\right\rfloor}-2\right)\left(2^{n-\left\lfloor\frac{n}{2}\right\rfloor}-2\right)$. The number of these $A$ 's contained in $B_{2}$ is $\left(2^{x}-1\right)\left(2^{\left\lfloor\frac{n}{2}\right\rfloor-x}-1\right)$. The number of these $A$ 's containing $B_{2}$ is $\left(2^{x+1}-1\right)\left(2^{\left\lfloor\frac{n}{2}\right\rfloor-x}-1\right)$. The number of these $A$ 's contained in $\overline{B_{2}}$ is $\left(2^{x+1}-1\right)\left(2^{\left.\frac{n}{2}\right\rfloor-x}-1\right)$. The number of these $A^{\prime}$ s containing $\overline{B_{2}}$ is $\left(2^{x}-1\right)\left(2^{\left\lfloor\frac{n}{2}\right\rfloor-x}-1\right)$. Therefore,

$$
\begin{aligned}
\left|\mathcal{A}_{1}\right| \leq & \frac{1}{2}\left\{\left(2^{\left\lfloor\frac{n}{2}\right\rfloor}-2\right)\left(2^{n-\left\lfloor\frac{n}{2}\right\rfloor}-2\right)-2\left(2^{x}-1\right)\left(2^{\left\lfloor\frac{n}{2}\right\rfloor-x}-1\right)\right. \\
& \left.-2\left(2^{x+1}-1\right)\left(2^{\left\lfloor\frac{n}{2}\right\rfloor-x}-1\right)\right\} \\
\leq & 2^{n-1}-2^{\lfloor n / 2\rfloor}-2^{n-\lfloor n / 2\rfloor}-2^{\lfloor n / 2\rfloor-1}+2 .
\end{aligned}
$$

Next we assume $\left|B_{1} \cap B_{2}\right|=0$. Then $B_{2} \subset \overline{B_{1}}$ and $\left|\overline{B_{1}} \cap \overline{B_{2}}\right|=1$. It follows that $\left|\overline{B_{1}}\right|=\left|\overline{B_{2}}\right|=\left\lfloor\frac{n}{2}\right\rfloor+1$. Repeating the proof in the above, we deduce that the number of $A$ 's which intersect $B_{1}$ and $\overline{B_{1}}$ properly, and do not contain all, is $\left(2^{\left\lfloor\frac{n}{2}\right\rfloor}-2\right)\left(2^{n-\left\lfloor\frac{n}{2}\right\rfloor}-2\right)$. The number of these $A$ 's contained in $\overline{B_{2}}$ is $2^{\lfloor n / 2\rfloor}-2$. The number of these $A$ 's containing $B_{2}$ is $2^{\lfloor n / 2\rfloor}-2$. Therefore,

$$
\begin{aligned}
\left|\mathcal{A}_{1}\right| & \leq \frac{1}{2}\left\{\left(2^{\left\lfloor\frac{n}{2}\right\rfloor}-2\right)\left(2^{n-\left\lfloor\frac{n}{2}\right\rfloor}-2\right)-2\left(2^{\lfloor n / 2\rfloor}-2\right)\right\} \\
& \leq 2^{n-1}-2^{\lfloor n / 2\rfloor}-2^{n-\lfloor n / 2\rfloor}-2^{\lfloor n / 2\rfloor-1}+2 .
\end{aligned}
$$

Case 2.2. $n \equiv 0(\bmod 2)$.
In this case we only have that $1 \leq\left|B_{1} \cap B_{2}\right| \leq\lfloor n / 2\rfloor-1$. By repeating the argument of Case 2.1, we conclude that

$$
\begin{aligned}
\left|\mathcal{A}_{1}\right| \leq & \frac{1}{2}\left\{\left(2^{\left\lfloor\frac{n}{2}\right\rfloor}-2\right)\left(2^{n-\left\lfloor\frac{n}{2}\right\rfloor}-2\right)-2\left(2^{x+1}-1\right)\left(2^{\left\lfloor\frac{n}{2}\right\rfloor-x}-1\right)\right. \\
& \left.-2\left(2^{x}-1\right)\left(2^{\left\lfloor\frac{n}{2}\right\rfloor-x}-1\right)\right\} \\
\leq & 2^{n-1}-2^{\lfloor n / 2\rfloor}-2^{n-\lfloor n / 2\rfloor}-2^{\lfloor n / 2\rfloor-1}+2 .
\end{aligned}
$$

This completes the proof.
Theorem 11 If $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{k}$ are collections of distinct subsets of $n$-element set $S$ such that these collections are incomparable and uncomplemented, then

$$
\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right| \leq 2^{n-1}
$$

if $\max _{1 \leq i \leq k}\left\{\left|\mathcal{A}_{i}\right|\right\}>2^{n-1}-2^{\left\lfloor\frac{n}{2}\right\rfloor}-2^{\left\lceil\frac{n}{2}\right\rceil}+2$.

Proof. Without loss of generality, we assume that $\left|\mathcal{A}_{1}\right|=\max _{1 \leq i \leq k}\left\{\left|\mathcal{A}_{i}\right|\right\}$. Let $\mathcal{B}=\cup_{i=2}^{n} \mathcal{A}_{i}$. Then $\mathcal{A}_{1}$ and $\mathcal{B}$ are incomparable. If $\mathcal{B}$ is not uncomplemented, then $\left|\mathcal{A}_{1}\right| \leq 2^{n-1}-2^{\left\lfloor\frac{n}{2}\right\rfloor}-2^{\left\lceil\frac{n}{2}\right\rceil}+2$ by Lemma 10 (a), which is a contradiction. Therefore, both $\mathcal{A}_{1}$ and $\mathcal{B}$ are uncomplemented and hence $\left|\mathcal{A}_{1}\right|+|\mathcal{B}| \leq 2^{n-1}$ by Theorem 1 . That is, $\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right| \leq 2^{n-1}$.

Theorem 12 If $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{k}$ are collections of distinct subsets of $n$-elements set $S$ such that these collections are incomparable and uncomplemented, then

$$
\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right| \leq 2^{n-1}+1
$$

if $\max _{1 \leq i \leq k}\left\{\left|\mathcal{A}_{i}\right|\right\}>2^{n-1}-2^{\left\lfloor\frac{n}{2}\right\rfloor}-2^{\left\lceil\frac{n}{2}\right\rceil}-2^{\left\lfloor\frac{n}{2}\right\rfloor-1}+2$.
Proof. Without loss of generality, we assume that $\left|\mathcal{A}_{1}\right|=\max _{1 \leq i \leq k}\left\{\left|\mathcal{A}_{i}\right|\right\}$. Let $\mathcal{B}=\cup_{i=2}^{n} \mathcal{A}_{i}$. Then $\mathcal{A}_{1}$ and $\mathcal{B}$ are incomparable. If $\mathcal{B}$ contains more than one pair of complemented sets, then $\left|\mathcal{A}_{1}\right| \leq 2^{n-1}-2^{\left\lfloor\frac{n}{2}\right\rfloor}-2^{\left.\sum^{n}\right\rceil}-2^{\left\lfloor\frac{n}{2}\right\rfloor-1}+2$ by Lemma 10 (b), which is a contradiction. Therefore, $\mathcal{B}$ contains at most one pair of complemented sets. Let $U$ be one of the set in the pair. Then $\mathcal{B}-U$ is uncomplemented, therefore, $\left|\mathcal{A}_{1}\right|+|\mathcal{B}-U| \leq 2^{n-1}$. That is, $\sum_{i=1}^{k}\left|\mathcal{A}_{i}\right| \leq 2^{n-1}+1$.

## 3 The case $k=3$

Let $\mathcal{A}_{1}, \mathcal{A}_{2}$ and $\mathcal{A}_{3}$ be collections of distinct subsets of $n$-element set $S$ such that these collections are incomparable and uncomplemented. Then we can partition $\mathcal{A}_{1}$ into $\mathcal{A}_{11}, \mathcal{A}_{12}, \mathcal{A}_{13}$ such that $\overline{\mathcal{A}}_{12}$ is contained in $\mathcal{A}_{2}$ and $\overline{\mathcal{A}}_{13}$ is contained in $\mathcal{A}_{3}$. The similar partition applies to $\mathcal{A}_{2}$ and $\mathcal{A}_{3}$. Therefore, we have the following partitions:
$\mathcal{A}_{1}=\mathcal{A}_{11} \cup \mathcal{A}_{12} \cup \mathcal{A}_{13}, \mathcal{A}_{2}=\mathcal{A}_{21} \cup \mathcal{A}_{22} \cup \mathcal{A}_{23}, \mathcal{A}_{3}=\mathcal{A}_{31} \cup \mathcal{A}_{32} \cup \mathcal{A}_{33}$,
such that $\overline{\mathcal{A}}_{i, j}=\mathcal{A}_{j, i}$ for $i \neq j$.
We have the following result.
Theorem 13 Let $\mathcal{A}_{1}, \mathcal{A}_{2}$ and $\mathcal{A}_{3}$ be collections of distinct subsets of $n$-element set $S$ such that these collections are incomparable and uncomplemented. Then for any $1 \leq i, j \leq 3$,

$$
\left|\mathcal{A}_{1}\right|+\left|\mathcal{A}_{2}\right|+\left|\mathcal{A}_{3}\right| \leq 2^{n-1}+\left|\mathcal{A}_{i, j}\right| .
$$

Proof. Without loss of generality, we need only to show that

$$
\left|\mathcal{A}_{1}\right|+\left|\mathcal{A}_{2}\right|+\left|\mathcal{A}_{3}\right| \leq 2^{n-1}+\left|\mathcal{A}_{3, j}\right|
$$

for $j=1,2,3$. There are three cases.
Case 1. $j=1$.
Let $\mathcal{B}_{1}=\mathcal{A}_{1} \cup \mathcal{A}_{32} \cup \mathcal{A}_{33}$ and $\mathcal{B}_{2}=\mathcal{A}_{2}$. Then $\mathcal{B}_{1}$ and $\mathcal{B}_{2}$ are collections of uncomplemented and incomparable. By Theorem 1,

$$
\left|\mathcal{B}_{1}\right|+\left|\mathcal{B}_{2}\right| \leq 2^{n-1}
$$

Therefore,

$$
\left|\mathcal{A}_{1}\right|+\left|\mathcal{A}_{2}\right|+\left|\mathcal{A}_{3}\right| \leq 2^{n-1}+\left|\mathcal{A}_{3,1}\right| .
$$

Case 2. $j=2$.
The proof is similar to Case 1 .
Case 3. $j=3$.
Let $\mathcal{C}_{1}=\mathcal{A}_{1} \cup \mathcal{A}_{32}$ and $\mathcal{C}_{2}=\mathcal{A}_{2} \cup \mathcal{A}_{31}$. Then $\mathcal{C}_{1}$ and $\mathcal{C}_{2}$ are collections of uncomplemented subsets from $S$. To show that they are incomparable, we need to show that if $A \in \mathcal{C}_{1}, A=A_{32} \in \mathcal{A}_{32}$, and $B \in \mathcal{C}_{2}, B=A_{31} \in \mathcal{A}_{31}$, then $A \not \subset B$ and $B \not \subset A$. We observe that $A_{32} \not \subset A_{31}$. Otherwise, $\overline{A_{31}} \subset \overline{A_{32}}$. But $\overline{A_{31}}$ is in $\mathcal{A}_{13}$ and $\overline{A_{32}}$ is in $\mathcal{A}_{23}$, which contradicts the fact that $\mathcal{A}_{1}$ and $\mathcal{A}_{2}$ are incomparable. Similarly, $A_{31} \not \subset A_{32}$. Therefore, $\mathcal{C}_{1}$ and $\mathcal{C}_{2}$ are incomparable.

By Theorem 1 again,

$$
\left|\mathcal{C}_{1}\right|+\left|\mathcal{C}_{2}\right| \leq 2^{n-1}
$$

Therefore,

$$
\left|\mathcal{A}_{1}\right|+\left|\mathcal{A}_{2}\right|+\left|\mathcal{A}_{3}\right| \leq 2^{n-1}+\left|\mathcal{A}_{3,3}\right|
$$

This completes the proof.
Remark We note that in many cases, $\min \left\{\left|\mathcal{A}_{i j}\right|: 1 \leq i, j \leq 3\right\}$ is zero.
Corollary 14 Let $\mathcal{A}_{1}, \mathcal{A}_{2}$ and $\mathcal{A}_{3}$ be collections of distinct subsets of $n$-element set $S$ such that these collections are incomparable and uncomplemented. Then

$$
\left|\mathcal{A}_{1}\right|+\left|\mathcal{A}_{2}\right|+\left|\mathcal{A}_{3}\right| \leq \frac{9}{8} \cdot 2^{n-1}
$$

Proof. By Theorem 13, we have that for any $1 \leq i, j \leq 3$,

$$
\left|\mathcal{A}_{1}\right|+\left|\mathcal{A}_{2}\right|+\left|\mathcal{A}_{3}\right| \leq 2^{n-1}+\left|\mathcal{A}_{i, j}\right| .
$$

Summing up over all $1 \leq i, j \leq 3$, we have

$$
9\left(\left|\mathcal{A}_{1}\right|+\left|\mathcal{A}_{2}\right|+\left|\mathcal{A}_{3}\right|\right)=9 \times 2^{n-1}+\left(\left|\mathcal{A}_{1}\right|+\left|\mathcal{A}_{2}\right|+\left|\mathcal{A}_{3}\right|\right) .
$$

Therefore,

$$
\left|\mathcal{A}_{1}\right|+\left|\mathcal{A}_{2}\right|+\left|\mathcal{A}_{3}\right| \leq \frac{9}{8} \cdot 2^{n-1}
$$

This completes the proof.

## Acknowledgments

We thank the anonymous referee for the valuable comments.

## References

[1] I. Anderson, Combinatorics of finite sets, Oxford University Press, Oxford (1987).
[2] A.J.W. Hilton, A theorem on finite sets, Quart. Journal of Math., Oxford (2) 27 (1976), 33-36.
[3] D.J. Kleitman, Families of non-disjoint subsets, J. Combinatorial Theory, 1 (1966), 153-155.
[4] D.J. Kleitman, Review of [2], Mathematical Reviews 53\#146, (1977).
[5] D. Seymour, On incomparable collection of sets, Mathematika 20 (1973), 208209.
(Received 6/9/2000)


[^0]:    *This research was partially supported by the Natural Sciences and Engineering Research Council of Canada.

