Bhaskar Rao designs and the alternating group A_{4}

D. Combe
School of Mathematics
The University of New South Wales
UNSW SYDNEY NSW 2052, Australia
diana@maths.unsw.edu.au
W.D. Palmer W.R. Unger
School of Mathematics and Statistics
The University of Sydney
NSW 2006, Australia
billp@maths.usyd.edu.au billu@maths.usyd.edu.au

Abstract

In this paper we introduce a new construction for generalized Bhaskar Rao designs. Using this construction, we show that a generalized Bhaskar Rao design, $\operatorname{GBRD}\left(v, 3, \lambda ; A_{4}\right)$ exists if and only if $\lambda \equiv 0(\bmod 12)$.

1 Introduction

In this paper we give a new construction for generalized Bhaskar Rao designs and then use this construction to establish a set of necessary and sufficient conditions for the existence of a generalized Bhaskar Rao design, $\operatorname{GBRD}\left(v, 3, \lambda ; A_{4}\right)$. In particular, we show that a $\operatorname{GBRD}\left(v, 3, \lambda ; A_{4}\right)$ exists if and only if $\lambda \equiv 0(\bmod 12)$.

The alternating group, A_{4}, is the group of even permutations on four letters and can be generated by means of the defining relations:

$$
a^{3}=1, b^{2}=c^{2}=d^{2}=1, b c=d, b a=a d, c a=a b, d a=a c
$$

2 Bhaskar Rao designs

Let \mathbb{G} be a finite group of order g, written multiplicatively. We write $Z(\mathbb{G})$ for the group ring of the group \mathbb{G} over the integers Z. Every element of $Z(\mathbb{G})$ is a formal sum $\sum_{x \in \mathbb{G}} a_{x} x$, where a_{x} is an integer and x is an element of the group \mathbb{G}. The element $\sum_{x \in \mathbb{G}} a_{x} x$, where all $a_{x}=0$, is called the zero element of $Z(\mathbb{G})$ and is denoted by 0 . An element $\sum_{x \in \mathbb{G}} a_{x} x$ of $Z(\mathbb{G})$ which has, for some $x \in \mathbb{G}, a_{x}=1$ and $a_{y}=0$ for
$x \neq y$, is simply written as x and is said to be an element of $Z(\mathbb{G})$ lying in \mathbb{G} or a group element of $Z(\mathbb{G})$. As we will be concerned exclusively with group rings over the integers Z, we will often, when the meaning is clear, refer to the group element x lying in group ring $Z(\mathbb{G})$ informally as an element of the group \mathbb{G}.

We define the element $\left(\sum_{x \in \mathbb{G}} a_{x} x\right)^{-1}$ of $Z(\mathbb{G})$ by

$$
\left(\sum_{x \in \mathbb{G}} a_{x} x\right)^{-1}=\sum_{x \in \mathbb{G}} a_{x} x^{-1} .
$$

It follows that $0^{-1}=0$, the zero element of $Z(\mathbb{G})$, and, for any group element x, the group element x^{-1} is $1 x^{-1}$, a group element of $Z(\mathbb{G})$. For further information on group rings the reader is referred to, for example, Hall [6, pp. 255-261] or Aschbacher [1, pp. 35-42].

For a matrix A with entries in $Z(\mathbb{G})$, we define the size of a column of A to be the number of non-zero entries occurring in that column. If all columns of A have the same size, k (say), we call k the size of A.

Definition 1 . Let \mathbb{G} be finite group of order g, written multiplicatively. We define a generalized Bhaskar Rao design $\operatorname{GBRD}(v, b, r, k, \lambda ; \mathbb{G})$ to be a $v \times b$ matrix with entries from $Z(\mathbb{G})$, all of which are either 0 or group elements such that

1. each row contains exactly r group element entries and exactly $b-r$ zero element entries;
2. each column contains exactly k group element entries and exactly $v-k$ zero element entries;
3. for any pair of distinct rows $\left(x_{1}, x_{2}, \ldots, x_{b}\right)$ and $\left(y_{1}, y_{2}, \ldots, y_{b}\right)$ the list

$$
x_{1} y_{1}^{g-1}, x_{2} y_{2}^{g-1}, \ldots, x_{b} y_{b}^{g-1}
$$

contains each group element of $Z(\mathbb{G})$ (that is, element of \mathbb{G}) exactly λ / g times.
We note that $\lambda \equiv 0(\bmod g), k \leq v$ and $\lambda / g \leq r \leq b$.
Example 2. $\mathrm{A} \operatorname{GBRD}\left(5,10,6,3,3 ; Z_{3}\right)$ is given below:

$$
A=\left[\begin{array}{cccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & a & a^{2} & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & a^{2} & a & 0 & a & a^{2} & 0 & 1 \\
0 & 1 & 0 & a^{2} & 0 & a & 1 & 0 & a & a \\
0 & 0 & 1 & 0 & a^{2} & a & 0 & a^{2} & 1 & a^{2}
\end{array}\right]
$$

The generalized Bhaskar Rao design, A, appearing in Example 2 comes from Seberry [11, p. 379]. The column size of A is 3 and each entry of A belongs to $\left\{1, a, a^{2}\right\} \cup\{0\}$. For example, for the rows 2 and 3 of A, the list: $1,0,0,0,0$, $a^{-1}=a^{2},\left(a^{2}\right)^{-1}=a, 0,0$, contains each of the group elements $1, a$ and a^{2} exactly once.

Example 3. $\mathrm{A} \operatorname{GBRD}\left(3,12,12,3,12 ; A_{4}\right)$ is given below:

$$
\left[\begin{array}{cccccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & a & a^{2} & b & a b & a^{2} b & c & a c & a^{2} c & d & a d & a^{2} d \\
1 & a^{2} & a & c & a^{2} c & a d & d & a^{2} d & a b & b & a^{2} b & a c
\end{array}\right]
$$

If $v>k$, replacing the group element entries in a $\operatorname{GBRD}(v, b, r, k, \lambda ; \mathbb{G})$ produces a $(0,1)$-matrix which is an incidence matrix for a balanced incomplete block design, $\operatorname{BIBD}(v, b, r, k, \lambda)$. It is well-known, see, for example, Street and Street [12], that the five numbers v, b, r, k and λ for a balanced incomplete block design, are not independent: they satisfy the relations $b k=v r$ and $\lambda(v-1)=r(k-1)$. For a generalized Bhaskar Rao design in which $v=k$, there are no zero element entries and $b=r=\lambda$, so the relations: $b k=v r$ and $\lambda(v-1)=r(k-1)$ still hold. Thus it is usual to denote the $\operatorname{GBRD}(v, b, r, k, \lambda ; \mathbb{G})$ by the shorter notation $\operatorname{GBRD}(v, k, \lambda ; \mathbb{G})$.

Some generalized Bhaskar Rao designs can be described by a set of GBRD initial blocks. See, for example, Seberry [11]. In Example 4, we explain this description by means of an example.

Example 4. A set of initial blocks $\left(\bmod 3, A_{4}\right)$ for a $\operatorname{GBRD}\left(4,3,12 ; A_{4}\right)$ is given below:

$$
\begin{array}{cc}
\left(\infty_{1}, 1_{a^{2} d}, 2_{b}\right), & \left(\infty_{1}, 1_{a b}, 2_{c}\right), \\
\left(\infty_{1}, \infty_{a}, \infty_{a c}\right), & \left(\infty_{1}, 1_{1}, 2_{a^{2} c}\right), \\
\left(0_{1}, 1_{a d}, 2_{a^{2}}\right), & \left(0_{1}, 1_{a c}, 2_{a b}\right) .
\end{array}
$$

$\operatorname{A} \operatorname{GBRD}\left(4,3,12 ; A_{4}\right)$ has 4 rows and 24 columns. We think of the rows of this 4×24 matrix as labelled $\infty, 0,1$ and 2 . The $\operatorname{GBRD}\left(4,3,12 ; A_{4}\right)$ is built up from eight 4×3 submatrices B_{1}, \ldots, B_{8} which are developed from the eight initial blocks.

The collection of blocks developed $\left(\bmod 3, A_{4}\right)$ from the initial block $\left(\infty_{1}, 1_{a^{2} d}, 2_{b}\right)$ is

$$
\left(\infty_{1}, 1_{a^{2} d}, 2_{b}\right),\left(\infty_{1}, 2_{a^{2} d}, 0_{b}\right),\left(\infty_{1}, 0_{a^{2} d}, 1_{b}\right) .
$$

That is, we develop an initial block, $\left(a_{\alpha}, b_{\beta}, c_{\gamma}\right)$, by developing a, b and $c(\bmod 3)$ and leaving the subscripts α, β and γ unaltered.

From the three blocks:

$$
\left(\infty_{1}, 1_{a^{2} d}, 2_{b}\right),\left(\infty_{1}, 2_{a^{2} d}, 0_{b}\right),\left(\infty_{1}, 0_{a^{2} d}, 1_{b}\right),
$$

we construct B_{1}. The entries of the first column of B_{1}, corresponding to the first block $\left(\infty_{1}, 1_{a^{2} d}, 2_{b}\right)$ are ($\left.1,0, a^{2} d, b\right)$. That is, the group element 1 is placed in the row labelled $\infty, a^{2} d$ in the row labelled $1, b$ is placed in row labelled 2 , and the entry in row labelled 0 is 0 , the zero element in $Z\left(A_{4}\right)$.

Similarly, the entries of the second column of B_{1}, corresponding to the second block $\left(\infty_{1}, 2_{a^{2} d}, 0_{b}\right)$ are ($\left.1, b, 0, a^{2} d\right)$. Finally, the entries of the last column, corresponding to the third block $\left(\infty_{1}, 0_{a^{2} d}, 1_{b}\right)$ are $\left(1, a^{2} d, b, 0\right)$.

That is,

$$
B_{1}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & b & a^{2} d \\
a^{2} d & 0 & b \\
b & a^{2} d & 0
\end{array}\right] .
$$

Similarly, we construct the other seven matrices B_{2}, \ldots, B_{8} each constructed from the blocks arising from developing the remaining seven initial blocks. The 4×24 matrix

$$
B=\left[B_{1}, \ldots, B_{8}\right]
$$

is a $\operatorname{GBRD}\left(4,3,12 ; A_{4}\right)$. That is, we develop a collection of 24 blocks from the set of eight initial blocks. The $\operatorname{GBRD}\left(4,3,12 ; A_{4}\right)$ so constructed is given explicitly below:

$$
\left[\begin{array}{cccccccccccccccccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & b & a^{2} d & 0 & c & a b & 0 & a^{2} c & a^{2} b & 0 & a c & a & 0 & a d & 1 & 0 & a^{2} & d & 1 & a^{2} & a & 1 & a b & a c \\
a^{2} d & 0 & b & a b & 0 & c & a^{2} b & 0 & a^{2} c & a & 0 & a c & 1 & 0 & a d & d & 0 & a^{2} & a & 1 & a^{2} & a c & 1 & a b \\
b & a^{2} d & 0 & c & a b & 0 & a^{2} c & a^{2} b & 0 & a c & a & 0 & a d & 1 & 0 & a^{2} & d & 0 & a^{2} & a & 1 & a b & a c & 1
\end{array}\right]
$$

Example 5. A set of initial blocks $\left(\bmod 5, A_{4}\right)$ for a $\operatorname{GBRD}\left(6,3,12 ; A_{4}\right)$ is given below:

$$
\begin{array}{cccc}
\left(\infty_{1}, 0_{1}, 3_{a^{2}}\right), & \left(0_{1}, 2_{a^{2} b}, 3_{a^{2} d}\right), & \left(\infty_{1}, 0_{d}, 3_{a^{2} c}\right), & \left(0_{1}, 2_{c}, 3_{a c}\right), \\
\left(\infty_{1}, 0_{b}, 3_{c}\right), & \left(0_{1}, 2_{a^{2} c}, 3_{1}\right), & \left(\infty_{1}, 0_{a c}, 4_{a^{2} d}\right), & \left(0_{1}, 1_{1}, 4_{a}\right), \\
\left(\infty_{1}, 0_{a}, 4_{a b}\right), & \left(0_{1}, 1_{a c}, 4_{a b}\right), & \left(\infty_{1}, 0_{a d}, 4_{a^{2} b}\right), & \left(0_{1}, 1_{d}, 4_{a^{2} b}\right)
\end{array}
$$

3 Construction Theorems

Theorem 6. Let \mathbb{G} be a finite group (of order g), \mathbb{N} a normal subgroup (of order n) of \mathbb{G}, and v, λ and μ positive integers. We write u for g / n, the order of \mathbb{G} / \mathbb{N} and $0_{\mathbb{G} / \mathbb{N}}$ for the zero element in $Z(\mathbb{G} / \mathbb{N})$. Suppose we are given a $v \times b$ matrix, A, with entries taken from $\mathbb{G} / \mathbb{N} \cup\left\{0_{\mathbb{G} / \mathbb{N}}\right\}$ such that

- for any pair of distinct rows $\left(x_{1}, x_{2}, \ldots, x_{b}\right)$ and $\left(y_{1}, y_{2}, \ldots, y_{b}\right)$, the list

$$
x_{1} y_{1}^{u-1}, x_{2} y_{2}^{u-1}, \ldots, x_{b} y_{b}^{u-1}
$$

contains each element of \mathbb{G} / \mathbb{N} exactly λ / u times.

- for each column size k of $A, a \operatorname{GBRD}(k, c, s, j, \mu ; \mathbb{N}), C(k)$.

Then we can construct the matrix, X which is a $\operatorname{GBRD}(v, j, \lambda \mu ; \mathbb{G})$.
Proof. Let t be the index of \mathbb{N} in \mathbb{G}. Fix a set $S=\left\{g_{1}=e, \ldots, g_{t}\right\}$ of coset representatives of \mathbb{N} in \mathbb{G}. We observe that the group element entries of the matrix A are cosets of \mathbb{N} in \mathbb{G} and the group element entries of each matrix $C(k)$ are elements of the normal subgroup \mathbb{N}. For each k, we denote the k rows of $C(k)$ by $\mathrm{c}(k)_{l}, l=1, \ldots, k$.

We now form the matrix X from the matrices A and $C(k)$. Select a column of A of size k (say). Replace each entry of this column by row vectors of length c in the following manner: replace the the first non-zero entry, say $g_{l} \mathbb{N}$ by the row vector $g_{l} \mathbf{c}(k)_{1}$, the second non-zero entry, say $g_{m} \mathbb{N}$ by the row vector $g_{m} \mathbf{c}(k)_{2}$, and so on. Finally, we replace the remaining (that is, zero entries) of the selected column of A by the row vector $(0, \ldots, 0)$ consisting of c zero entries.

Now select another column of A and repeat the replacement process.
When all columns of A have been replaced by row vectors we have constructed a matrix X which is a $\operatorname{GBRD}(v, j, \lambda \mu ; \mathbb{G})$.

The following theorems which can be viewed as immediate consequences of Theorem 6 will be used extensively in the remaining sections of the paper. Theorem 7, based upon pairwise balanced designs (defined below), was first proved in de Launey and Seberry [5, 4], firstly for generalized Bhaskar Rao designs over the group Z_{2} and then for generalized Bhaskar Rao designs over any finite group.

For v and λ positive integers and K a set of positive integers. We define a pairwise balanced design, denoted by $\operatorname{PBD}(v ; K ; \lambda)$, to be an arrangement of the v elements of a set X into a collection (not necessarily distinct) subsets (called blocks) of X, for which:

1. each pair of distinct elements of X appear together in exactly λ blocks.
2. if a block contains exactly k elements of X then k belongs to K.

A pairwise balanced design $\operatorname{PBD}(v ;\{k\} ; \lambda)$, where $K=\{k\}$ consists of exactly one integer, is a $\operatorname{BIBD}(v, k, \lambda)$. It is well-known, see, for example, Street and Wallis [13], that a $\operatorname{PBD}(v-1 ;\{k, k-1\} ; \lambda)$ can be obtained from a $\operatorname{BIBD}(v, b, r, k, \lambda)$.

Theorem 8 was proved in Palmer [9].
Theorem 7. Given a pairwise balanced design $\operatorname{PBD}(v ; K ; \lambda)$, and for each $k \in K$, a $\operatorname{GBRD}(k, j, \mu ; \mathbb{G})$, we can construct a $\operatorname{GBRD}(v, j, \lambda \mu ; \mathbb{G})$.

Proof. In Theorem 6, take $\mathbb{G}=\mathbb{N}$ and A to be an incidence matrix of a $\operatorname{PBD}(v ; K ; \lambda)$.

Theorem 8. Suppose that \mathbb{N} is a normal subgroup of a finite group \mathbb{G}. Then, given a $\operatorname{GBRD}(v, k, \lambda ; \mathbb{G} / \mathbb{N})$ and a $\operatorname{GBRD}(k, j, \mu ; \mathbb{N})$ we can construct a $\operatorname{GBRD}(v, j, \lambda \mu ; \mathbb{G})$.

Proof. In Theorem 6, take A to be a $\operatorname{GBRD}(v, k, \lambda ; \mathbb{G} / \mathbb{N})$.
In the next section, we apply Theorem 6 to construct a $\operatorname{GBRD}\left(14,3,12 ; A_{4}\right)$.

$4 \quad \operatorname{GBRD}\left(14,3,12 ; A_{4}\right)$

The subgroup, $\mathbb{N}=\langle b, c\rangle$ is normal in A_{4} and is isomorphic to the group $Z_{2} \times$ Z_{2}. The factor group, A_{4} / \mathbb{N} is isomorphic to Z_{3}. The matrix, Y which is a $\operatorname{GBRD}\left(15,7,3 ; A_{4} / \mathbb{N}\right)$, found as a result of a Magma [3] search. We exhibit the matrix Y below:
$\left[\begin{array}{ccccccccccccccc}1 \mathbb{N} & 0 & 0 & 0 & 0 & 1 \mathbb{N} & 0 & 1 \mathbb{N} & 0 & 0 & 1 \mathbb{N} & 1 \mathbb{N} & 0 & 1 \mathbb{N} & 1 \mathbb{N} \\ 1 \mathbb{N} & 1 \mathbb{N} & 0 & 0 & 0 & 0 & 1 \mathbb{N} & 0 & 1 \mathbb{N} & 0 & 0 & a \mathbb{N} & 1 \mathbb{N} & 0 & a^{2} \mathbb{N} \\ 1 \mathbb{N} & a \mathbb{N} & 1 \mathbb{N} & 0 & 0 & 0 & 0 & a \mathbb{N} & 0 & 1 \mathbb{N} & 0 & 0 & a^{2} \mathbb{N} & a^{2} \mathbb{N} & 0 \\ 0 & 1 \mathbb{N} & a \mathbb{N} & 1 \mathbb{N} & 0 & 0 & 0 & 0 & a \mathbb{N} & 0 & 1 \mathbb{N} & 0 & 0 & a^{2} \mathbb{N} & a \mathbb{N} \\ 1 \mathbb{N} & 0 & a^{2} \mathbb{N} & a^{2} \mathbb{N} & 1 \mathbb{N} & 0 & 0 & 0 & 0 & a \mathbb{N} & 0 & a^{2} \mathbb{N} & 0 & 0 & a \mathbb{N} \\ 1 \mathbb{N} & a^{2} \mathbb{N} & 0 & 1 \mathbb{N} & a^{2} \mathbb{N} & a^{2} \mathbb{N} & 0 & 0 & 0 & 0 & a \mathbb{N} & 0 & a \mathbb{N} & 0 & 0 \\ 0 & 1 \mathbb{N} & 1 \mathbb{N} & 0 & a^{2} \mathbb{N} & a \mathbb{N} & a^{2} \mathbb{N} & 0 & 0 & 0 & 0 & a^{2} \mathbb{N} & 0 & 1 \mathbb{N} & 0 \\ 0 & 0 & 1 \mathbb{N} & a \mathbb{N} & 0 & a^{2} \mathbb{N} & a \mathbb{N} & 1 \mathbb{N} & 0 & 0 & 0 & 0 & 1 \mathbb{N} & 0 & a \mathbb{N} \\ 1 \mathbb{N} & 0 & 0 & a \mathbb{N} & a \mathbb{N} & 0 & a^{2} \mathbb{N} & a^{2} \mathbb{N} & a \mathbb{N} & 0 & 0 & 0 & 0 & a \mathbb{N} & 0 \\ 0 & 1 \mathbb{N} & 0 & 0 & a \mathbb{N} & a^{2} \mathbb{N} & 0 & a \mathbb{N} & a^{2} \mathbb{N} & a \mathbb{N} & 0 & 0 & 0 & 0 & 1 \mathbb{N} \\ 1 \mathbb{N} & 0 & a \mathbb{N} & 0 & 0 & a \mathbb{N} & a \mathbb{N} & 0 & a^{2} \mathbb{N} & a^{2} \mathbb{N} & a^{2} \mathbb{N} & 0 & 0 & 0 & 0 \\ 0 & 1 \mathbb{N} & 0 & a^{2} \mathbb{N} & 0 & 0 & a \mathbb{N} & a^{2} \mathbb{N} & 0 & 1 \mathbb{N} & a \mathbb{N} & 1 \mathbb{N} & 0 & 0 & 0 \\ 0 & 0 & 1 \mathbb{N} & 0 & 1 \mathbb{N} & 0 & 0 & a^{2} \mathbb{N} & a^{2} \mathbb{N} & 0 & 1 \mathbb{N} & a \mathbb{N} & a \mathbb{N} & 0 & 0 \\ 0 & 0 & 0 & 1 \mathbb{N} & 0 & 1 \mathbb{N} & 0 & 0 & a^{2} \mathbb{N} & 1 \mathbb{N} & 0 & a^{2} \mathbb{N} & 1 \mathbb{N} & a \mathbb{N} & 0 \\ 0 & 0 & 0 & 0 & 1 \mathbb{N} & 0 & a^{2} \mathbb{N} & 0 & 0 & a^{2} \mathbb{N} & a \mathbb{N} & 0 & 1 \mathbb{N} & a^{2} \mathbb{N} & 1 \mathbb{N}\end{array}\right]$

Now we delete the last row of Y to form A a 14×15 matrix. We observe that:

- the size of each column of A lies in $\{6,7\}$;
- for any pair of distinct rows of $A,\left(x_{1}, x_{2}, \ldots, x_{15}\right)$ and $\left(y_{1}, y_{2}, \ldots, y_{15}\right)$, the list

$$
x_{1} y_{1}^{-1}, x_{2} y_{2}^{-1}, \ldots, x_{15} y_{15}^{-1}
$$

contains each element of the factor group A_{4} / \mathbb{N} exactly once.
The matrix $C(7)$ which is a $\operatorname{GBRD}(7,3,4 ; \mathbb{N})$, can be constructed by replacing the 1 s in an incidence matrix for a $\operatorname{BIBD}(7,3,1)$ by the rows of D which is a $\operatorname{GBRD}(3,3,4 ; \mathbb{N})$ where

$$
D=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & b & b c & c \\
1 & c & b & b c
\end{array}\right]=\left[\begin{array}{l}
\mathbf{c}_{1} \\
\mathbf{c}_{2} \\
\mathbf{c}_{3}
\end{array}\right]
$$

The 0 s are replaced by the zero row vector $\mathbf{0}=(0,0,0,0)$. The matrix

$$
\left[\begin{array}{ccccccc}
c_{1} & 0 & 0 & 0 & c_{1} & 0 & c_{1} \\
c_{1} & c_{1} & 0 & 0 & 0 & c_{1} & 0 \\
0 & c_{2} & c_{1} & 0 & 0 & 0 & c_{2} \\
\mathbf{c}_{3} & 0 & c_{2} & c_{1} & 0 & 0 & 0 \\
0 & c_{3} & 0 & c_{2} & c_{2} & 0 & 0 \\
0 & 0 & c_{3} & 0 & c_{3} & c_{2} & 0 \\
0 & 0 & 0 & c_{3} & 0 & c_{3} & c_{3}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{e}_{1} \\
\mathrm{e}_{2} \\
\mathbf{e}_{3} \\
\mathbf{e}_{4} \\
\mathbf{e}_{5} \\
\mathrm{e}_{6} \\
\mathbf{e}_{7}
\end{array}\right] .
$$

is then the required matrix $C(7)$ which is a $\operatorname{GBRD}(7,3,4 ; \mathbb{N})$.

From Lam and Seberry [8, p. 90], we see that the matrix

$$
\left[\begin{array}{llllllllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & b & c & b c & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & b & c & b c & 0 & 0 & 0 & b & c & b c & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & b & 0 & 0 & c & b c & 0 & 1 & 0 & 0 & c & b c & 0 & c & b c & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & c & 0 & b & 0 & b c & 0 & 1 & 0 & b c & 0 & b & 0 & b c & b & c \\
0 & 0 & 0 & 1 & 0 & 0 & b c & 0 & b & c & 0 & 0 & 1 & 0 & c & b & b & 0 & c & 1
\end{array}\right]=\left[\begin{array}{l}
\mathbf{f}_{1} \\
\mathbf{f}_{2} \\
\mathbf{f}_{3} \\
\mathbf{f}_{4} \\
\mathbf{f}_{5} \\
\mathbf{f}_{6}
\end{array}\right]
$$

is a $\operatorname{GBRD}(6,3,4 ; \mathbb{N})$. Set this general Bhaskar Rao design to be the matrix $C(6)$.
We now construct the matrix X from the entries of the matrix A and the rows of the matrices $C(6)$ and $C(7)$ using the construction contained in Theorem 6

Each column of A is of size 6 or 7 .
Consider in turn the columns of A of size 6 .

- Replace the first non-zero entry, say $1 \mathbb{N}$, by the row vector $1 \mathbf{f}_{1}$,
- Replace the second non-zero entry, say $h \mathbb{N}$, where $h \in\left\{1, a, a^{2}\right\}$, by the row vector $h \mathbf{f}_{2}$, where \mathbf{f}_{2} is the second row of the matrix $C(6)$; and so on.
- Replace the zero entries by a zero row vector of length 20 .

Next consider in turn the columns of A of size 7 .

- Replace the first non-zero entry, $1 \mathbb{N}$, by the row vector $1 \mathbf{e}_{1}$, where \mathbf{e}_{1} is the first row of the matrix $C(7)$.
- Replace the second non-zero entry, say $h \mathbb{N}$, where $h \in\left\{1, a, a^{2}\right\}$, by the row vector $h \mathbf{e}_{2}$, where \mathbf{e}_{2} is the second row of the matrix $C(7)$; and so on.
- Replace the zero entries by a zero row vector of length 28 .

The matrix X is a $\operatorname{GBRD}\left(14,3,12 ; A_{4}\right)$.

5 Existence result

Fix $\mathbb{N}=\langle b, c\rangle$, a normal subgroup of A_{4}.
Lemma 9. Necessary conditions for the existence of a $\operatorname{GBRD}\left(v, 3, \lambda ; A_{4}\right)$ are $v \geq 3$ and $\lambda \equiv 0(\bmod 12)$.

Proof. For a $\operatorname{GBRD}\left(v, 3, \lambda ; A_{4}\right)$ to exist

$$
\lambda \equiv 0 \quad(\bmod 12)
$$

and there must exist a $\operatorname{BIBD}(v, 3, \lambda)$ which exists only if:

$$
\begin{aligned}
v & \geq 3 \\
\lambda(v-1) & \equiv 0 \quad(\bmod 2) \\
\lambda v(v-1) & \equiv 0 \quad(\bmod 6) .
\end{aligned}
$$

These conditions are equivalent to the necessary conditions:

$$
\begin{aligned}
& v \geq 3 \\
& \lambda \equiv 0 \quad(\bmod 12)
\end{aligned}
$$

From Hall [7, Lemma 15.4.2] we have the useful
Lemma 10. If $v \geq 3$ then a $\operatorname{PBD}\left(v ; K_{3}^{2} ; 1\right)$ exists, where $K_{3}^{2}=\{3,4,5,6,8,11,14\}$.
We now construct a $\operatorname{GBRD}\left(u, 3,12 ; A_{4}\right)$ where $u \in\{3,4,5,6,8,11,14\}$. Whence we apply Lemma 10 and Theorem 7 to construct a $\operatorname{GBRD}\left(v, 3,12 ; A_{4}\right)$ for all $v \geq 3$.

Theorem 11. If $v \geq 3$ and odd. Then we can construct a $\operatorname{GBRD}\left(v, 3,12 ; A_{4}\right)$.
Proof. In Seberry [11] it was shown that a $\operatorname{GBRD}\left(v, 3,3 ; Z_{3}\right)$ exists when $v \geq 3$ and odd. Hence there exists a $\operatorname{GBRD}\left(v, 3,3 ; A_{4} / \mathbb{N}\right)$ Also a $\operatorname{GBRD}\left(3,3,4 ; Z_{2} \times Z_{2}\right)$ exists (Lam and Seberry [8, Corollary 3.5.]) so a $\operatorname{GBRD}(3,3,4 ; \mathbb{N})$. Hence, by Theorem 8, we can construct a $\operatorname{GBRD}\left(v, 3,12 ; A_{4}\right)$ when $v \geq 3$ and odd.

Corollary 12. A $\operatorname{GBRD}\left(v, 3,12 ; A_{4}\right)$ exists for $v \in\{3,5,7,11\}$.
Lemma 13. We can construct a $\operatorname{GBRD}\left(8,3,12 ; A_{4}\right)$.
Proof. $\operatorname{GBRD}\left(8,4,3 ; A_{4} / \mathbb{N}\right)$ exists as a $\operatorname{GBRD}\left(8,4,3 ; Z_{3}\right)$ exists (de Launey and Seberry [4]) $\mathrm{A} \operatorname{GBRD}(4,3,4 ; \mathbb{N})$ exists as a $\operatorname{GBRD}\left(4,3,4 ; Z_{2} \times Z_{2}\right)$ exists (Lam and Seberry [8]). Hence, using Theorem 8, we can combine these designs to construct a $\operatorname{GBRD}\left(8,3,12 ; A_{4}\right)$.

Theorem 14. A generalized Bhaskar Rao design, $\operatorname{GBRD}\left(v, 3, \lambda ; A_{4}\right)$ exists if and only if $\lambda \equiv 0(\bmod 12)$.

Proof. We have constructed a generalized Bhaskar Rao design, $\operatorname{GBRD}\left(u, 3, \lambda ; A_{4}\right)$ for each $u \in\{3,4,5,6,8,11,14\}$. Hence, by Lemma 10 and Theorem 7 , we can construct a $\operatorname{GBRD}\left(v, 3,12 ; A_{4}\right)$ for all $v \geq 3$. Finally, for all $v \geq 3$ and for all $\lambda=12 s$, we can construct a $\operatorname{GBRD}\left(v, 3, \lambda ; A_{4}\right)$ by taking s copies of a $\operatorname{GBRD}\left(v, 3,12 ; A_{4}\right)$.

In Lemma 9 we proved that a $\operatorname{GBRD}\left(v, 3, \lambda ; A_{4}\right)$ exists only if $v \geq 3$ and $\lambda \equiv 0$ $(\bmod 12)$.

References

[1] M. Aschbacher, Finite Group Theory, Cambridge University Press, Cambridge, 1986.
[2] M. Bhaskar Rao, Balanced orthogonal designs and their application in the construction of some BIB and group divisible designs, Sankhya Ser. A 32 (1970), 439-448.
[3] W. Bosma, J.J. Cannon, C. Playoust and A. Steel, Solving Problems with Magma The School of Mathematics and Statistics, The University of Sydney, Sydney, 1995.
[4] W. de Launey and J. Seberry, On generalized Bhaskar Rao designs of block size four, Congressus Numerantium 41 (1984), 229-294.
[5] W. de Launey and J. Seberry, On Bhaskar Rao designs of block size four, Combinatorics and Applications (Calcutta, 1982), 311-316, Indian Statist. Inst., Calcutta, 1984.
[6] M. Hall Jr., The Theory of Groups, Macmillan, New York, 1959.
[7] M. Hall Jr., Combinatorial Theory, 2nd edition, Wiley, New York, 1986.
[8] C. Lam and J. Seberry, Generalized Bhaskar Rao designs, J. Statist. Plann. and Inference 10 (1984), 83-95.
[9] W.D. Palmer, A composition theorem for generalized Bhaskar Rao designs, Australas. J. Combin. 6 (1992), 221-228.
[10] W.D. Palmer and J. Seberry, Bhaskar Rao designs over small groups, Ars Combinatoria 26A (1998), 125-148.
[11] J. Seberry, Some families of partially balanced incomplete designs, In: Combinatorial Mathematics IX, Lecture Notes in Mathematics No. 952, Springer-Verlag, Berlin, 1982.
[12] A.P. Street and D.J. Street, Combinatorics of Experimental Design, Oxford University Press, Oxford, 1987.
[13] A.P. Street and W.D. Wallis, Combinatorial Theory: An Introduction, Charles Babbage Research Centre, Winnipeg, 1977.

