Bhaskar Rao designs and the alternating group A_4

D. Combe

School of Mathematics The University of New South Wales UNSW SYDNEY NSW 2052, Australia diana@maths.unsw.edu.au

W.D. Palmer W.R. Unger

School of Mathematics and Statistics The University of Sydney NSW 2006, Australia billp@maths.usyd.edu.au billu@maths.usyd.edu.au

Abstract

In this paper we introduce a new construction for generalized Bhaskar Rao designs. Using this construction, we show that a generalized Bhaskar Rao design, $\text{GBRD}(v, 3, \lambda; A_4)$ exists if and only if $\lambda \equiv 0 \pmod{12}$.

1 Introduction

In this paper we give a new construction for generalized Bhaskar Rao designs and then use this construction to establish a set of necessary and sufficient conditions for the existence of a generalized Bhaskar Rao design, $\text{GBRD}(v, 3, \lambda; A_4)$. In particular, we show that a $\text{GBRD}(v, 3, \lambda; A_4)$ exists if and only if $\lambda \equiv 0 \pmod{12}$.

The alternating group, A_4 , is the group of even permutations on four letters and can be generated by means of the defining relations:

 $a^{3} = 1, b^{2} = c^{2} = d^{2} = 1, bc = d, ba = ad, ca = ab, da = ac.$

2 Bhaskar Rao designs

Let \mathbb{G} be a finite group of order g, written multiplicatively. We write $Z(\mathbb{G})$ for the group ring of the group \mathbb{G} over the integers Z. Every element of $Z(\mathbb{G})$ is a formal sum $\sum_{x \in \mathbb{G}} a_x x$, where a_x is an integer and x is an element of the group \mathbb{G} . The element $\sum_{x \in \mathbb{G}} a_x x$, where all $a_x = 0$, is called the zero element of $Z(\mathbb{G})$ and is denoted by 0. An element $\sum_{x \in \mathbb{G}} a_x x$ of $Z(\mathbb{G})$ which has, for some $x \in \mathbb{G}$, $a_x = 1$ and $a_y = 0$ for

Australasian Journal of Combinatorics 24(2001), pp.275-283

 $x \neq y$, is simply written as x and is said to be an element of $Z(\mathbb{G})$ lying in \mathbb{G} or a group element of $Z(\mathbb{G})$. As we will be concerned exclusively with group rings over the integers Z, we will often, when the meaning is clear, refer to the group element x lying in group ring $Z(\mathbb{G})$ informally as an element of the group \mathbb{G} .

We define the element $\left(\sum_{x\in\mathbb{G}}a_xx\right)^{-1}$ of $Z(\mathbb{G})$ by

$$\left(\sum_{x\in\mathbb{G}}a_xx\right)^{-1}=\sum_{x\in\mathbb{G}}a_xx^{-1}.$$

It follows that $0^{-1} = 0$, the zero element of $Z(\mathbb{G})$, and, for any group element x, the group element x^{-1} is $1x^{-1}$, a group element of $Z(\mathbb{G})$. For further information on group rings the reader is referred to, for example, Hall [6, pp. 255–261] or As-chbacher [1, pp. 35–42].

For a matrix A with entries in $Z(\mathbb{G})$, we define the *size* of a column of A to be the number of non-zero entries occurring in that column. If all columns of A have the same size, k (say), we call k the size of A.

Definition 1. Let \mathbb{G} be finite group of order g, written multiplicatively. We define a generalized Bhaskar Rao design $\text{GBRD}(v, b, r, k, \lambda; \mathbb{G})$ to be a $v \times b$ matrix with entries from $Z(\mathbb{G})$, all of which are either 0 or group elements such that

- 1. each row contains exactly r group element entries and exactly b-r zero element entries;
- 2. each column contains exactly k group element entries and exactly v k zero element entries;
- 3. for any pair of distinct rows (x_1, x_2, \ldots, x_b) and (y_1, y_2, \ldots, y_b) the list

$$x_1 y_1^{g-1}, x_2 y_2^{g-1}, \dots, x_b y_b^{g-1}$$

contains each group element of $Z(\mathbb{G})$ (that is, element of \mathbb{G}) exactly λ/g times.

We note that $\lambda \equiv 0 \pmod{g}$, $k \leq v$ and $\lambda/g \leq r \leq b$.

Example 2. A GBRD $(5, 10, 6, 3, 3; Z_3)$ is given below:

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & a & a^2 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & a^2 & a & 0 & a & a^2 & 0 & 1 \\ 0 & 1 & 0 & a^2 & 0 & a & 1 & 0 & a & a \\ 0 & 0 & 1 & 0 & a^2 & a & 0 & a^2 & 1 & a^2 \end{bmatrix}$$

The generalized Bhaskar Rao design, A, appearing in Example 2 comes from Seberry [11, p. 379]. The column size of A is 3 and each entry of A belongs to $\{1, a, a^2\} \cup \{0\}$. For example, for the rows 2 and 3 of A, the list: 1, 0, 0, 0, 0, $a^{-1} = a^2$, $(a^2)^{-1} = a$, 0, 0, contains each of the group elements 1, a and a^2 exactly once. **Example 3.** A GBRD $(3, 12, 12, 3, 12; A_4)$ is given below:

If v > k, replacing the group element entries in a GBRD $(v, b, r, k, \lambda; \mathbb{G})$ produces a (0, 1)-matrix which is an incidence matrix for a balanced incomplete block design, BIBD (v, b, r, k, λ) . It is well-known, see, for example, Street and Street [12], that the five numbers v, b, r, k and λ for a balanced incomplete block design, are not independent: they satisfy the relations bk = vr and $\lambda(v-1) = r(k-1)$. For a generalized Bhaskar Rao design in which v = k, there are no zero element entries and $b = r = \lambda$, so the relations: bk = vr and $\lambda(v-1) = r(k-1)$ still hold. Thus it is usual to denote the GBRD $(v, b, r, k, \lambda; \mathbb{G})$ by the shorter notation GBRD $(v, k, \lambda; \mathbb{G})$.

Some generalized Bhaskar Rao designs can be described by a set of GBRD initial blocks. See, for example, Seberry [11]. In Example 4, we explain this description by means of an example.

Example 4. A set of initial blocks (mod $3, A_4$) for a GBRD(4, 3, 12; A_4) is given below:

$$\begin{array}{ll} (\infty_1, 1_{a^2d}, 2_b), & (\infty_1, 1_{ab}, 2_c), & (\infty_1, 1_{a^2b}, 2_{a^2c}), \\ (\infty_1, 1_a, 2_{ac}), & (\infty_1, 1_1, 2_{ad}), & (\infty_1, 1_d, 2_{a^2}), \\ (0_1, 1_a, 2_{a^2}), & (0_1, 1_{ac}, 2_{ab}). \end{array}$$

A GBRD(4, 3, 12; A_4) has 4 rows and 24 columns. We think of the rows of this 4×24 matrix as labelled ∞ , 0, 1 and 2. The GBRD(4, 3, 12; A_4) is built up from eight 4×3 submatrices B_1, \ldots, B_8 which are developed from the eight initial blocks.

The collection of blocks developed (mod 3, A_4) from the initial block ($\infty_1, 1_{a^2d}, 2_b$) is

$$(\infty_1, 1_{a^2d}, 2_b), (\infty_1, 2_{a^2d}, 0_b), (\infty_1, 0_{a^2d}, 1_b).$$

That is, we develop an initial block, $(a_{\alpha}, b_{\beta}, c_{\gamma})$, by developing a, b and $c \pmod{3}$ and leaving the subscripts α, β and γ unaltered.

From the three blocks:

 $(\infty_1, 1_{a^2d}, 2_b), (\infty_1, 2_{a^2d}, 0_b), (\infty_1, 0_{a^2d}, 1_b),$

we construct B_1 . The entries of the first column of B_1 , corresponding to the first block $(\infty_1, 1_{a^2d}, 2_b)$ are $(1, 0, a^2d, b)$. That is, the group element 1 is placed in the row labelled ∞ , a^2d in the row labelled 1, b is placed in row labelled 2, and the entry in row labelled 0 is 0, the zero element in $Z(A_4)$.

Similarly, the entries of the second column of B_1 , corresponding to the second block $(\infty_1, 2_{a^2d}, 0_b)$ are $(1, b, 0, a^2d)$. Finally, the entries of the last column, corresponding to the third block $(\infty_1, 0_{a^2d}, 1_b)$ are $(1, a^2d, b, 0)$.

That is,

$$B_1 = \begin{bmatrix} 1 & 1 & 1 \\ 0 & b & a^2 d \\ a^2 d & 0 & b \\ b & a^2 d & 0 \end{bmatrix}.$$

Similarly, we construct the other seven matrices B_2, \ldots, B_8 each constructed from the blocks arising from developing the remaining seven initial blocks. The 4×24 matrix

$$B = [B_1, \ldots, B_8]$$

is a $GBRD(4, 3, 12; A_4)$. That is, we develop a collection of 24 blocks from the set of eight initial blocks. The $GBRD(4, 3, 12; A_4)$ so constructed is given explicitly below:

Example 5. A set of initial blocks (mod 5, A_4) for a GBRD(6, 3, 12; A_4) is given below:

$(\infty_1, 0_1, 3_{a^2}),$	$(0_1, 2_{a^2b}, 3_{a^2d}),$	$(\infty_1, 0_d, 3_{a^2c}),$	$(0_1, 2_c, 3_{ac}),$
$(\infty_1, 0_b, 3_c),$	$(0_1, 2_{a^2c}, 3_1),$	$(\infty_1, 0_{ac}, 4_{a^2d}),$	$(0_1, 1_1, 4_a),$
$(\infty_1, 0_a, 4_{ab}),$	$(0_1, 1_{ac}, 4_{ab}),$	$(\infty_1, 0_{ad}, 4_{a^2b}),$	$(0_1, 1_d, 4_{a^2b}).$

3 Construction Theorems

Theorem 6. Let \mathbb{G} be a finite group (of order g), \mathbb{N} a normal subgroup (of order n) of \mathbb{G} , and v, λ and μ positive integers. We write u for g/n, the order of \mathbb{G}/\mathbb{N} and $0_{\mathbb{G}/\mathbb{N}}$ for the zero element in $Z(\mathbb{G}/\mathbb{N})$. Suppose we are given a $v \times b$ matrix, A, with entries taken from $\mathbb{G}/\mathbb{N} \cup \{0_{\mathbb{G}/\mathbb{N}}\}$ such that

• for any pair of distinct rows (x_1, x_2, \ldots, x_b) and (y_1, y_2, \ldots, y_b) , the list

$$x_1 y_1^{u-1}, x_2 y_2^{u-1}, \dots, x_b y_b^{u-1}$$

contains each element of \mathbb{G}/\mathbb{N} exactly λ/u times.

• for each column size k of A, a $GBRD(k, c, s, j, \mu; \mathbb{N}), C(k)$.

Then we can construct the matrix, X which is a $GBRD(v, j, \lambda\mu; \mathbb{G})$.

Proof. Let t be the index of N in G. Fix a set $S = \{g_1 = e, \ldots, g_t\}$ of coset representatives of N in G. We observe that the group element entries of the matrix A are cosets of N in G and the group element entries of each matrix C(k) are elements of the normal subgroup N. For each k, we denote the k rows of C(k) by $\mathbf{c}(k)_l, l = 1, \ldots, k$.

We now form the matrix X from the matrices A and C(k). Select a column of A of size k (say). Replace each entry of this column by row vectors of length c in the following manner: replace the the first non-zero entry, say $g_l\mathbb{N}$ by the row vector $g_l\mathbf{c}(k)_1$, the second non-zero entry, say $g_m\mathbb{N}$ by the row vector $g_m\mathbf{c}(k)_2$, and so on. Finally, we replace the remaining (that is, zero entries) of the selected column of A by the row vector $(0, \ldots, 0)$ consisting of c zero entries.

Now select another column of A and repeat the replacement process.

When all columns of A have been replaced by row vectors we have constructed a matrix X which is a $\text{GBRD}(v, j, \lambda\mu; \mathbb{G})$.

The following theorems which can be viewed as immediate consequences of Theorem 6 will be used extensively in the remaining sections of the paper. Theorem 7, based upon pairwise balanced designs (defined below), was first proved in de Launey and Seberry [5, 4], firstly for generalized Bhaskar Rao designs over the group Z_2 and then for generalized Bhaskar Rao designs over any finite group.

For v and λ positive integers and K a set of positive integers. We define a *pairwise* balanced design, denoted by PBD(v; K; λ), to be an arrangement of the v elements of a set X into a collection (not necessarily distinct) subsets (called *blocks*) of X, for which:

1. each pair of distinct elements of X appear together in exactly λ blocks.

2. if a block contains exactly k elements of X then k belongs to K.

A pairwise balanced design PBD $(v; \{k\}; \lambda)$, where $K = \{k\}$ consists of exactly one integer, is a BIBD (v, k, λ) . It is well-known, see, for example, Street and Wallis [13], that a PBD $(v - 1; \{k, k - 1\}; \lambda)$ can be obtained from a BIBD (v, b, r, k, λ) .

Theorem 8 was proved in Palmer [9].

Theorem 7. Given a pairwise balanced design $PBD(v; K; \lambda)$, and for each $k \in K$, a $GBRD(k, j, \mu; \mathbb{G})$, we can construct a $GBRD(v, j, \lambda\mu; \mathbb{G})$.

Proof. In Theorem 6, take $\mathbb{G} = \mathbb{N}$ and A to be an incidence matrix of a PBD $(v; K; \lambda)$.

Theorem 8. Suppose that \mathbb{N} is a normal subgroup of a finite group \mathbb{G} . Then, given a $GBRD(v, k, \lambda; \mathbb{G}/\mathbb{N})$ and a $GBRD(k, j, \mu; \mathbb{N})$ we can construct a $GBRD(v, j, \lambda\mu; \mathbb{G})$.

Proof. In Theorem 6, take A to be a $\text{GBRD}(v, k, \lambda; \mathbb{G}/\mathbb{N})$.

In the next section, we apply Theorem 6 to construct a $GBRD(14, 3, 12; A_4)$.

4 **GBRD** $(14, 3, 12; A_4)$

The subgroup, $\mathbb{N} = \langle b, c \rangle$ is normal in A_4 and is isomorphic to the group $Z_2 \times Z_2$. The factor group, A_4/\mathbb{N} is isomorphic to Z_3 . The matrix, Y which is a GBRD(15,7,3; A_4/\mathbb{N}), found as a result of a Magma [3] search. We exhibit the matrix Y below:

[1ℕ	0	0	0	0	$1\mathbb{N}$	0	$1\mathbb{N}$	0	0	$1\mathbb{N}$	$1\mathbb{N}$	0	$1\mathbb{N}$	$1\mathbb{N}$
$1\mathbb{N}$	$1\mathbb{N}$	0	0	0	0	$1\mathbb{N}$	0	$1\mathbb{N}$	0	0	$a\mathbb{N}$	$1\mathbb{N}$	0	$a^2\mathbb{N}$
$1\mathbb{N}$	$a\mathbb{N}$	$1\mathbb{N}$	0	0	0	0	$a\mathbb{N}$	0	$1\mathbb{N}$	0	0	$a^2\mathbb{N}$	$a^2\mathbb{N}$	0
0	$1\mathbb{N}$	$a\mathbb{N}$	$1\mathbb{N}$	0	0	0	0	$a\mathbb{N}$	0	$1\mathbb{N}$	0	0	$a^2\mathbb{N}$	$a\mathbb{N}$
$1\mathbb{N}$	0	$a^2\mathbb{N}$	$a^2\mathbb{N}$	$1\mathbb{N}$	0	0	0	0	$a\mathbb{N}$	0	$a^2\mathbb{N}$	0	0	$a\mathbb{N}$
1ℕ	$a^2\mathbb{N}$	0	$1\mathbb{N}$	$a^2\mathbb{N}$	$a^2\mathbb{N}$	0	0	0	0	$a\mathbb{N}$	0	$a\mathbb{N}$	0	0
0	$1\mathbb{N}$	$1\mathbb{N}$	0	$a^2\mathbb{N}$	$a\mathbb{N}$	$a^2\mathbb{N}$	0	0	0	0	$a^2\mathbb{N}$	0	$1\mathbb{N}$	0
0	0	$1\mathbb{N}$	$a\mathbb{N}$	0	$a^2\mathbb{N}$	$a\mathbb{N}$	$1\mathbb{N}$	0	0	0	0	$1\mathbb{N}$	0	$a\mathbb{N}$
$1\mathbb{N}$	0	0	$a\mathbb{N}$	$a\mathbb{N}$	0	$a^2\mathbb{N}$	$a^2\mathbb{N}$	$a\mathbb{N}$	0	0	0	0	$a\mathbb{N}$	0
0	$1\mathbb{N}$	0	0	$a\mathbb{N}$	$a^2\mathbb{N}$	0	$a\mathbb{N}$	$a^2\mathbb{N}$	$a\mathbb{N}$	0	0	0	0	$1\mathbb{N}$
$1\mathbb{N}$	0	$a\mathbb{N}$	0	0	$a\mathbb{N}$	$a\mathbb{N}$	0	$a^2\mathbb{N}$	$a^2\mathbb{N}$	$a^2\mathbb{N}$	0	0	0	0
0	$1\mathbb{N}$	0	$a^2\mathbb{N}$	0	0	$a\mathbb{N}$	$a^2\mathbb{N}$	0	$1\mathbb{N}$	$a\mathbb{N}$	$1\mathbb{N}$	0	0	0
0	0	$1\mathbb{N}$	0	$1\mathbb{N}$	0	0	$a^2\mathbb{N}$	$a^2\mathbb{N}$	0	$1\mathbb{N}$	$a\mathbb{N}$	$a\mathbb{N}$	0	0
0	0	0	$1\mathbb{N}$	0	$1\mathbb{N}$	0	0	$a^2\mathbb{N}$	$1\mathbb{N}$	0	$a^2\mathbb{N}$	$1\mathbb{N}$	$a\mathbb{N}$	0
0	0	0	0	$1\mathbb{N}$	0	$a^2\mathbb{N}$	0	0	$a^2\mathbb{N}$	$a\mathbb{N}$	0	$1\mathbb{N}$	$a^2\mathbb{N}$	$1\mathbb{N}$

Now we delete the last row of Y to form A a 14×15 matrix. We observe that:

- the size of each column of A lies in {6,7};
- for any pair of distinct rows of A, $(x_1, x_2, \ldots, x_{15})$ and $(y_1, y_2, \ldots, y_{15})$, the list

$$x_1y_1^{-1}, x_2y_2^{-1}, \dots, x_{15}y_{15}^{-1}$$

contains each element of the factor group A_4/\mathbb{N} exactly once.

The matrix C(7) which is a GBRD $(7, 3, 4; \mathbb{N})$, can be constructed by replacing the 1s in an incidence matrix for a BIBD(7, 3, 1) by the rows of D which is a GBRD $(3, 3, 4; \mathbb{N})$ where

$$D = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & b & bc & c \\ 1 & c & b & bc \end{bmatrix} = \begin{bmatrix} \mathbf{c}_1 \\ \mathbf{c}_2 \\ \mathbf{c}_3 \end{bmatrix}.$$

The 0s are replaced by the zero row vector $\mathbf{0} = (0, 0, 0, 0)$. The matrix

$$\begin{bmatrix} c_1 & 0 & 0 & 0 & c_1 & 0 & c_1 \\ c_1 & c_1 & 0 & 0 & 0 & c_1 & 0 \\ 0 & c_2 & c_1 & 0 & 0 & 0 & c_2 \\ c_3 & 0 & c_2 & c_1 & 0 & 0 & 0 \\ 0 & c_3 & 0 & c_2 & c_2 & 0 & 0 \\ 0 & 0 & c_3 & 0 & c_3 & c_2 & 0 \\ 0 & 0 & 0 & c_3 & 0 & c_3 & c_3 \end{bmatrix} = \begin{bmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \\ e_5 \\ e_6 \\ e_7 \end{bmatrix}$$

is then the required matrix C(7) which is a GBRD $(7, 3, 4; \mathbb{N})$.

From Lam and Seberry [8, p. 90], we see that the matrix

Γ1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0]		$[\mathbf{f}_1]$	
1	b	c	bc	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0		\mathbf{f}_2	
1	0	0	0	b	c	bc	0	0	0	b	c	bc	0	0	0	1	1	1	0		\mathbf{f}_3	
0	1	0	0	b	0	0	c	bc	0	1	0	0	c	bc	0	c	bc	0	1	=	\mathbf{f}_4	
0	0	1	0	0	c	0	b	0	bc	0	1	0	bc	0	b	0	bc	b	c		\mathbf{f}_5	
[0	0	0	1	0	0	bc	0	b	c	0	0	1	0	c	b	b	0	c	1		$[\mathbf{f}_6]$	

is a GBRD(6, 3, 4; \mathbb{N}). Set this general Bhaskar Rao design to be the matrix C(6). We now construct the matrix X from the entries of the matrix A and the rows of the matrices C(6) and C(7) using the construction contained in Theorem 6

Each column of A is of size 6 or 7.

Consider in turn the columns of A of size 6.

- Replace the first non-zero entry, say 1N, by the row vector 1f₁,
- Replace the second non-zero entry, say $h\mathbb{N}$, where $h \in \{1, a, a^2\}$, by the row vector $h\mathbf{f}_2$, where \mathbf{f}_2 is the second row of the matrix C(6); and so on.
- Replace the zero entries by a zero row vector of length 20.

Next consider in turn the columns of A of size 7.

- Replace the first non-zero entry, 1N, by the row vector $1\mathbf{e}_1$, where \mathbf{e}_1 is the first row of the matrix C(7).
- Replace the second non-zero entry, say $h\mathbb{N}$, where $h \in \{1, a, a^2\}$, by the row vector $h\mathbf{e}_2$, where \mathbf{e}_2 is the second row of the matrix C(7); and so on.
- Replace the zero entries by a zero row vector of length 28.

The matrix X is a $\text{GBRD}(14, 3, 12; A_4)$.

5 Existence result

Fix $\mathbb{N} = \langle b, c \rangle$, a normal subgroup of A_4 .

Lemma 9. Necessary conditions for the existence of a $GBRD(v, 3, \lambda; A_4)$ are $v \ge 3$ and $\lambda \equiv 0 \pmod{12}$.

Proof. For a GBRD $(v, 3, \lambda; A_4)$ to exist

$$\lambda \equiv 0 \pmod{12}$$

and there must exist a BIBD $(v, 3, \lambda)$ which exists only if:

$$v \ge 3$$

 $\lambda(v-1) \equiv 0 \pmod{2}$
 $\lambda v(v-1) \equiv 0 \pmod{6}.$

These conditions are equivalent to the necessary conditions:

$$v \ge 3$$

 $\lambda \equiv 0 \pmod{12}$

From Hall [7, Lemma 15.4.2] we have the useful

Lemma 10. If $v \ge 3$ then a $PBD(v; K_3^2; 1)$ exists, where $K_3^2 = \{3, 4, 5, 6, 8, 11, 14\}$.

We now construct a GBRD $(u, 3, 12; A_4)$ where $u \in \{3, 4, 5, 6, 8, 11, 14\}$. Whence we apply Lemma 10 and Theorem 7 to construct a GBRD $(v, 3, 12; A_4)$ for all $v \ge 3$.

Theorem 11. If $v \ge 3$ and odd. Then we can construct a $GBRD(v, 3, 12; A_4)$.

Proof. In Seberry [11] it was shown that a GBRD $(v, 3, 3; Z_3)$ exists when $v \ge 3$ and odd. Hence there exists a GBRD $(v, 3, 3; A_4/\mathbb{N})$ Also a GBRD $(3, 3, 4; Z_2 \times Z_2)$ exists (Lam and Seberry [8, Corollary 3.5.]) so a GBRD $(3, 3, 4; \mathbb{N})$. Hence, by Theorem 8, we can construct a GBRD $(v, 3, 12; A_4)$ when $v \ge 3$ and odd.

Corollary 12. A $GBRD(v, 3, 12; A_4)$ exists for $v \in \{3, 5, 7, 11\}$.

Lemma 13. We can construct a $GBRD(8, 3, 12; A_4)$.

Proof. GBRD(8, 4, 3; A_4/\mathbb{N}) exists as a GBRD(8, 4, 3; Z_3) exists (de Launey and Seberry [4]) A GBRD(4, 3, 4; \mathbb{N}) exists as a GBRD(4, 3, 4; $Z_2 \times Z_2$) exists (Lam and Seberry [8]). Hence, using Theorem 8, we can combine these designs to construct a GBRD(8, 3, 12; A_4).

Theorem 14. A generalized Bhaskar Rao design, $GBRD(v, 3, \lambda; A_4)$ exists if and only if $\lambda \equiv 0 \pmod{12}$.

Proof. We have constructed a generalized Bhaskar Rao design, $\text{GBRD}(u, 3, \lambda; A_4)$ for each $u \in \{3, 4, 5, 6, 8, 11, 14\}$. Hence, by Lemma 10 and Theorem 7, we can construct a $\text{GBRD}(v, 3, 12; A_4)$ for all $v \ge 3$. Finally, for all $v \ge 3$ and for all $\lambda = 12s$, we can construct a $\text{GBRD}(v, 3, \lambda; A_4)$ by taking s copies of a $\text{GBRD}(v, 3, 12; A_4)$.

In Lemma 9 we proved that a GBRD $(v, 3, \lambda; A_4)$ exists only if $v \ge 3$ and $\lambda \equiv 0 \pmod{12}$.

References

- M. Aschbacher, *Finite Group Theory*, Cambridge University Press, Cambridge, 1986.
- M. Bhaskar Rao, Balanced orthogonal designs and their application in the construction of some BIB and group divisible designs, Sankhya Ser. A 32 (1970), 439-448.

- [3] W. Bosma, J.J. Cannon, C. Playoust and A. Steel, *Solving Problems with Magma* The School of Mathematics and Statistics, The University of Sydney, Sydney, 1995.
- [4] W. de Launey and J. Seberry, On generalized Bhaskar Rao designs of block size four, Congressus Numerantium 41 (1984), 229–294.
- [5] W. de Launey and J. Seberry, On Bhaskar Rao designs of block size four, Combinatorics and Applications (Calcutta, 1982), 311–316, Indian Statist. Inst., Calcutta, 1984.
- [6] M. Hall Jr., The Theory of Groups, Macmillan, New York, 1959.
- [7] M. Hall Jr., Combinatorial Theory, 2nd edition, Wiley, New York, 1986.
- [8] C. Lam and J. Seberry, Generalized Bhaskar Rao designs, J. Statist. Plann. and Inference 10 (1984), 83–95.
- [9] W.D. Palmer, A composition theorem for generalized Bhaskar Rao designs, Australas. J. Combin. 6 (1992), 221–228.
- [10] W.D. Palmer and J. Seberry, Bhaskar Rao designs over small groups, Ars Combinatoria 26A (1998), 125–148.
- [11] J. Seberry, Some families of partially balanced incomplete designs, In: Combinatorial Mathematics IX, Lecture Notes in Mathematics No. 952, Springer-Verlag, Berlin, 1982.
- [12] A.P. Street and D.J. Street, Combinatorics of Experimental Design, Oxford University Press, Oxford, 1987.
- [13] A.P. Street and W.D. Wallis, Combinatorial Theory: An Introduction, Charles Babbage Research Centre, Winnipeg, 1977.

(Received 18/9/2000)