Uniform coverings of 2-paths by 4-paths

Midori Kobayashi*
School of Administration and Informatics
University of Shizuoka
Shizuoka 422-8526, Japan

Gisaku Nakamura
Tokai University
Shibuyaku Tokyo 151-0063, Japan

Abstract

We construct a uniform covering of 2-paths by 4 -paths in K_{n} for all $n \geq 5$, i.e., we construct a set S of 4 -paths in K_{n} having the property that each 2-path in K_{n} lies in exactly one 4 -path in S for all $n \geq 5$.

1 Introduction

Let K_{n} be the complete graph on n vertices. A k-path is a path of length k and a k-cycle is a cycle of length k, where the length of a path [cycle] is the number of edges in the path [cycle]. Note that paths and cycles are undirected. A uniform covering of the 2 -paths in K_{n} by k-paths [k-cycles] is a set S of k-paths [k-cycles] having the property that each 2-path in K_{n} lies in exactly one k-path $[k$-cycle $]$ in S. Only the following cases of the problem of constructing a uniform covering of the 2 -paths in K_{n} by k-paths or k-cycles have been solved [2, 8];

1 . by 3 -cycles,
2 . by 3-paths,
3. by 4 -cycles,
4. by n-cycles (Hamilton cycles) when n is even.

When n is odd, a uniform covering of the 2-paths in K_{n} by Hamilton cycles has only been constructed for a few cases: $n=2^{e}+1$, where e is a natural number [7], $n=p+2$, where p is an odd prime and 2 is a generator of the multiplicative group of $G F(p)$ [1], and some other infinite cases [3,5]. But in general the problem when n is odd is still open.

In this paper, we solve the problem in the case of 4-paths, that is, we prove,

[^0]Theorem 1.1 Let $n \geq 5$. Then there exists a set S of 4 -paths in K_{n} having the property that each 2-path in K_{n} lies in exactly one path in S.

Finally, we mention the problem in the case of ($n-1$)-paths (Hamilton paths).
Lemma 1.2 Let $n \geq 3$. If there is a uniform covering of 2 -paths by Hamilton cycles in K_{n+1}, there is a uniform covering of 2 -paths by Hamilton paths in K_{n}.

Proof. Let $V_{n+1}=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$ be the vertex set of K_{n+1} and let \mathcal{D} be a uniform covering of 2-paths by Hamilton cycles in K_{n+1}. Let K_{n} be the complete graph with the vertex set $V_{n}=V_{n+1} \backslash\left\{v_{0}\right\}$. For each Hamilton cycle $H \in \mathcal{D}$, we obtain a Hamilton path in K_{n} by removing the point v_{0} and the two edges incident to v_{0} from H. We denote it by H^{\prime}. Put $\mathcal{D}^{\prime}=\left\{H^{\prime} \mid H \in \mathcal{D}\right\}$, then \mathcal{D}^{\prime} is a uniform covering of 2-paths by Hamilton paths in K_{n}.

The proof of Theorem 1.3 is immediate from Lemma 1.2 and the existence of a uniform covering of 2-paths by Hamilton cycles in K_{n} when n is even ≥ 4.
Theorem $1.3[8]$ Let n be an odd integer ≥ 3. Then there exists a set S of Hamilton paths in K_{n} having the property that each 2-path in K_{n} lies in exactly one path in S.

When n is even, the problem of Theorem 1.3 is still open, but Verrall constructed a double covering of 2 -paths by Hamilton paths:
Theorem 1.4 [8] Let n be an even integer ≥ 4. Then there exists a set S of Hamilton paths in K_{n} having the property that each 2-path in K_{n} lies in exactly two paths in S.

2 Proof of Theorem 1.1

There are $n(n-1)(n-2) / 2$ 2-paths in K_{n} and three 2 -paths in a 4 -path, so $n(n-1)(n-2) / 64$-paths are needed to cover the 2-paths in K_{n}. This is an integer for $n \geq 3$.

When $n=3$ or 4, K_{n} has 2-paths but doesn't have 4-paths, so there is no uniform covering of 2-paths by 4-paths in K_{n}. We consider the case $n \geq 5$.
Lemma 2.1 There is a uniform covering of 2-paths by 4-paths in K_{n} when $n=5$.
Proof. Let $\{0,1,2,3,4\}$ be the vertex set of K_{5}. Let S be a set of 4 -paths:

$$
\begin{aligned}
& S=\{[2,4,0,1,3], \\
& {[3,0,1,2,4], } \\
& {[4,3,4,0,2], } \\
& {[1,0,3,1,2], 2,3,4,4], } \\
& {[0,1,4,2,3]\}, } \\
& {[2,3,1,4,0], } {[0,2,3,4,1], } \\
& {[3,4,2,0,1], }
\end{aligned}
$$

then S is a uniform covering of 2-paths by 4 -paths in K_{5}.
Now we prove Theorem 1.1. We use induction on n. When $n=5$ there is a uniform covering of 2-paths by 4 -paths in K_{n} from Lemma 2.1. Let $n \geq 6$ and assume that there is a uniform covering of 2-paths by 4-paths in K_{n-1}.

Put $m=n-1$. Let K_{n} be the complete graph with vertex set $V=\{x\} \cup V^{\prime}$, where $\left|V^{\prime}\right|=m$. Let K_{m} be the complete graph with vertex set V^{\prime}. By the induction
hypothesis, there is a uniform covering S^{\prime} of the 2-paths in K_{m} by 4-paths. Let T and T^{\prime} be the sets of all 2-paths in K_{n} and K_{m}, respectively.

Put $T_{1}=\left\{(a, b, x) \mid a, b \in V^{\prime}, a \neq b\right\}, T_{2}=\left\{(a, x, b) \mid a, b \in V^{\prime}, a \neq b\right\}$, and $T^{\prime \prime}=T_{1} \cup T_{2}$, where $(a, b, x),(a, x, b)$ are 2-paths. Then we have $T=T^{\prime} \cup T^{\prime \prime}$. We already covered the 2-paths in T^{\prime} by S^{\prime}, so we will construct a set $S^{\prime \prime}$ of 4-paths in K_{n} that will cover the 2-paths in $T^{\prime \prime}$.

We will construct 4-paths of type (a, b, x, c, d) to cover $T^{\prime \prime}$, where $a, b, c, d\left(\in V^{\prime}\right)$ are all different. Note that $\left|T_{1}\right|=m(m-1)$ and $\left|T_{2}\right|=m(m-1) / 2$. We will construct $S^{\prime \prime}$ by considering the two cases of m odd and m even separately.
(Case 1) m is odd.
There is a Hamilton cycle decomposition \mathcal{H} in K_{m}, that is, there is a set \mathcal{H} of Hamilton cycles in K_{m} such that each edge of K_{m} lies in exactly one cycle in \mathcal{H}. $|\mathcal{H}|=(m-1) / 2$. For each Hamilton cycle $H=\left(v_{1}, v_{2}, \ldots, v_{m}\right)$ in \mathcal{H}, define a set $S(H)$ of 4-paths:

$$
\left.\left.\left.\begin{array}{rlrl}
S(H)= & \left\{\left[v_{1}, v_{2}, x, v_{3}, v_{4}\right],\right. & & {\left[v_{2}, v_{3}, x, v_{4}, v_{5}\right],} \\
& \ldots
\end{array}\right], v_{m-1}, v_{m}, x, v_{1}, v_{2}\right], \quad\left[v_{m}, v_{1}, x, v_{2}, v_{3}\right]\right\} .
$$

Define $S^{\prime \prime}=\cup_{H \in \mathcal{H}} S(H)$. We will show that $S^{\prime \prime}$ covers each 2-path in $T^{\prime \prime}$ exactly once.
(i) Let (a, b, x) be any 2 -path in T_{1}. There is a Hamilton cycle $H=\left(v_{1}, v_{2}, \ldots, v_{m}\right) \in$ \mathcal{H} which contains the edge $\{a, b\}$. So we can write $a=v_{i}, b=v_{i+1}$ or $a=v_{i+1}$, $b=v_{i}$, for some $i, 1 \leq i \leq m$, where subscripts are calculated modulo m. In either case, the 2-path (a, b, x) is in some 4 -path in $S(H)$.
(ii) Let (a, x, b) be any 2-path in T_{2}. There is a Hamilton cycle $H=\left(v_{1}, v_{2}, \ldots, v_{m}\right) \in$ \mathcal{H} which contains the edge $\{a, b\}$. So we can write $a=v_{i}, b=v_{i+1}$ or $a=v_{i+1}$, $b=v_{i}$, for some $i, 1 \leq i \leq m$. In either case, the 2-path (a, x, b) is in a 4 -path $\left[v_{i-1}, v_{i}, x, v_{i+1}, v_{i+2}\right]$ in $S(H)$.

Since the numbers of 2-paths in $T^{\prime \prime}$ and in $S^{\prime \prime}$ are equal, $S^{\prime \prime}$ covers each 2-path in $T^{\prime \prime}$ exactly once.
(Case 2) m is even.
Label the vertices in V^{\prime} as $\infty, 0,1, \ldots, m-2$. Put $r=(m-2) / 2$. Let σ be the following permutation of the vertices of $K_{m+1}: \sigma=(\infty)(x)(012 \cdots m-2)$, and put $\Sigma=\langle\sigma\rangle=\left\{\sigma^{j} \mid 0 \leq j \leq m-2\right\}$. Define the set S^{0} of 4-paths:

$$
\left.\left.\left.\begin{array}{rlrl}
S^{0}= & \{[r+1, \infty, x, 0,1], & & {[0,1, x, m-2,2],} \\
& {[m-2,2, x, m-3,3],} & & {[m-3,3, x, m-4,4],} \\
& \cdots
\end{array}\right] r+3, r-1, x, r+2, r\right], \quad[r+2, r, x, r+1, \infty]\right\} .
$$

Note that the set of edges $\left\{\left\{u_{2}, u_{3}\right\} \mid\left[u_{1}, u_{2}, x, u_{3}, u_{4}\right] \in S^{0}\right\}$ is F_{0} and the set of arcs $\left\{\left(u_{1}, u_{2}\right) \mid\left[u_{1}, u_{2}, x, u_{3}, u_{4}\right] \in S^{0}\right\}$ which equals the set $\left\{\left(u_{4}, u_{3}\right) \mid\left[u_{1}, u_{2}, x, u_{3}, u_{4}\right] \in\right.$ $\left.S^{0}\right\}$ is F_{r+1}^{*}, where
$F_{0}=\{\{\infty, 0\}\} \cup\left\{\{u, v\} \mid u+v \equiv 0(\bmod m-1), u, v \in V^{\prime}, u, v \neq \infty, u \neq v\right\}$ $F_{r+1}^{*}=\{(\infty, r+1),(r+1, \infty)\} \cup\{(u, v) \mid u+v \equiv 1(\bmod m-1)$,

$$
\left.u, v \in V^{\prime}, u, v \neq \infty, u \neq v\right\}
$$

Put $S^{\prime \prime}=\Sigma S^{0}=\left\{P^{\sigma^{j}} \mid P \in S^{0}, 0 \leq j \leq m-2\right\}$. We will show that $S^{\prime \prime}$ is a set of 4-paths in K_{n} that covers each 2-path in $T^{\prime \prime}$ exactly once.
(i) Let (a, b, x) be any 2-path in T_{1}. Then there is an $\operatorname{arc}(u, v) \in F_{r+1}^{*}$ such that $(a, b)=(u, v)^{\sigma^{j}}$ for some j. Since $\left\{\left(u_{1}, u_{2}\right) \mid\left[u_{1}, u_{2}, x, u_{3}, u_{4}\right] \in S^{0}\right\}=F_{r+1}^{*}$, $\left[u, v, x, u_{3}, u_{4}\right] \in S^{0}$ for some $u_{3}, u_{4} \in V^{\prime}$. Therefore $\left[u, v, x, u_{3}, u_{4}\right]^{\sigma^{-j}}=\left[a, b, x, u_{3}^{\sigma^{-j}}\right.$, $\left.u_{4}^{\sigma^{-j}}\right] \in S^{\prime \prime}$. Thus $S^{\prime \prime}$ covers the 2-path (a, b, x).
(ii) Let (a, x, b) be any 2 -path in T_{2}. There is an edge $\{u, v\} \in F_{0}$ such that $\{a, b\}=$ $\{u, v\}^{\sigma^{3}}$ for some j. Since $\left\{\left\{u_{2}, u_{3}\right\} \mid\left[u_{1}, u_{2}, x, u_{3}, u_{4}\right] \in S^{0}\right\}=F_{0},\left[u_{1}, u, x, v, u_{4}\right] \in S^{0}$ for some $u_{1}, u_{4} \in V^{\prime}$. Therefore $\left[u_{1}, u, x, v, u_{4}\right]^{\sigma-j}=\left[u_{1}^{\sigma^{-j}}, a, x, b, u_{4}^{\sigma-j}\right] \in S^{\prime \prime}$. Thus $S^{\prime \prime}$ covers the 2-path (a, x, b).

Hence $S^{\prime \prime}$ covers each 2-path in $T^{\prime \prime}$ exactly once.
Put $S=S^{\prime} \cup S^{\prime \prime}$, then S is a set of 4 -paths with the property that each 2-path in T lies in exactly one path in S. This completes the proof of Theorem 1.1.
Acknowledgments The first author is thankful for the warm hospitality of the Department of Mathematics of the University of Queensland, Australia. Also the authors would like to thank Dr. E.J. Billington and the referee for their helpful comments.

References

[1] K. Heinrich, M. Kobayashi and G. Nakamura, Dudeney's Round Table Problem, Annals of Discrete Math. 92 (1991), 107-125.
[2] K. Heinrich, D. Langdeau and H. Verrall, Covering 2-paths uniformly, J. Combin. Des. 8 (2000), 100-121.
[3] M. Kobayashi, J. Akiyama and G. Nakamura, On Dudeney's round table problem for $p+2$, Ars Combinatoria, to appear.
[4] M. Kobayashi, Kiyasu-Z. and G. Nakamura, A solution of Dudeney's round table problem for an even number of people, J. Combinatorial Theory (A) 62 (1993), 26-42.
[5] M. Kobayashi, N. Mutoh, Kiyasu-Z. and G. Nakamura, New Series of Dudeney Sets for $p+2$ Vertices, Ars Combinatoria, to appear.
[6] J. McGee and C.A. Rodger, Path coverings with paths, J. Graph Theory, to appear.
[7] G. Nakamura, Kiyasu-Z. and N. Ikeno, Solution of the round table problem for the case of $p^{k}+1$ persons, Commentarii Mathematici Universitatis Sancti Pauli 29 (1980), 7-20.
[8] H. Verrall, Pairwise Compatible Hamilton Decompositions of K_{n}, J. Combinatorial Theory (A) 79 (1997), 209-222.

[^0]: *This research was supported in part by Grant-in-Aid for Scientific Research (C) Japan.

