The number of h-strongly connected digraphs with small diameter

Ioan Tomescu
Faculty of Mathematics, University of Bucharest,
Str. Academiei, 14, R-70109 Bucharest, Romania
e-mail: ioan@math.math.unibuc.ro

Abstract

Let $D_{s}(n ; h, d=k)$ denote the number of h-strongly connected digraphs of order n and diameter equal to k. In this paper it is shown that: i) $D_{s}(n ; h, d=3)=4^{\binom{n}{2}}(3 / 4+o(1))^{n}$ for every fixed $h \geq 1$; ii) $D_{s}(n ; h, d=4)=4^{\binom{n}{2}}\left(2^{-h-2}+2^{-2}+o(1)\right)^{n}$ for every fixed $h \geq 2$; iii) $D_{s}(n ; h, d=k)=4^{\binom{n}{2}}\left(\left(2^{h+1}-1\right) 2^{-k h+3 h-2}+o(1)\right)^{n}$ for every fixed $h \geq 1$ and $k \geq 5$. Similar asymptotic formulas hold for the number of h-connected digraphs of order n and diameter equal to k when $n \rightarrow \infty$. This extends the corresponding results for h-connected graphs given in a recent paper by the author.

1 Notation and preliminary results

All digraphs in this paper are finite, labeled, without loops or parallel directed edges. By K_{n}^{*} we denote the complete digraph of order n such that any two distinct vertices x and y are joined by two directed edges (x, y) and (y, x). For a digraph G the outdegree $d^{+}(x)$ of a vertex x is the number of vertices of G that are adjacent from x and the indegree $d^{-}(x)$ is the number of vertices of G adjacent to x. For $h \geq 2$, we say that a digraph G is h-connected (resp. h-strongly connected) if either G is a complete digraph K_{h+1}^{*} or else it has at least $h+2$ vertices and for any set of vertices $X \subset V(G),|X|=h-1$, the digraph $G-X$ is connected (resp. strongly connected). A connected (resp. strongly connected) digraph is also said to be 1-connected (resp. 1 -strongly connected). For a strongly connected digraph G the distance $d(x, y)$ from vertex x to vertex y is the length of a shortest path of the form (x, \ldots, y). The eccentricity of a vertex x is ecc $(x)=\max _{y \in V(G)} d(x, y)$. The diameter of G, denoted
$d(G)$ is equal to $\max _{x, y \in V(G)} d(x, y)$ if G is strongly connected and ∞ otherwise. By $D_{s}(n ; h, d=k)$ and $D_{s}(n ; h, d \geq k)$ (resp. $D(n ; h, d=k)$ and $\left.D(n ; h, d \geq k)\right)$ we denote the number of h-strongly connected (resp. h-connected) digraphs G of order n and diameter $d(G)=k$ and $d(G) \geq k$, respectively.
It is well known [1, p. 131] that almost all digraphs have diameter two and for every fixed integer $h \geq 1$ almost all graphs are h-connected. Also in [2] it was proved that for every fixed integer $h \geq 1$ almost all digraphs are h-strongly connected. Hence for every $h \geq 1$ we have:

$$
D_{s}(n ; h, d=2)=4^{\binom{n}{2}}(1+o(1)) \text { and } D(n ; h, d=2)=4^{\binom{n}{2}}(1+o(1)) .
$$

If $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1$ we denote this by $f(n) \sim g(n)$, or $f(n)=g(n)(1+o(1))$. The following results will be useful in the proofs of the theorems given in the next section.

Lemma 1.1 ([4]). The number of bipartite digraphs G whose partite sets are A, B $(A \cap B=\emptyset,|A|=p,|B|=q)$ such that $d^{-}(x) \geq 1$ for every $x \in B$ and all edges are directed from A towards B is equal to $\left(2^{p}-1\right)^{q}$.

Lemma 1.2 ([4]). We have

$$
D_{s}(n ; 1, d=3)=4^{\binom{n}{2}}(3 / 4+o(1))^{n} .
$$

Also we need an asymptotic evaluation of the maximum of an arithmetical function. Let

$$
f\left(n, h ; n_{1}, \ldots, n_{k}\right)=\binom{n}{n_{1}, \ldots, n_{k}} 2^{\sum_{i=1}^{k}\binom{n_{i}}{2}} \prod_{i=1}^{k-1}\left(2^{n_{i}}-1\right)^{n_{i+1}}
$$

where $n_{1}+\ldots+n_{k}=n, n_{i} \geq h$ for every $1 \leq i \leq k-1$ and $n_{k} \geq 1$. Let us denote

$$
f(n, k)=\max _{D} f\left(n, h ; n_{1}, \ldots, n_{k}\right)
$$

where D is defined by: $n_{1}+\ldots+n_{k}=n ; n_{i} \geq h$ for every $1 \leq i \leq k-1$ and $n_{k} \geq 1$.
Theorem 1.3 ([5]). The following equalities hold:

$$
\begin{equation*}
f(n, h, 4)=2^{\binom{n}{2}}\left(2^{-h-1}+2^{-1}+o(1)\right)^{n} \tag{1}
\end{equation*}
$$

for every $h \geq 2$;

$$
\begin{equation*}
f(n, h, k)=2^{\binom{n}{2}}\left(\left(2^{h+1}-1\right) 2^{-k h+3 h-1}+o(1)\right)^{n} \tag{2}
\end{equation*}
$$

for every $h \geq 2$ and $k \geq 5$.
Note that (2) also holds for $h=1$ [3]. Moreover, for $k=4, f\left(n, h ; n_{1}, \ldots, n_{4}\right)$ can be maximum only if $n_{1}=\alpha_{1}(n, h, 4), n_{2}=\beta_{1}(n, h, 4), n_{3}=h$ and $n_{4}=1$, where

$$
\begin{align*}
& \alpha_{1}(n, h, 4)=(n-h) \frac{1}{2^{h}+1}-\gamma \\
& \beta_{1}(n, h, 4)=(n-h) \frac{2^{h}}{2^{h}+1}-1+\gamma \tag{3}
\end{align*}
$$

and $0 \leq \gamma \leq 1$.
For $k \geq 5, f(n, h, k)=f\left(n, h ; h, \ldots, h, \alpha_{0}, \beta_{0}, h, \ldots, h, 1\right)$, where

$$
\begin{align*}
& \alpha_{0}(n, h, k)=(n-k h+3 h) \frac{2^{h}-1}{2^{h+1}-1}-\gamma \\
& \beta_{0}(n, h, k)=(n-k h+3 h) \frac{2^{h}}{2^{h+1}-1}-1+\gamma, \tag{4}
\end{align*}
$$

and $0 \leq \gamma \leq 1$.
Notice that for $h=1$ the explanation of the asymptotic behavior of the critical function $f(n, h, k)$, denoted by $f(n, k)$ was made by a careful analysis in [3].

Lemma 1.4 (i) If G is an h-strongly connected digraph, $x \notin V(G)$ and x is joined by directed edges in both directions (x, y) and (y, x) with at least h distinct vertices y in G, the resulting digraph is h-strongly connected.
(ii) If E and F are two h-strongly connected digraphs such that $V(E) \cap V(F)=\emptyset$, joined by directed edges in both directions $\left(x_{i}, y_{i}\right)$ and $\left(y_{i}, x_{i}\right)(1 \leq i \leq h)$ which join h distinct vertices x_{i} in $E(1 \leq i \leq h)$ with h distinct vertices y_{j} in $F(1 \leq j \leq h)$, the resulting digraph is h-strongly connected. The property holds even if E or F is isomorphic to K_{h}^{*}.

Note that this lemma holds if h-strongly connectedness is replaced by h-connectedness.

2 Main results

We will deduce an estimation for $D_{s}(n ; h, d=k)$ for every fixed $h \geq 2$ and $k \geq 3$ as $n \rightarrow \infty$, by considering first the case $k=3$, when this does not depend on h.

Theorem 2.1 We have

$$
D_{s}(n ; h, d=3)=4^{\binom{n}{2}}(3 / 4+o(1))^{n}
$$

for every fixed $h \geq 1$.
Proof: For $h=1$ this property was shown in [4]. If $D(n ; d \geq k)$ denotes the number of digraphs G of order n and diameter $d(G) \geq k$, from the proof of Lemma 1.3 of [4] it follows that $D(n ; d \geq 4)<\left(n^{2}-n\right) 2^{\binom{n}{2}+\binom{n-2}{2}}\left(2^{n-2}+(5 / 2)^{n-2}\right)=4^{\binom{n}{2}}(5 / 8+o(1))^{n}$. Since $D_{s}(n ; h, d \geq 4) \leq D(n ; d \geq 4)$ one gets

$$
\begin{equation*}
D_{s}(n ; h, d \geq 4)<4^{\binom{n}{2}}(5 / 8+o(1))^{n} . \tag{5}
\end{equation*}
$$

Let $A_{i j}^{(k)}$, respectively $H_{i j}^{(k)}$, denote the set of digraphs (respectively h-strongly connected digraphs) having vertex set $\{1, \ldots, n\}$ such that $d(i, j) \geq k$. In [4] it was shown that $\left|A_{i j}^{(3)}\right|=3^{n-2} \cdot 2^{\binom{n}{2}+\binom{n-2}{2}}$. Since $\left|H_{i j}^{(3)}\right| \leq\left|A_{i j}^{(3)}\right|$ we get

$$
\begin{equation*}
\left|H_{i j}^{(3)}\right| \leq 4^{\binom{n}{2}}(3 / 4+o(1))^{n} \tag{6}
\end{equation*}
$$

Now a sufficiently large subset of $H_{i j}^{(3)}$ can be constructed as follows:
Consider an h-strongly connected digraph F with vertex set $\{1, \ldots, n\} \backslash\{i, j\}$ and nonadjacent vertices i and j such that the sets of neighbors $N(i), N(j) \subset V(F)$ satisfy: $|N(i)|=|N(j)|=h$ and $N(i) \cap N(j)=\emptyset$. Vertices i and j are joined by directed edges in both directions with all vertices in $N(i)$ and $N(j)$, respectively. For every vertex $k \in V(F) \backslash\{N(i) \cup N(j)\}$ we suppose that the condition: $(i, k) \in E(G)$ implies $(k, j) \notin E(G)$ is fulfilled, where G denotes the digraph obtained on this way. By Lemma $1.4, G$ is h-strongly connected and the distance $d(i, j) \geq 3$. This implies that for every fixed choice of the subdigraph induced by $\{i, j\}$, for every $k \in V(F) \backslash\{N(i) \cup N(j)\}$ the subdigraph induced by $\{i, j, k\}$ can be chosen in exactly 12 ways. Hence $\left|H_{i, j}^{(3)}\right| \geq 12^{n-2 h-2} D_{s}(n-2, h)$, where $D_{s}(n, h)$ denotes the number of h-strongly connected digraphs of order n. Since almost all digraphs of order n are h-strongly connected as $n \rightarrow \infty$, it follows that $D_{s}(n-2, h) \sim 4^{\binom{n-2}{2}}$, which implies $\left|H_{i j}^{(3)}\right| \geq 4^{\binom{n}{2}}(3 / 4+o(1))^{n}$. Consequently,

$$
\left|H_{i j}^{(3)}\right|=4^{\binom{n}{2}}(3 / 4+o(1))^{n}
$$

for every $1 \leq i, j \leq n$ and $i \neq j$. Because $D_{s}(n ; h, d \geq 3)=\left|\bigcup_{\substack{1 \leq i, j \leq n \\ i \neq j}} H_{i j}^{(3)}\right|$ and

$$
\left|H_{i_{0} j_{0}}^{(3)}\right| \leq\left|\bigcup_{\substack{1 \leq i, j \leq n \\ i \neq j}} H_{i j}^{(3)}\right| \leq\left(n^{2}-n\right)\left|H_{i_{0} j_{0}}^{(3)}\right|
$$

one deduces that

$$
\begin{equation*}
D_{s}(n, h, d \geq 3)=4^{\binom{n}{2}}(3 / 4+o(1))^{n} \tag{7}
\end{equation*}
$$

Since $D_{s}(n ; h, d=3)=D_{s}(n ; h, d \geq 3)-D_{s}(n ; h, d \geq 4)$, the conclusion follows from (5) and (7).

Because any h-strongly connected digraph is also h-connected, we get:
Corollary 2.2 The following equality holds for every fixed $h \geq 1$:

$$
D(n ; h, d=3)=4^{\binom{n}{2}}(3 / 4+o(1))^{n}
$$

Theorem 2.3 We have:

$$
\text { (i) } D_{s}(n ; h, d=4)=4^{\binom{n}{2}}\left(2^{-h-2}+2^{-2}+o(1)\right)^{n}
$$

for every fixed $h \geq 2$;

$$
\text { (ii) } D_{s}(n ; h, d=k)=4^{\binom{n}{2}}\left(\left(2^{h+1}-1\right) 2^{-k h+3 h-2}+o(1)\right)^{n}
$$

for every fixed $h \geq 1$ and $k \geq 5$.

Proof: For $h=1$, (ii) was proved in [4]. Let $h \geq 2, k \geq 4$ and G be an h-strongly connected digraph of order n. If $x \in V(G)$ has $\operatorname{ecc}(x)=k$, then

$$
V_{1}(x) \cup \ldots \cup V_{k}(x)
$$

is a partition of $V(G) \backslash\{x\}$, where $V_{i}(x)=\{y \mid y \in V(G)$ and $d(x, y)=i\}$ for $1 \leq i \leq k$. It follows that there are directed edges from x towards all vertices of $V_{1}(x)$ and for every $2 \leq i \leq k$ and any vertex $z \in V_{i}(x)$ there exists a directed edge (t, z), where $t \in V_{i-1}(x)$. Also the h-strongly connectedness of G implies that $\left|V_{i}(x)\right| \geq h$ for every $i=1, \ldots, k-1$. Let n_{i} be the number of vertices in $V_{i}(x)$, $1 \leq i \leq k$. By Lemma 1.1 one deduces
$\mid\{G \mid G$ is h-strongly connected, $V(G)=\{1, \ldots, n\}$ and ecc $(x)=k\} \mid$
$\leq \sum_{\substack{n_{1}+\ldots+n_{k}=n-1 \\ n_{1}, \ldots, n_{k-1} \geq h, n_{k} \geq 1}}\binom{n-1}{n_{1}, \ldots, n_{k}} 4^{\sum_{i=1}^{k}\binom{n_{i}}{2}} \prod_{i=1}^{k-1}\left(2^{n_{i}}-1\right)^{n_{i+1}} \prod_{i=1}^{k} 2^{n_{i}\left(n_{i-1}+\ldots+1\right)}$
$=2^{\binom{n}{2}} \sum_{\substack{n_{1}+\ldots+n_{k}=n-1 \\ n_{1}, \ldots, n_{k} \geq 1}} f\left(n-1 ; n_{1}, \ldots, n_{k}\right)$
because

$$
\begin{equation*}
2^{\sum_{i=1}^{k}\binom{n_{i}}{2}} \prod_{i=1}^{k} 2^{n_{i}\left(n_{i-1}+\ldots+1\right)}=2^{\binom{n}{2}} \tag{8}
\end{equation*}
$$

Furthermore

$$
\sum_{\substack{n_{1}+\ldots+n_{k} \\ n_{1}, \ldots, n_{k-1} \geq n, n_{k} \geq 1}} f\left(n-1 ; n_{1}, \ldots, n_{k}\right) \leq\binom{ n-2}{k-1} f(n-1, k)
$$

since the number of compositions $n-1=n_{1}+\ldots+n_{k}$ having k positive terms equals $\binom{n-2}{k-1}$. Hence $D_{s}(n ; h, d=k) \leq \mid \cup_{x \in V(G)}\{G \mid G$ is h-strongly connected, $V(G)=\{1, \ldots, n\}$ and $\operatorname{ecc}(x)=k\} \left\lvert\, \leq n 2^{\binom{n}{2}}\binom{n-2}{k-1} f(n-1, h, k)\right.$ and this expression equals $4^{\binom{n}{2}}\left(2^{-h-2}+2^{-2}+o(1)\right)^{n}$ for $k=4$ and $4^{\binom{n}{2}}\left(\left(2^{h+1}-1\right) 2^{-k h+3 h-2}+o(1)\right)^{n}$ for $k \geq 5$ by Theorem 1.3. The proof of the theorem is by double inequality. We shall consider two cases: I $k \geq 5$ and II $k=4$.

Case I. In order to produce a suitable lower bound for $D(n ; h, d=k)$ in the case $k \geq 5$ we shall generate a large class of h-strongly connected digraphs of order n and diameter equal to k as follows: Let $x \in\{1, \ldots, n\}$ be a fixed vertex and $X_{1} \cup \ldots \cup X_{k}$ be a partition of $\{1, \ldots, n\} \backslash\{x\}$ such that $\left|X_{1}\right|=\left|X_{2}\right|=\ldots=\left|X_{k-4}\right|=$ $h,\left|X_{k-3}\right|=\alpha_{0},\left|X_{k-2}\right|=\beta_{0},\left|X_{k-1}\right|=h$ and $\left|X_{k}\right|=1$, where $\alpha_{0}=\alpha_{0}(n-1, h, k)$ and $\beta_{0}=\beta_{0}(n-1, h, k)$ are given by (4). Vertex x is joined by directed edges in both directions with all vertices of X_{1} and the unique vertex of X_{k} is joined by directed edges in both directions with all vertices of X_{k-1}. Let us denote $X_{i}=\left\{x_{i}^{1}, \ldots, x_{i}^{h}\right\}$ for every $1 \leq i \leq k-4$ and $i=k-1$. We choose an h-element subset $Y_{k-3}=$ $\left\{x_{k-3}^{1}, \ldots, x_{k-3}^{h}\right\} \subset X_{k-3}$ and an h-element subset $\left\{x_{k-2}^{1}, \ldots, x_{k-2}^{h}\right\} \subset X_{k-2}$. Now for every $1 \leq i \leq k-2$ we join vertex x_{i}^{j} with x_{i+1}^{j} by directed edges $\left(x_{i}^{j}, x_{i+1}^{j}\right)$ and (x_{i+1}^{j}, x_{i}^{j}) for every $j=1, \ldots, h$. Every $X_{1}, X_{2}, \ldots, X_{k-4}$ and X_{k-1} induces a subdigraph isomorphic to K_{h}^{*} and subdigraphs induced by X_{k-3} and X_{k-2} are h strongly connected and have diameter equal to two. Also for any vertex $u \in X_{k-3}$
there exists at least one directed edge (s, u), where $s \in X_{k-4}$ and for any vertex $v \in X_{k-2}$ there exists at least one directed edge (t, v), where $t \in X_{k-3}$. If G denotes a digraph generated by this procedure, it is easy to see that $|V(G)|=n, \operatorname{ecc}(x)=k$ and $d(G)=k$; by Lemma 1.4 it follows that G is h-strongly connected. The number of directed edges oriented from classes X_{j} towards classes X_{i} where $i<j$ is a function $\varphi(k, h)$ which does not depend on n.
The number of digraphs generated in this way is greater than or equal to $\binom{n-1}{\alpha_{0}}\binom{n-1-\alpha_{0}}{\beta_{0}} 2^{\binom{n}{2}-\varphi(k, h)-\binom{\alpha_{0}}{2}-\binom{\beta_{0}}{2}} D_{s}\left(\alpha_{0} ; h, d=2\right) D_{s}\left(\beta_{0} ; h, d=2\right)\left(2^{h}-1\right)^{\alpha_{0}-h}\left(2^{\alpha_{0}}-\right.$ 1) ${ }^{\beta_{0}-h} 2^{h(h-1)} 2^{h\left(\alpha_{0}-1\right)} 2^{h\left(\beta_{0}-1\right)}$ by Lemma 1.1 and (8). Indeed, each vertex $z \in X_{k-3} \backslash$ $\left\{x_{k-3}^{1}, \ldots, x_{k-3}^{h}\right\}$ must have at least one incoming edge from some vertex in X_{k-4}, hence there are $2^{h}-1$ choices for the set of incoming edges to any such vertex. If $z=x_{k-3}^{i}(1 \leq i \leq h)$, there exists the directed edge ($\left.x_{k-4}^{i}, x_{k-3}^{i}\right)$; hence there are 2^{h-1} choices for the set of incoming edges to any vertex in $\left\{x_{k-3}^{1}, \ldots, x_{k-3}^{h}\right\}$. So the number of choices for the set of incoming edges to X_{k-3} is equal to $\left(2^{h}-1\right)^{\alpha_{0}-h} 2^{h(h-1)}$. In a similar way we find the number of choices for the set of incoming edges to X_{k-2} and X_{k-1}. Since $D_{s}(\alpha ; h, d=2) \sim 44_{\binom{\alpha}{2}}$ as $\alpha \rightarrow \infty$, this expression is equal to

$$
2^{\binom{n}{2}} f(n-1, h, k)(1+o(1))^{n}=4^{\binom{n}{2}}\left(\left(2^{h+1}-1\right) 2^{-k h+3 h-2}+o(1)\right)^{n}
$$

by Theorem 1.3. Hence $D_{s}(n ; h, d=k) \geq 4^{\binom{n}{2}}\left(\left(2^{h+1}-1\right) 2^{-k h+3 h-2}+o(1)\right)^{n}$ and the proof is complete in this case.

Case II. If $k=4$ the construction is somewhat similar to the case $k \geq 5$:
We consider a partition $X_{1} \cup X_{2} \cup X_{3} \cup X_{4}$ of $\{1, \ldots, n\} \backslash\{x\}$ such that $\left|X_{1}\right|=$ $\alpha_{1}(n-1, h, 4),\left|X_{2}\right|=\beta_{1}(n-1, h, 4)$ (given by (3)), $\left|X_{3}\right|=h$ and $\left|X_{4}\right|=1$. Let $X_{4}=\{w\}$.
We choose any vertex $t \in X_{2}$ and join t with x by a directed edge (t, x). By choosing $Y_{1} \subset X_{1}$ and $Y_{2} \subset X_{2}$ the remaining adjacencies are defined as for the case $k \geq 5$. Let us denote the set of h-strongly connected digraphs of order n produced in this way by \mathcal{G}. If $G \in \mathcal{G}$, we have $d(x, w)=4$; also $d(u, v) \leq 4$ for every $u, v \in V(G)$ unless $u \in X_{1}$ and $v=w$, when we have only $d(u, w) \leq 5$. If $G \in \mathcal{G}$ has $d(G)=5$ we define the digraph $\varphi(G)$ deduced from G by deleting directed edges joining w in both directions with vertices of X_{3} and replacing them by directed edges joining w in both directions with the h vertices of $Y_{2} \subset X_{2}$. We have $d_{\varphi(G)}(x, w)=3$. If $u \in X_{1}$ has $d_{G}(u, w)=5$ then $d_{G}\left(u, Y_{2}\right)=3$, which implies $d_{\varphi(G)}=4$, hence $\varphi(G)$ has diameter equal to four. If the vertex w in X_{4} is fixed, the ordered partition $X_{1} \cup X_{2} \cup X_{3}$ can be generated in

$$
\binom{n-2}{\alpha_{1}}\binom{n-2-\alpha_{1}}{\beta_{1}}=\frac{(n-1)!}{\alpha_{1}!\beta_{1}!}(1+o(1))^{n}
$$

ways. In this case φ is injective and for every $F, G \in \mathcal{G}$ we have $\varphi(G) \neq F$ since $d_{F}(x, w)=4$ but $d_{\varphi(G)}(x, w)=3$.
Hence we can generate a class consisting of $|\mathcal{G}| h$-strongly connected digraphs of order n and diameter equal to four as follows: we choose a digraph $G \in \mathcal{G}$ if $d(G)=4$; otherwise we choose the digraph $\varphi(G)$.

It follows that the number of digraphs generated in this way is equal to $\left.|\mathcal{G}|=\frac{(n-1)!}{\alpha_{1}!\beta_{1}!} 2^{n} \begin{array}{c}n \\ 2\end{array}\right)-\varphi(4, h)-\binom{\alpha_{1}}{2}-\binom{\beta_{1}}{2} D_{s}\left(\alpha_{1} ; h, d=2\right) D_{s}\left(\beta_{1} ; h, d=2\right)\left(2^{\alpha_{1}}-1\right)^{\beta_{1}-h} 2^{h\left(\alpha_{1}-1\right)}$ $2^{h\left(\beta_{1}-1\right)}(1+o(1))^{n}$, where $\varphi(k, h)$ was defined in the case $k \geq 5$. As for the case I the last expression is equal to

$$
2^{\binom{n}{2}} f(n-1, h, 4)(1+o(1))^{n}=4^{\binom{n}{2}}\left(2^{-h-2}+2^{-2}+o(1)\right)^{n}
$$

which concludes the proof.
Corollary 2.4 Equalities (i) and (ii) also hold for the numbers $D(n ; h, d=4)$ and $D(n ; h, d=k)$ of h-connected digraphs G of order n and diameter $d(G)=4$, respectively $d(G)=k \geq 5$.

Corollary 2.5 For every fixed $h \geq 1$ and $k \geq 2$ we have

$$
\lim _{n \rightarrow \infty} \frac{D_{s}(n ; h, d=k)}{D_{s}(n ; h, d=k+1)}=\lim _{n \rightarrow \infty} \frac{D(n ; h, d=k)}{D(n ; h, d=k+1)}=\infty .
$$

Corollary 2.6 The following equalities

$$
\lim _{n \rightarrow \infty} \frac{D_{s}(n ; h, d=k)}{D_{s}(n ; h+1, d=k)}=\lim _{n \rightarrow \infty} \frac{D(n ; h, d=k)}{D(n ; h+1, d=k)}=\infty
$$

hold for every fixed $h \geq 1$ and $k \geq 4$.

References

[1] B. Bollobás. Graph Theory. An introductory course, Springer-Verlag, New York Heidelberg Berlin, 1979.
[2] I. Tomescu. Almost all graphs are k-connected (in French), Revue Roumaine de mathématiques pures et appliquées, 7 , XXV (1980), 1125-1130.
[3] I. Tomescu. An asymptotic formula for the number of graphs having small diameter, Discrete Mathematics, 156 (1996), 219-228.
[4] I. Tomescu. The number of digraphs with small diameter, Australasian Journal of Combinatorics, 14 (1996), 221-227.
[5] I. Tomescu. On the number of h-connected graphs with a fixed diameter (submitted).

