On a conjecture of Hilton

Jiping Liu*

Department of Mathematics and Computer Sciences University of Lethbridge Lethbridge, Alberta, Canada, T1K 3M4 liu@cs.uleth.ca

Cheng Zhao

Department of Mathematics and Computer Sciences Indiana State University Terre Haute, IN 47809 USA cheng@laurel.indstate.edu

Abstract

We show that if $\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_k$ are collections of distinct subsets from an *n*-element set such that these collections are incomparable and uncomplemented, then $\sum_{i=1}^{k} |\mathcal{A}_i| \leq 2^{n-1}$ under certain conditions. Upper bounds are also given for $\sum_{i=1}^{k} |\mathcal{A}_i|$ with or without the "uncomplemented" condition.

1 Introduction

Let $\mathcal{A}_1, \dots, \mathcal{A}_k$ be k collections of distinct subsets of $S = \{1, 2, \dots, n\}$. These k collections of distinct subsets are called *incomparable* if $A_i \in \mathcal{A}_i$ and $A_j \in \mathcal{A}_j$, $(i \neq j)$, then $A_i \not\subset A_j$. A collection of subsets \mathcal{C} is called *uncomplemented* if $A \in \mathcal{C}$, then $\overline{A} \notin \mathcal{C}$, where $\overline{A} = S \setminus A$.

It is well known that if C is a collection of distinct subsets of $\{1, 2, \ldots, n\}$ which are uncomplemented, then $|C| \leq 2^{n-1}$. Hilton extended this result to two incomparable, uncomplemented collections

Theorem 1 [2] If A_1 and A_2 are collections of distinct subsets of S such that these collections are incomparable and uncomplemented, then

$$|\mathcal{A}_1| + |\mathcal{A}_2| \le 2^{n-1}.$$

Australasian Journal of Combinatorics 24(2001), pp.265-274

^{*}This research was partially supported by the Natural Sciences and Engineering Research Council of Canada.

He also posed the following conjecture.

Conjecture 1 [4] If A_1, A_2, \ldots, A_k are collections of distinct subsets of n-element set S such that these collections are incomparable and uncomplemented, then

$$\sum_{i=1}^k |\mathcal{A}_i| \le 2^{n-1}.$$

In this paper, we will investigate this conjecture. We give an upper bound and show that this conjecture is true under certain conditions. We also discuss the case when k = 3.

The following lemma from Kleitman will be used in our proof.

Lemma 2 [3] Let \mathcal{U} and \mathcal{V} be collections of subsets of an n element set S, such that (i) if $X \in \mathcal{U}$ and $X \subset Y \subset S$, then $Y \in \mathcal{U}$, (ii) if $X \in \mathcal{V}$ and $Y \subset X \subset S$, then $Y \in \mathcal{V}$. Then

$$|\mathcal{U} \cap \mathcal{V}| \cdot 2^n \le |\mathcal{U}||\mathcal{V}|.$$

2 Main results

Theorem 3 Let A_1, A_2, \ldots, A_k be incomparable collections of distinct subsets of *n*-element set S. Then for any $1 \le j \le k$,

$$\sum_{i=1}^{k} |\mathcal{A}_i| + 2[|\mathcal{A}_j| \sum_{i \neq j} |\mathcal{A}_i|]^{\frac{1}{2}} \le 2^n.$$

Proof. Without loss of generality, we will show

$$\sum_{i=1}^{k} |\mathcal{A}_i| + 2[|\mathcal{A}_1| \sum_{i \neq 1} |\mathcal{A}_i|]^{\frac{1}{2}} \le 2^n.$$

Let

$$\begin{aligned} \mathcal{H} &= \{ Z : \exists A_1 \in \mathcal{A}_1, A_1 \subseteq Z, \exists D \in \cup_{i=2}^k \mathcal{A}_i, D \subseteq Z \}, \\ \mathcal{I}_i &= \{ Z : \exists A_i \in \mathcal{A}_i, A_i \subseteq Z, \not\exists D \in \cup_{j \neq i} \mathcal{A}_j, D \subseteq Z \}, \\ \mathcal{L} &= \{ Z : \not\exists A_i \in \mathcal{A}_i, A_i \subseteq Z, 1 \le i \le k \}. \end{aligned}$$

Then clearly, $\mathcal{H} \cap \mathcal{L} = \emptyset$, $\mathcal{H} \cap \mathcal{I}_i = \emptyset$, $\mathcal{L} \cap \mathcal{I}_i = \emptyset$ for $1 \leq i \leq k$ and $\mathcal{I}_i \cap \mathcal{I}_j = \emptyset$ for any $i \neq j$. Therefore,

$$|\mathcal{H}| + \sum_{i=1}^{k} |\mathcal{I}_i| + |\mathcal{L}| \le 2^n.$$

Let $\mathcal{U} = \mathcal{H} \cup \mathcal{I}_1$ and $\mathcal{V} = \mathcal{L} \cup \mathcal{I}_1$. We claim that both \mathcal{U} and \mathcal{V} satisfy the conditions in Lemma 2. Let $X \in \mathcal{U}$ and $X \subset Y \subset S$. Then there exists an $A_1 \in \mathcal{A}_1$ such that $A_1 \subset X \subset Y$ by the definitions of \mathcal{H} and \mathcal{I}_1 . If there is a $D \in \bigcup_{i=2}^k \mathcal{A}_i$ such that $D \subseteq X \subset Y$, then $Y \in \mathcal{H} \subset \mathcal{U}$. Otherwise, $Y \in \mathcal{I}_1 \subset \mathcal{U}$.

Now let $X \in \mathcal{V}$ and $Y \subset X$. If there is no $A_1 \in \mathcal{A}_1$ such that $A_1 \subset Y$, then $Y \in \mathcal{L}$ and hence $Y \in \mathcal{V}$. Otherwise, $X \in \mathcal{I}_1$. This implies that there is no $D \in \bigcup_{j \neq 1} \mathcal{A}_j$ with $D \subseteq Y$. Therefore, $Y \in \mathcal{I}_1 \subset \mathcal{V}$.

By Lemma 2, we have

$$|\mathcal{U} \cap \mathcal{V}| 2^n \le |\mathcal{U}| |\mathcal{V}|.$$

That is,

$$|\mathcal{I}_1| \cdot 2^n \le (|\mathcal{H}| + |\mathcal{I}_1|)(|\mathcal{L}| + |\mathcal{I}_1|).$$

Then

$$|\mathcal{I}_1|(|\mathcal{H}| + \sum_{i=1}^k |\mathcal{I}_i| + |\mathcal{L}|) \le (|\mathcal{H}| + |\mathcal{I}_1|)(|\mathcal{L}| + |\mathcal{I}_1|).$$

Simplify,

$$|\mathcal{I}_1|(\sum_{i=2}^k |\mathcal{I}_i|) \le |\mathcal{H}||\mathcal{L}| \le [\frac{|\mathcal{H}| + |\mathcal{L}|}{2}]^2 \le [\frac{2^n - \sum_{i=1}^k |\mathcal{I}_i|}{2}]^2.$$

Therefore,

$$\sum_{i=1}^{\kappa} |\mathcal{I}_i| + 2[|\mathcal{I}_1| \sum_{i \neq 1} |\mathcal{I}_i|]^{\frac{1}{2}} \le 2^n.$$

We note that $\mathcal{A}_i \subseteq \mathcal{I}_i$ for any i = 1, ..., k as $\mathcal{A}_1, ..., \mathcal{A}_k$ are incomparable collections. Hence $|\mathcal{A}_i| \leq |\mathcal{I}_i|$ for $1 \leq i \leq k$. Therefore,

$$\sum_{i=1}^{k} |\mathcal{A}_{i}| + 2[|\mathcal{A}_{1}| \sum_{i \neq 1} |\mathcal{A}_{i}|]^{\frac{1}{2}} \le 2^{n}.$$

This completes the proof.

Corollary 4 Let A_1, A_2, \ldots, A_k be incomparable collections of distinct subsets of *n*-element set *S*. Let *I* and *J* be any partition of $\{1, \ldots, k\}$. Then

$$\sum_{i=1}^{k} |\mathcal{A}_i| + 2\left[\sum_{j \in J} |\mathcal{A}_j| \sum_{i \in I} |\mathcal{A}_i|\right]^{\frac{1}{2}} \le 2^n.$$

Proof. The corollary follows from the fact that $\bigcup_{i \in I} \mathcal{A}_i$ and $\bigcup_{j \in J} \mathcal{A}_j$ are incomparable.

The following theorem gives an upper bound if there is no \mathcal{A}_i having its cardinality too large.

Theorem 5 Let $\mathcal{A}_1, \mathcal{A}_2, \ldots, \mathcal{A}_k$ be incomparable collections of distinct subsets of *n*-element set *S*. If there is an $I \subset \{1, \ldots, k\}$ such that $\frac{\sum_{i=1}^{k} |\mathcal{A}_i|}{k} \leq \sum_{i \in I} |\mathcal{A}_i| \leq \frac{\sum_{i=1}^{k} |\mathcal{A}_i|}{k}$, then

$$\sum_{i=1}^{k} |\mathcal{A}_i| \le \frac{k}{2\sqrt{k-1}+k} 2^n.$$

Proof. From Corollary 4,

$$\sum_{i=1}^{k} |\mathcal{A}_i| + 2\left[\sum_{j \in J} |\mathcal{A}_j| \sum_{i \in I} |\mathcal{A}_i|\right]^{\frac{1}{2}} \le 2^n,$$

where $J = \{1, ..., k\} - I$. That is,

$$\sum_{i=1}^{k} |\mathcal{A}_{i}| + 2[\sum_{i \in I} |\mathcal{A}_{i}| (\sum_{i=1}^{k} |\mathcal{A}_{i}| - \sum_{i \in I} |\mathcal{A}_{i}|)]^{\frac{1}{2}} \le 2^{n}.$$

The function $f(x) = \sqrt{x(a-x)}$, where $a = \sum_{i=1}^{k} |\mathcal{A}_i|$ is a constant, is an increasing function for $0 \le x \le \frac{a}{2}$. Therefore, we can replace $\sum_{i \in I} |\mathcal{A}_i|$ by the average $\frac{\sum_{i=1}^{k} |\mathcal{A}_i|}{k}$ in the above inequality. We have

$$\sum_{i=1}^{k} |\mathcal{A}_{i}| + 2\left[\frac{\sum_{i=1}^{k} |\mathcal{A}_{i}|}{k} \left(\sum_{i=1}^{k} |\mathcal{A}_{i}| - \frac{\sum_{i=1}^{k} |\mathcal{A}_{i}|}{k}\right)\right]^{\frac{1}{2}} \le 2^{n}.$$

Solving for $\sum_{i=1}^{k} |\mathcal{A}_i|$ yields

$$\sum_{i=1}^{k} |\mathcal{A}_i| \le \frac{k}{2\sqrt{k-1}+k} 2^n.$$

This completes the proof.

Corollary 6 If A_1 and A_2 are incomparable collections of distinct subsets of nelement set S with $|A_1| = |A_2|$, then

$$|\mathcal{A}_1| + |\mathcal{A}_2| \le 2^{n-1}.$$

Corollary 7 If A_1, A_2, \ldots, A_k are incomparable and uncomplemented collections of distinct subsets of n-element set S, then either

$$\sum_{i=1}^{k} |\mathcal{A}_i| \le \frac{k}{2\sqrt{k-1}+k} 2^n$$

or

$$\sum_{i=1}^k |\mathcal{A}_i| < \frac{k}{k-1} 2^{n-1}.$$

Proof. Without loss of generality, we assume $|\mathcal{A}_1| \leq |\mathcal{A}_2| \leq \cdots \leq |\mathcal{A}_k|$. If $|\mathcal{A}_k| \leq \sum_{i=1}^{k-1} |\mathcal{A}_i|$, then we take $I = \{k\}$ in Theorem 5, we have $\frac{\sum_{i=1}^{k} |\mathcal{A}_i|}{k} \leq \sum_{i \in I} |\mathcal{A}_i| \leq \frac{\sum_{i=1}^{k} |\mathcal{A}_i|}{2}$. Therefore,

$$\sum_{i=1}^{k} |\mathcal{A}_i| \le \frac{k}{2\sqrt{k-1}+k} 2^n.$$

Thus, we may assume $|\mathcal{A}_k| > \sum_{i=1}^{k-1} |\mathcal{A}_i|$. If $\frac{\sum_{i=1}^k |\mathcal{A}_i|}{k} \leq \sum_{i=1}^{k-1} |\mathcal{A}_i|$, then we take $I = \{1, \dots, k-1\}$ and have $\frac{\sum_{i=1}^k |\mathcal{A}_i|}{k} \leq \sum_{i \in I} |\mathcal{A}_i| \leq \frac{\sum_{i=1}^k |\mathcal{A}_i|}{2}$. Hence

$$\sum_{i=1}^{k} |\mathcal{A}_i| \le \frac{k}{2\sqrt{k-1}+k} 2^n$$

by Theorem 5 again.

Therefore, $\frac{\sum_{i=1}^{k} |\mathcal{A}_i|}{k} > \sum_{i=1}^{k-1} |\mathcal{A}_i|$. That is $\sum_{i=1}^{k} |\mathcal{A}_i| > k \sum_{i=1}^{k-1} |\mathcal{A}_i|$. Thus, $|\mathcal{A}_k| > (k-1) \sum_{i=1}^{k-1} |\mathcal{A}_i|$. This is equivalent to $k|\mathcal{A}_k| > (k-1) \sum_{i=1}^{k} |\mathcal{A}_i|$. But $|\mathcal{A}_k| \le 2^{n-1}$ as \mathcal{A}_k is uncomplemented. Therefore,

$$\sum_{i=1}^k |\mathcal{A}_i| < \frac{k}{k-1} 2^{n-1}.$$

This completes the proof.

In [5], Seymour proved the following result.

Theorem 8 If \mathcal{A} is a collection of subsets of n-set S such that for all $A, B \in \mathcal{A}$, $A \cap B \neq \emptyset$ and $A \cup B \neq S$, then $|\mathcal{A}| \leq 2^{n-2}$.

Combining Theorems 5 and 8, we have the following result.

Theorem 9 Let A_1, A_2, \ldots, A_k be incomparable collections of distinct subsets of *n*-element set S. If for each $A_i, A, B \in A_i, A \cap B \neq \emptyset$ and $A \cup B \neq S$, then

$$\sum_{i=1}^{k} |\mathcal{A}_i| \le \frac{k}{2\sqrt{k-1}+k} 2^n.$$

Proof. We have that for each i, $|\mathcal{A}_i| \leq 2^{n-2}$ by Seymour's result. Let $a = \sum_{i=1}^k |\mathcal{A}_i|$. If $a \leq 2^{n-1}$, then we are done. Otherwise, we have that for any i, $|\mathcal{A}_i| \leq \frac{a}{2}$ from Theorem 8. Therefore,

$$\sum_{i=1}^{k} |\mathcal{A}_i| \le \frac{k}{2\sqrt{k-1}+k} 2^n,$$

by Theorem 5. ■

Lemma 10 Let A_1 and A_2 be collections of distinct subsets of n-element set S such that A_1 and A_2 are incomparable and A_1 is uncomplemented. Then

(a) $|\mathcal{A}_1| \leq 2^{n-1} - 2^{\lfloor \frac{n}{2} \rfloor} - 2^{\lceil \frac{n}{2} \rceil} + 2$ if \mathcal{A}_2 contains a pair of complemented sets.

(b) $|\mathcal{A}_1| \leq 2^{n-1} - 2^{\lfloor \frac{n}{2} \rfloor} - 2^{\lfloor \frac{n}{2} \rfloor} - 2^{\lfloor \frac{n}{2} \rfloor - 1} + 2$ if \mathcal{A}_2 contains more than one pair of complemented sets.

Proof. (a) Let \mathcal{A}_{1i} $(1 \leq i \leq 2)$ and \mathcal{A}_{2j} $(1 \leq j \leq 3)$ be such that

$$\begin{cases} \mathcal{A}_1 = \mathcal{A}_{11} \cup \mathcal{A}_{12}, \\ \mathcal{A}_2 = \mathcal{A}_{21} \cup \mathcal{A}_{22} \cup \mathcal{A}_{23} \cup \bar{\mathcal{A}}_{23}, \end{cases}$$

where $\mathcal{A}_{12} = \overline{\mathcal{A}}_{21}$, $\mathcal{A}_{11} \cap \mathcal{A}_{12} = \emptyset$, $\mathcal{A}_{2i} \cap \mathcal{A}_{2j} = \emptyset$ for $i \neq j$ and $1 \leq i, j \leq 3$, $\mathcal{A}_{2i} \cap \overline{\mathcal{A}}_{23} = \emptyset$ for $1 \leq i \leq 3$, and $\mathcal{A}_2 \cap \overline{\mathcal{A}}_{22} = \emptyset$.

Since $|\mathcal{A}_{23}| \neq 0$, we can choose $A_{23} \in \mathcal{A}_{23}$. Clearly, $S = A_{23} \cup \bar{A}_{23}$. We let $A_{23} = \{a_1, \dots, a_k\}$ and $\bar{A}_{23} = \{a_{k+1}, \dots, a_n\}$. Without loss of generality, we assume that $1 \leq k \leq \lfloor \frac{n}{2} \rfloor$.

We have that, for any $A_1 \in \mathcal{A}_1$,

$$\begin{cases} A_1 \cap A_{23} \neq \emptyset, \\ A_1 \cap \bar{A}_{23} \neq \emptyset, \\ \bar{A}_1 \cap A_{23} \neq \emptyset, \\ \bar{A}_1 \cap \bar{A}_{23} \neq \emptyset, \end{cases}$$
(*)

This claim is true since otherwise A_1 and A_2 are not incomparable, which contradicts our assumption.

It follows from (*) that any element A_1 of A_1 can be written as $A_1 = A_{11} \cup A_{12}$, where A_{11} and A_{12} are proper subsets of A_{23} and \bar{A}_{23} , respectively. Obviously, $1 \le |A_{11}| \le k-1$ and $1 \le |A_{21}| \le n-k-1$. It is easy to see that there are at most

$$\sum_{j=1}^{n-k-1} \sum_{i=1}^{k-1} \binom{k}{i} \binom{n-k}{j} = (2^k - 2)(2^{n-k} - 2)$$

such subsets satisfying the property (*).

Note that if $A_1 = A_{11} \cup A_{12}$, where $A_{11} \subset A_{23}$ and $A_{12} \subset \overline{A}_{23}$, then $(A_{23} \setminus A_{11}) \cup (\overline{A}_{23} \setminus A_{12})$ is also a subset satisfying the property (*). Since A_1 is uncomplemented, we have that

$$\begin{aligned} |\mathcal{A}_1| &\leq \frac{1}{2} (2^k - 2) (2^{n-k} - 2) \\ &= 2^{n-1} - 2^k - 2^{n-k} + 2. \end{aligned}$$
(**)

It is easy to verify that the function $2^x + 2^{n-x}$ is a decreasing function if $1 \le x \le \lfloor \frac{n}{2} \rfloor$. Therefore, taking $x = \lfloor \frac{n}{2} \rfloor$, we have

$$\begin{aligned} |\mathcal{A}_1| &\leq 2^{n-1} - 2^{\lfloor \frac{n}{2} \rfloor} - 2^{n-\lfloor \frac{n}{2} \rfloor} + 2 \\ &= 2^{n-1} - 2^{\lfloor \frac{n}{2} \rfloor} - 2^{\lceil \frac{n}{2} \rceil} + 2. \end{aligned}$$

This completes the proof of (a). (b) We divide the proof of (b) into two cases.

Case 1. $1 \le k \le \lfloor \frac{n}{2} \rfloor - 1$. Taking $x = \lfloor \frac{n}{2} \rfloor - 1$ in (**), we have

$$\begin{aligned} |\mathcal{A}_{1}| &\leq 2^{n-1} - 2^{\lfloor \frac{n}{2} \rfloor - 1} - 2^{n-\lfloor \frac{n}{2} \rfloor + 1} + 2 \\ &= 2^{n-1} - 2^{\lfloor \frac{n}{2} \rfloor - 1} - 2^{\lceil \frac{n}{2} \rceil + 1} + 2 \\ &\leq 2^{n-1} - 2^{\lfloor n/2 \rfloor} - 2^{\lceil n/2 \rceil} - 2^{\lfloor n/2 \rfloor - 1} + 2 \end{aligned}$$

Case 2. $k = \lfloor \frac{n}{2} \rfloor$.

In this case, we have, that for any $A_{23} \in \mathcal{A}_{23}$, $|A_{23}| = \lfloor \frac{n}{2} \rfloor$. We pick a $B_1 \in \mathcal{A}_{23}$ and a $B_2 \in \mathcal{A}_{23}$ where $B_1 \neq \overline{B_2}$, $B_1 \neq B_2$, and $|B_1| = |B_2| = \lfloor \frac{n}{2} \rfloor$.

Case 2.1. $n \equiv 1 \pmod{2}$.

Observe that $B_1 \cap B_2 < \lfloor \frac{n}{2} \rfloor$. Otherwise we would have a contradiction. First we assume that $1 \leq |B_1 \cap B_2| = x < \lfloor \frac{n}{2} \rfloor$. Then $|B_1 \cap \overline{B_2}| = \lfloor \frac{n}{2} \rfloor - x$. By repeating the argument in the proof of (a) we deduce that the number of A's which intersect B_1 and $\overline{B_1}$ properly, and do not contain all, is $(2^{\lfloor \frac{n}{2} \rfloor} - 2)(2^{n-\lfloor \frac{n}{2} \rfloor} - 2)$. The number of these A's contained in B_2 is $(2^x - 1)(2^{\lfloor \frac{n}{2} \rfloor - x} - 1)$. The number of these A's containing B_2 is $(2^{x+1}-1)(2^{\lfloor \frac{n}{2} \rfloor - x} - 1)$. The number of these A's contained in $\overline{B_2}$ is $(2^{x+1}-1)(2^{\lfloor \frac{n}{2} \rfloor - x} - 1)$. The number of these A's contained in $\overline{B_2}$ is $(2^{x+1}-1)(2^{\lfloor \frac{n}{2} \rfloor - x} - 1)$. The number of these A's contained in $\overline{B_2}$ is $(2^{x+1}-1)(2^{\lfloor \frac{n}{2} \rfloor - x} - 1)$. The number of these A's contained in $\overline{B_2}$ is $(2^{x+1}-1)(2^{\lfloor \frac{n}{2} \rfloor - x} - 1)$. The number of these A's contained in $\overline{B_2}$ is $(2^{x+1}-1)(2^{\lfloor \frac{n}{2} \rfloor - x} - 1)$. The number of these A's contained in $\overline{B_2}$ is $(2^{x+1}-1)(2^{\lfloor \frac{n}{2} \rfloor - x} - 1)$.

$$\begin{aligned} |\mathcal{A}_1| &\leq \frac{1}{2} \{ (2^{\lfloor \frac{n}{2} \rfloor} - 2)(2^{n-\lfloor \frac{n}{2} \rfloor} - 2) - 2(2^x - 1)(2^{\lfloor \frac{n}{2} \rfloor - x} - 1) \\ &- 2(2^{x+1} - 1)(2^{\lfloor \frac{n}{2} \rfloor - x} - 1) \} \\ &\leq 2^{n-1} - 2^{\lfloor n/2 \rfloor} - 2^{n-\lfloor n/2 \rfloor} - 2^{\lfloor n/2 \rfloor - 1} + 2. \end{aligned}$$

Next we assume $|B_1 \cap B_2| = 0$. Then $B_2 \subset \overline{B_1}$ and $|\overline{B_1} \cap \overline{B_2}| = 1$. It follows that $|\overline{B_1}| = |\overline{B_2}| = \lfloor \frac{n}{2} \rfloor + 1$. Repeating the proof in the above, we deduce that the number of A's which intersect B_1 and $\overline{B_1}$ properly, and do not contain all, is $(2^{\lfloor \frac{n}{2} \rfloor} - 2)(2^{n-\lfloor \frac{n}{2} \rfloor} - 2)$. The number of these A's contained in $\overline{B_2}$ is $2^{\lfloor n/2 \rfloor} - 2$. The number of these A's containing B_2 is $2^{\lfloor n/2 \rfloor} - 2$. Therefore,

$$\begin{aligned} |\mathcal{A}_1| &\leq \frac{1}{2} \{ (2^{\lfloor \frac{n}{2} \rfloor} - 2)(2^{n - \lfloor \frac{n}{2} \rfloor} - 2) - 2(2^{\lfloor n/2 \rfloor} - 2) \} \\ &\leq 2^{n-1} - 2^{\lfloor n/2 \rfloor} - 2^{n - \lfloor n/2 \rfloor} - 2^{\lfloor n/2 \rfloor - 1} + 2. \end{aligned}$$

Case 2.2. $n \equiv 0 \pmod{2}$.

In this case we only have that $1 \leq |B_1 \cap B_2| \leq \lfloor n/2 \rfloor - 1$. By repeating the argument of Case 2.1, we conclude that

$$\begin{aligned} |\mathcal{A}_1| &\leq \frac{1}{2} \{ (2^{\lfloor \frac{n}{2} \rfloor} - 2)(2^{n-\lfloor \frac{n}{2} \rfloor} - 2) - 2(2^{x+1} - 1)(2^{\lfloor \frac{n}{2} \rfloor - x} - 1) \\ &- 2(2^x - 1)(2^{\lfloor \frac{n}{2} \rfloor - x} - 1) \} \\ &\leq 2^{n-1} - 2^{\lfloor n/2 \rfloor} - 2^{n-\lfloor n/2 \rfloor} - 2^{\lfloor n/2 \rfloor - 1} + 2. \end{aligned}$$

This completes the proof.

Theorem 11 If A_1, A_2, \ldots, A_k are collections of distinct subsets of n-element set S such that these collections are incomparable and uncomplemented, then

$$\sum_{i=1}^k |\mathcal{A}_i| \le 2^{n-1},$$

if $\max_{1 \le i \le k} \{ |\mathcal{A}_i| \} > 2^{n-1} - 2^{\lfloor \frac{n}{2} \rfloor} - 2^{\lceil \frac{n}{2} \rceil} + 2.$

Proof. Without loss of generality, we assume that $|\mathcal{A}_1| = \max_{1 \le i \le k} \{|\mathcal{A}_i|\}$. Let $\mathcal{B} = \bigcup_{i=2}^n \mathcal{A}_i$. Then \mathcal{A}_1 and \mathcal{B} are incomparable. If \mathcal{B} is not uncomplemented, then $|\mathcal{A}_1| \le 2^{n-1} - 2^{\lfloor \frac{n}{2} \rfloor} - 2^{\lceil \frac{n}{2} \rceil} + 2$ by Lemma 10 (a), which is a contradiction. Therefore, both \mathcal{A}_1 and \mathcal{B} are uncomplemented and hence $|\mathcal{A}_1| + |\mathcal{B}| \le 2^{n-1}$ by Theorem 1. That is, $\sum_{i=1}^k |\mathcal{A}_i| \le 2^{n-1}$.

Theorem 12 If A_1, A_2, \ldots, A_k are collections of distinct subsets of n-elements set S such that these collections are incomparable and uncomplemented, then

$$\sum_{i=1}^{k} |\mathcal{A}_i| \le 2^{n-1} + 1,$$

if $max_{1 \le i \le k} \{ |\mathcal{A}_i| \} > 2^{n-1} - 2^{\lfloor \frac{n}{2} \rfloor} - 2^{\lceil \frac{n}{2} \rceil} - 2^{\lfloor \frac{n}{2} \rfloor - 1} + 2.$

Proof. Without loss of generality, we assume that $|\mathcal{A}_1| = \max_{1 \le i \le k} \{|\mathcal{A}_i|\}$. Let $\mathcal{B} = \bigcup_{i=2}^n \mathcal{A}_i$. Then \mathcal{A}_1 and \mathcal{B} are incomparable. If \mathcal{B} contains more than one pair of complemented sets, then $|\mathcal{A}_1| \le 2^{n-1} - 2^{\lfloor \frac{n}{2} \rfloor} - 2^{\lfloor \frac{n}{2} \rfloor - 1} + 2$ by Lemma 10 (b), which is a contradiction. Therefore, \mathcal{B} contains at most one pair of complemented sets. Let U be one of the set in the pair. Then $\mathcal{B} - U$ is uncomplemented, therefore, $|\mathcal{A}_1| + |\mathcal{B} - U| \le 2^{n-1}$. That is, $\sum_{i=1}^k |\mathcal{A}_i| \le 2^{n-1} + 1$.

3 The case k = 3

Let \mathcal{A}_1 , \mathcal{A}_2 and \mathcal{A}_3 be collections of distinct subsets of *n*-element set S such that these collections are incomparable and uncomplemented. Then we can partition \mathcal{A}_1 into \mathcal{A}_{11} , \mathcal{A}_{12} , \mathcal{A}_{13} such that $\overline{\mathcal{A}}_{12}$ is contained in \mathcal{A}_2 and $\overline{\mathcal{A}}_{13}$ is contained in \mathcal{A}_3 . The similar partition applies to \mathcal{A}_2 and \mathcal{A}_3 . Therefore, we have the following partitions:

 $\mathcal{A}_1 = \mathcal{A}_{11} \cup \mathcal{A}_{12} \cup \mathcal{A}_{13}, \ \mathcal{A}_2 = \mathcal{A}_{21} \cup \mathcal{A}_{22} \cup \mathcal{A}_{23}, \ \mathcal{A}_3 = \mathcal{A}_{31} \cup \mathcal{A}_{32} \cup \mathcal{A}_{33},$ such that $\overline{\mathcal{A}}_{i,j} = \mathcal{A}_{j,i}$ for $i \neq j$.

We have the following result.

Theorem 13 Let A_1 , A_2 and A_3 be collections of distinct subsets of n-element set S such that these collections are incomparable and uncomplemented. Then for any $1 \le i, j \le 3$,

$$|\mathcal{A}_1| + |\mathcal{A}_2| + |\mathcal{A}_3| \le 2^{n-1} + |\mathcal{A}_{i,j}|$$

Proof. Without loss of generality, we need only to show that

 $|\mathcal{A}_1| + |\mathcal{A}_2| + |\mathcal{A}_3| \le 2^{n-1} + |\mathcal{A}_{3,j}|,$

for j = 1, 2, 3. There are three cases.

Case 1. j = 1.

Let $\mathcal{B}_1 = \mathcal{A}_1 \cup \mathcal{A}_{32} \cup \mathcal{A}_{33}$ and $\mathcal{B}_2 = \mathcal{A}_2$. Then \mathcal{B}_1 and \mathcal{B}_2 are collections of uncomplemented and incomparable. By Theorem 1,

$$|\mathcal{B}_1| + |\mathcal{B}_2| \le 2^{n-1}.$$

Therefore,

$$|\mathcal{A}_1| + |\mathcal{A}_2| + |\mathcal{A}_3| \le 2^{n-1} + |\mathcal{A}_{3,1}|.$$

Case 2. j = 2.

The proof is similar to Case 1.

Case 3. j = 3.

Let $C_1 = \mathcal{A}_1 \cup \mathcal{A}_{32}$ and $C_2 = \mathcal{A}_2 \cup \mathcal{A}_{31}$. Then C_1 and C_2 are collections of uncomplemented subsets from S. To show that they are incomparable, we need to show that if $A \in C_1, A = A_{32} \in \mathcal{A}_{32}$, and $B \in C_2, B = A_{31} \in \mathcal{A}_{31}$, then $A \notin B$ and $B \notin A$. We observe that $A_{32} \notin A_{31}$. Otherwise, $\overline{A_{31}} \subset \overline{A_{32}}$. But $\overline{A_{31}}$ is in \mathcal{A}_{13} and $\overline{A_{32}}$ is in \mathcal{A}_{23} , which contradicts the fact that \mathcal{A}_1 and \mathcal{A}_2 are incomparable. Similarly, $A_{31} \notin A_{32}$. Therefore, C_1 and C_2 are incomparable.

By Theorem 1 again,

$$|\mathcal{C}_1| + |\mathcal{C}_2| \le 2^{n-1}.$$

Therefore,

$$|\mathcal{A}_1| + |\mathcal{A}_2| + |\mathcal{A}_3| \le 2^{n-1} + |\mathcal{A}_{3,3}|.$$

This completes the proof.

Remark We note that in many cases, $\min\{|\mathcal{A}_{ij}| : 1 \leq i, j \leq 3\}$ is zero.

Corollary 14 Let A_1 , A_2 and A_3 be collections of distinct subsets of n-element set S such that these collections are incomparable and uncomplemented. Then

$$|\mathcal{A}_1| + |\mathcal{A}_2| + |\mathcal{A}_3| \le \frac{9}{8} \cdot 2^{n-1}.$$

Proof. By Theorem 13, we have that for any $1 \le i, j \le 3$,

$$|\mathcal{A}_1| + |\mathcal{A}_2| + |\mathcal{A}_3| \le 2^{n-1} + |\mathcal{A}_{i,j}|.$$

Summing up over all $1 \leq i, j \leq 3$, we have

$$9(|\mathcal{A}_1| + |\mathcal{A}_2| + |\mathcal{A}_3|) = 9 \times 2^{n-1} + (|\mathcal{A}_1| + |\mathcal{A}_2| + |\mathcal{A}_3|).$$

Therefore,

$$|\mathcal{A}_1| + |\mathcal{A}_2| + |\mathcal{A}_3| \le \frac{9}{8} \cdot 2^{n-1}.$$

This completes the proof.

Acknowledgments

We thank the anonymous referee for the valuable comments.

References

- I. Anderson, Combinatorics of finite sets, Oxford University Press, Oxford (1987).
- [2] A.J.W. Hilton, A theorem on finite sets, Quart. Journal of Math., Oxford (2) 27 (1976), 33–36.
- [3] D.J. Kleitman, Families of non-disjoint subsets, J. Combinatorial Theory, 1 (1966), 153-155.
- [4] D.J. Kleitman, Review of [2], Mathematical Reviews 53#146, (1977).
- [5] D. Seymour, On incomparable collection of sets, Mathematika 20 (1973), 208– 209.

(Received 6/9/2000)