The strong matching number of a random graph

Lane Clark
Department of Mathematics Southern Illinois University at Carbondale
Carbondale, IL 62901-4408, U.S.A.
lclark@math.siu.edu

Abstract

The strong matching number $\operatorname{sm}(G)$ of a graph G is the maximum number of edges in G that induces a matching in the graph. For fixed $0<p<1$, El Maftouhi and Marquez Gordones [Australasian Journal of Combinatorics 10 (1994), 97-104] showed that $\operatorname{sm}\left(G_{n, p}\right)$ is one of only a finite number of values for a.e. $G_{n, p} \in \mathcal{G}(n, p)$. We show that, in fact, $\operatorname{sm}\left(G_{n, p}\right)$ is one of only two possible values for a.e. $G_{n, p} \in \mathcal{G}(n, p)$; determine the probability of attaining each value; and find the limiting distribution of the number of maximum strong matchings in $G_{n, p} \in$ $\mathcal{G}(n, p)$.

1. Introduction

The vertex set (edge set) of a finite simple undirected graph G is denoted by $V(G)(E(G))$. The order (size) of G is $|V(G)|(|E(G)|)$. For $\phi \neq S \subseteq V(G)$, the subgraph $G[S]$ of G induced by S has vertex set S and edge set those edges of G both ends of which are in S. A set $M \subseteq E(G)$ is a matching of G provided no two edges in M have a common end-vertex. A matching M of G is a strong matching if and only if $M=E(G[S])$ where $S=S(M)$ is the set of all end-vertices of edges in M (i.e., $G[S]$ is a 1 -regular induced subgraph of G). Equivalently, a strong matching of G is a set $\left\{e_{1}, \ldots, e_{m}\right\}$ of pair-wise vertex-disjoint edges of G such that no edge of G connects an end-vertex of e_{i} with an end-vertex of e_{j} for $1 \leq i \neq j \leq m$. Observe that G has a strong matching of size k whenever it has a strong matching of size ℓ for $1 \leq k \leq \ell$ and that any edge of G is itself a strong matching. The strong matching number $\operatorname{sm}(G)$ of G is the maximum number of edges in a strong matching of G (here $\operatorname{sm}(G)=0$ for the empty graph). Though not expressed in terms of the above parameter, $[4,5,7]$ contain related results. The concept and the notation $\operatorname{sm}(G)$, though not the terminology, appear in [6].

The probability space $\mathcal{G}(n, p)$ consists of all graphs with vertex set $[n]:=\{1, \ldots$, $n\}$ in which edges are chosen independently with probability $p=p(n)$. For a random graph $G_{n, p} \in \mathcal{G}(n, p), \operatorname{Pr}\left(G_{n, p}\right)=p^{m} q^{N-m}$ when $G_{n, p}$ has size m where $q=1-p$ and $N=\binom{n}{2}$. A class of graphs which is closed under isomorphism
is called a property of graphs. We say almost every (a.e.) $G_{n, p} \in \mathcal{G}(n, p)$ has a property Q provided $\operatorname{Pr}\left(G_{n, p} \in \mathcal{G}(n, p)\right.$ has $\left.Q\right) \rightarrow 1$ as $n \rightarrow \infty$. As usual, $E(Y)$ and $\operatorname{Var}(Y)$ denote the expectation and variance of Y. A random variable having Poisson distribution with mean $\lambda>0$ is denoted by $\operatorname{Po}(\lambda)$ and one having normal distribution with mean 0 and variance 1 by $N(0,1)$. We write $Y_{n} \xrightarrow{d} Y$ when the sequence Y_{n} converges in distribution to Y.

Recently, El Maftouhi and Marquez Gordones [4] showed that for fixed $0<p<$ $1, \operatorname{sm}\left(G_{n, p}\right)$ is concentrated for a.e. $G_{n, p} \in \mathcal{G}(n, p)$. Throughout, $d=1 /(1-p)=$ $1 / q$.
Theorem (El Maftouhi and Marquez Gordones [4]). For fixed $0<p<1$, there exist positive constants c_{1} and c_{2} depending only on p such that:
(1) a.e. $G_{n, p} \in \mathcal{G}(n, p)$ contains a strong matching of size m for each m satisfying $m \leq \log _{d} n-\frac{1}{2} \log _{d} \log _{d} n-c_{1}$.
(2) a.e. $G_{n, p} \in \mathcal{G}(n, p)$ does not contain a strong matching of size m for each m satisfying $m \geq \log _{d} n-\frac{1}{2} \log _{d} \log _{d} n+c_{2}$.
We show that, in fact, $\operatorname{sm}\left(G_{n, p}\right)$ is one of only two possible values for a.e. $G_{n, p} \in$ $\mathcal{G}(n, p)$; determine the probability of attaining each value; and find the limiting distribution of the number of maximum strong matchings in $G_{n, p} \in \mathcal{G}(n, p)$. More precisely we prove the following results.
Theorem. Fix $0<p<1<2 c<2$ and let $m=\left\lceil\log _{d} n-\frac{1}{2} \log _{d} \log _{d} n+c+\right.$ $\left.\frac{1}{2} \log _{d}\left(\frac{e p}{2}\right)\right\rceil$. For all constant $0<\delta<2-2 c$,

$$
\operatorname{Pr}\left(m-1 \leq \operatorname{sm}\left(G_{n, p}\right) \leq m\right)=1-o\left(n^{-\delta}\right) .
$$

In fact, for all constant $0<\delta^{\prime}<2 c-1$,

$$
\begin{aligned}
& \operatorname{Pr}\left(\operatorname{sm}\left(G_{n, p}\right)=m-1\right)=\mathrm{e}^{-\lambda_{m}}-o\left(n^{-\delta}\right)+o\left(n^{-\delta^{\prime}}\right) \\
& \operatorname{Pr}\left(\operatorname{sm}\left(G_{n, p}\right)=m\right)=1-\mathrm{e}^{-\lambda_{m}}-o\left(n^{-\delta^{\prime}}\right)
\end{aligned}
$$

Here λ_{m} is the expected number of strong matchings of size m in $G_{n, p} \in \mathcal{G}(n, p)$ and is given in (1) in the next section. In addition, if $\lim _{n \rightarrow \infty} \lambda_{m}=\lambda \in(0, \infty)$, then

$$
Y_{m} \xrightarrow{d} \operatorname{Po}(\lambda)
$$

while, if $\lim _{n \rightarrow \infty} \lambda_{m}=\infty$, then

$$
\frac{Y_{m}-\lambda_{m}}{\sqrt{\lambda_{m}}} \xrightarrow{d} N(0,1) .
$$

Here $Y_{m}\left(G_{n, p}\right)$ is the number of strong matchings of size m in $G_{n, p} \in \mathcal{G}(n, p)$ and is defined in the next section.

We write $a \stackrel{*}{\leq} b$ to indicate that the inequality $a \leq b$ holds for all sufficiently large integers n. All other inequalities hold absolutely for the range of parameters being considered. We denote the nonnegative integers by \mathbb{N}, the positive integers
by \mathbb{Z}^{+}and the real numbers by \mathbb{R}. Recall that $f(n)=o(g(n))$ means that $\lim _{n \rightarrow \infty} f(n) / g(n)=0, f(n) \gg g(n)$ that $g(n)=o(f(n))$ and $f(n) \sim g(n)$ that $\lim _{n \rightarrow \infty} f(n) / g(n)=1$. For $x \in \mathbb{R},(x)_{0}=1$ and $(x)_{k}=(x) \cdots(x-k+1)$ for $k \in \mathbb{Z}^{+}$. Our notation and terminology generally follows Bollobás [3].

2. Results

For $n \geq 4 m+1 \geq 5$, let M_{1}, \ldots, M_{t} be the distinct m-matchings (i.e., having precisely m edges) in [n] and $S_{i}=S\left(M_{i}\right)$ be the set of all $2 m$ end-vertices of edges in $M_{i}(1 \leq i \leq t)$. Here $t=(n)_{2 m} / m!2^{m} \sim n^{2 m} / m!2^{m}$ as $n \rightarrow \infty$ when $m=o\left(n^{1 / 2}\right)$. For $G_{n, p} \in \mathcal{G}(n, p)$, let

$$
X_{i}\left(G_{n, p}\right):= \begin{cases}1 & , M_{i} \text { is a strong matching in } G_{n, p} \\ 0 & , \text { otherwise }\end{cases}
$$

hence,

$$
E\left(X_{i}\right)=p^{m} q^{M} ; M:=\binom{2 m}{2}-m=2 m^{2}-2 m
$$

since the edge set of $G_{n, p}\left[S_{i}\right]$ is precisely M_{i}. Let

$$
Y_{m}=Y_{m, n}:=\sum_{i=1}^{t} X_{i}
$$

hence, for $m=o\left(n^{1 / 2}\right)$,

$$
\begin{equation*}
\lambda_{m}=\lambda_{m, n}:=E\left(Y_{m}\right)=\frac{p^{m} q^{M}(n)_{2 m}}{m!2^{m}} \sim \frac{p^{m} q^{M} n^{2 m}}{m!2^{m}}:=\widetilde{\lambda}_{m, n}=\widetilde{\lambda}_{m} \tag{1}
\end{equation*}
$$

(in fact, $\left.\lambda_{m} \stackrel{*}{\leq} \widetilde{\lambda}_{m}\right)$. If $E\left(X_{i} X_{j}\right) \neq 0$, then $a b \in M_{i}$ if and only if $a b \in M_{j}$ whenever $a, b \in S_{i} \cap S_{j}$. Hence, M_{j} must consist of k edges of $M_{i} ; \ell$ other edges each adjacent to precisely one edge of M_{i}; and $m-k-\ell$ other edges each adjacent to no edge of M_{i}. Necessarily, $0 \leq k+\ell \leq m$ and $0 \leq k \leq m-1$ for $i \neq j$. Hence, for each $1 \leq i \leq t$,

$$
\left.\begin{array}{rl}
\sum_{\substack{S_{i} \cap S_{j} \mid \geq 2 \\
i \neq j}} E\left(X_{i} X_{j}\right)= & \sum_{\substack{2 \leq 2 k+\ell \leq 2 m-1 \\
0 \leq t \in \leq m \\
0 \leq k \leq m-1 \\
0 \leq i \\
0 \leq i}}\left\{\binom{m}{k}\binom{m-k}{\ell} 2^{\ell}\binom{n-2 m}{2 m-2 k-\ell}(2 m-2 k-\ell)_{\ell}\right. \\
& \left.\times \frac{\binom{2 m-2 k-2 \ell}{2, \ldots, 2}}{(m-k-\ell)!} p^{2 m-k} q^{2 M-\left({ }^{2 k+\ell}\right.}{ }_{2}\right)+k
\end{array}\right\},
$$

Here, we first choose the k common edges of M_{i} and M_{j}; then choose the ends of ℓ other edges of M_{i}; next choose the remaining $2 m-2 k-\ell$ vertices of $S_{j}-S_{i}$; then match these ℓ (ordered) vertices in S_{i} with ℓ vertices of $S_{j}-S_{i}$; and finally match the remaining $2 m-2 k-2 \ell$ vertices of $S_{j}-S_{i}$. Note that each $G_{n, p}\left[S_{i}\right] \cup G_{n, p}\left[S_{j}\right]$ has the same set of $2 m-k$ edges and the same set of $2 M-\binom{2 k+\ell}{2}+k$ nonedges.

We note that (by independence),

$$
\sum_{i=1}^{t} \sum_{\substack{\left|S_{i} \cap S_{j}\right| \leq 1 \\ i \neq j}} E\left(X_{i} X_{j}\right) \leq E\left(Y_{m}\right)^{2}
$$

so that,

$$
\begin{equation*}
\operatorname{Var}\left(Y_{m}\right) \leq \lambda_{m}+\sum_{i=1}^{t} \sum_{\substack{S_{i} \cap S_{j} \mid \geq 2 \\ i \neq j}} E\left(X_{i} X_{j}\right) . \tag{3}
\end{equation*}
$$

In what follows $0<p<1$ is constant, $q=1-p, d=1 / q$ and $m=\log _{d} n-$ $\frac{1}{2} \log _{d} \log _{d} n+c(n) \in \mathbb{Z}^{+}$where $c(n)$ is a bounded function. We will estimate (2) generally for these parameters and apply these estimates to specific such m in Theorems 1, 2 and Corollary 3.

Let $T:=\log _{d}\left(3 d^{2}\right)>2$. Now,

$$
\begin{align*}
S_{1} & :=\sum_{\substack{2 \leq 2 k+\ell \leq 2 T \\
0 \leq k+\leq \leq \\
0 \leq k, \ell}}\binom{m}{k, \ell, m-k-\ell} \frac{p^{2 m-k} q^{2 M-\binom{2 k+\ell}{2}+k} n^{2 m-2 k-\ell}}{2^{m-k-2 \ell}(m-k-\ell)!} \\
& \leq \frac{p^{2 m} q^{2 M} n^{2 m}}{m!2^{m}} \sum_{"} \frac{2^{k+2 \ell} d^{\left(2^{2 k+\ell}\right)} m_{2}^{2 k+2 \ell}}{p^{k} n^{2 k+\ell}} \\
& \leq \frac{\widehat{c} p^{2 m} q^{2 M} m^{4 T} n^{2 m-2}}{m!2^{m}}=\frac{\widehat{c} \tilde{\lambda}_{m} p^{m} q^{M} m^{4 T}}{n^{2}}, \tag{4}
\end{align*}
$$

where $\widehat{c}=4 T^{2}\left(16 p^{-1}\right)^{T} d^{2 T^{2}}$. We next need to carefully estimate the terms in (2).
For $k, \ell \in \mathbb{N}$ with $0 \leq k+\ell \leq m$, let

$$
f(k, \ell):=\frac{2^{k+2 \ell} d^{\left({ }^{2 k+\ell}\right)} q^{k}}{p^{k} n^{2 k+\ell}(m-k-\ell)!} \leq \frac{n^{(2 k+\ell)\left\{\frac{2 k+\ell}{2 \log _{d} n}-1+\frac{\log _{d}\left(4 p^{-1}\right)}{\log _{d} n}\right\}}}{(m-k-\ell)!}
$$

If $m / 2 \leq 2 k+\ell \leq 2 \log _{d} n-4 \log _{d} m$,

$$
1-\frac{2 k+\ell}{2 \log _{d} n}-\frac{\log _{d}\left(4 p^{-1}\right)}{\log _{d} n}-\frac{T}{2 k+\ell} \stackrel{*}{\geq} \frac{7 \log _{d} m}{4 \log _{d} n} \stackrel{*}{>} 0
$$

so that,

$$
\begin{equation*}
f(k, \ell) \stackrel{*}{\leq} \frac{1}{m!n^{T}} \tag{5}
\end{equation*}
$$

Next, if $2 T \leq 2 k+\ell \leq m / 2$,

$$
1-\frac{2 k+\ell}{2 \log _{d} n}-\frac{\log _{d}\left(4 p^{-1}\right)}{\log _{d} n}-\frac{T}{2 k+\ell} \geq \frac{1}{5}
$$

and, again,

$$
\begin{equation*}
f(k, \ell) \stackrel{*}{\leq} \frac{1}{m!n^{T}} \tag{6}
\end{equation*}
$$

Hence, (5), (6) and the Multinomial Theorem imply

$$
\begin{align*}
S_{2} & :=\sum_{\substack{2 T \leq 2 k+\ell \leq 2 \log _{d} n-4 \log _{d} m \\
0 \leq k+5 \leq m \\
0 \leq k, \ell}}\binom{m}{k, \ell, m-k-\ell} \frac{p^{2 m-k} q^{2 M-\binom{2 k+\ell}{2}+k} n^{2 m-2 k-\ell}}{2^{m-k-2 \ell}(m-k-\ell)!} \\
& \stackrel{*}{\leq} \frac{p^{2 \dot{m}} q^{2 M} n^{2 m}}{m!2^{m} n^{T}} \sum_{"}\binom{m}{k, \ell, m-k-\ell} \\
& \leq \frac{3^{m} p^{2 m} q^{2 M} n^{2 m}}{m!2^{m} n^{T}} \stackrel{*}{\leq} \frac{\tilde{\lambda}_{m} p^{m} q^{M}}{n^{2}} . \tag{7}
\end{align*}
$$

For $k, \ell \in \mathbb{N}$ with $0 \leq k+\ell \leq m-1$,

$$
f(k, \ell+1)=\frac{4(m-k-\ell) d^{2 k+\ell}}{n} f(k, \ell) .
$$

If, in addition, $\left(5 \log _{d} n\right) / 4 \leq 2 k+\ell$,

$$
\frac{4(m-k-\ell) d^{2 k+\ell}}{n} \geq 4 n^{1 / 4} \geq 1
$$

so that ($2 k+\ell \leq 2 k+m-k$ here $)$,

$$
\begin{aligned}
f(k, \ell) & \leq f(k, m-k) \\
& \leq n^{(m+k)\left\{\frac{m+k}{2 \log _{d} n}-1\right\}+\frac{(m+k) \log _{d}\left(4 p^{-1}\right)}{\log _{d} n}} .
\end{aligned}
$$

If $2 \log _{d} n-4 \log _{d} m \leq 2 k+\ell$,

$$
2 k+\ell \stackrel{*}{\geq} \frac{5}{4} \log _{d} n ; \quad k \stackrel{*}{\geq} \frac{\log _{d} n}{4} ; \quad m+k \stackrel{*}{>} \log _{d} n
$$

and (by considering the derivative with respect to real k),

$$
(m+k)-\frac{(m+k)^{2}}{2 \log _{d} n} \text { decreases as } k \text { increases for all sufficiently large } n \text {. }
$$

If, further, $k \leq m-\log _{d} m$,

$$
(m+k)-\frac{(m+k)^{2}}{2 \log _{d} n} \stackrel{*}{\geq}\left(2 m-\log _{d} m\right)-\frac{\left(2 m-\log _{d} m\right)^{2}}{2 \log _{d} n} \stackrel{*}{\geq} \frac{5}{4} \log _{d} \log _{d} n
$$

and $\left((m+k) / \log _{d} n\right.$ is bounded $)$

$$
(m+k)-\frac{(m+k)^{2}}{2 \log _{d} n}-\frac{(m+k) \log _{d}\left(4 p^{-1}\right)}{\log _{d} n}-\frac{m \log _{d} m}{\log _{d} n}-T \stackrel{*}{\geq} \frac{\log _{d} \log _{d} n}{5}
$$

so that,

$$
\begin{equation*}
f(k, \ell) \stackrel{*}{\leq} \frac{1}{m!n^{T}} \tag{8}
\end{equation*}
$$

Hence, (8) and the Multinomial Theorem imply

$$
\begin{align*}
& \stackrel{*}{\leq} \frac{p^{2 m} q^{2 M} n^{2 m}}{m!2^{m} n^{T}} \sum_{"}\binom{m}{k, \ell, m-k-\ell} \stackrel{*}{\leq} \frac{\tilde{\lambda}_{m} p^{m} q^{M}}{n^{2}} . \tag{9}
\end{align*}
$$

For $k, \ell \in \mathbb{N}$ with $0 \leq k+\ell \leq m$, let

$$
g(k, \ell):=\frac{p^{m-k} q^{M-\binom{2 k+\ell}{2}+k} n^{2 m-2 k-\ell}}{2^{m-k-2 \ell}(m-k-\ell)!}
$$

hence, for $0 \leq k+\ell \leq m-1$,

$$
g(k+1, \ell)=\frac{2(m-k-\ell) d^{4 k+2 \ell}}{p n^{2}} g(k, \ell)
$$

If, in addition, $2 \log _{d} n-4 \log _{d} m \leq 2 k+\ell$,

$$
\frac{2(m-k-\ell) d^{4 k+2 \ell}}{p n^{2}} \stackrel{*}{\geq} n^{3 / 2} \geq 1
$$

so that $(2 k+\ell \leq 2(m-\ell)+\ell$ here $)$,

$$
\begin{aligned}
& g(k, \ell) \stackrel{*}{\leq} g(m-\ell, \ell) \\
&=(2 p n)^{\ell} q^{2 m \ell-\binom{\ell+1}{2}-\ell} \\
&=\left(\frac{2 p \log _{d} n}{n}\right)^{\ell} n^{\left.\frac{\left({ }_{2}^{+1}+1\right.}{2}\right)+\ell-2 c(n) \ell} \\
& \log _{d} n
\end{aligned} . ~ l
$$

If, further, $m-\log _{d} m \leq k$, then $\ell \leq \log _{d} m$ and

$$
g(k, \ell) \stackrel{*}{\leq}\left(\frac{2 p \log _{d} n}{n}\right)^{\ell} n \stackrel{(2|c(n)|+2) \log _{d}^{2} m}{\log _{d} n}
$$

hence, for all $\ell \geq 1$,

$$
\begin{equation*}
g(k, \ell) \stackrel{*}{\leq} 2 n \frac{\left\{\frac{\bar{c}\left(\log _{d} \log _{d} n\right)^{2}}{\log _{d} n}-1\right\}}{} \tag{10}
\end{equation*}
$$

where $\bar{c} \geq 2|c(n)|+3$. Also,

$$
2 \log _{d} n-4 \log _{d} m \stackrel{*}{\leq} 2 k
$$

so that (recall $k \leq m-1$),

$$
\begin{align*}
g(k, 0) & \leq g(m-1,0) \\
& =\frac{p q^{4 m-4} n^{2}}{2} \\
& \leq \frac{d^{2 \bar{c}} \log _{d}^{2} n}{n^{2}} . \tag{11}
\end{align*}
$$

Hence, (10) and (11) imply

$$
\begin{align*}
& \stackrel{*}{\leq} 2 p^{m} q^{M} n^{\left\{\frac{\bar{c}\left(\log _{d} \log _{d} n\right)^{2}}{\log _{d} n}-1\right\}} \sum_{"}\binom{m}{k, \ell, m-k-\ell} \\
& \leq 2 p^{m} q^{M} m^{2+\log _{d} m} n\left\{\frac{\bar{c}\left(\log _{d} \log _{d} n\right)^{2}}{\log _{d} n}-1\right\} \\
& \stackrel{*}{\leq} 2 p^{m} q^{M} n^{\left\{\frac{2 \bar{c}\left(\log _{d} \log _{d} n\right)^{2}}{\log _{d} n}-1\right\}} \text {. } \tag{12}
\end{align*}
$$

Consequently, for each $1 \leq i \leq t,(2),(4),(7),(9)$ and (12) imply

$$
\sum_{\substack{\left|S_{i} \cap \mathcal{S}_{j}\right| \geq 2 \\ i \neq j}} E\left(X_{i} X_{j}\right) \stackrel{*}{\leq}\left\{2+(\widehat{c}+2) \tilde{\lambda}_{m}\right\} p^{m} q^{M} n \frac{\left.2 \frac{2 \widehat{c}\left(\log _{d} \log _{d} n\right)^{2}}{\log _{d} n}-1\right\}}{}
$$

hence,

$$
\begin{equation*}
\left.\sum_{i=1}^{t} \sum_{\substack{\mid s_{i} \cap S_{j} \backslash 2 \\ i \neq j}} E\left(X_{i} X_{j}\right) \stackrel{*}{\leq}\left\{2+(\widehat{c}+2) \widetilde{\lambda}_{m}\right\} \widetilde{\lambda}_{m} n \frac{2 \overline{(}\left(\log _{d} \log _{d} n\right)^{2}}{\log _{d} n}-1\right\} \tag{13}
\end{equation*}
$$

and, (3) and (13) imply

$$
\begin{equation*}
\operatorname{Var}\left(Y_{m}\right) \stackrel{*}{\leq} \lambda_{m}+\left\{2+(\widehat{c}+2) \tilde{\lambda}_{m}\right\} \tilde{\lambda}_{m} n\left\{\frac{2 \bar{c}\left(\log _{d} \log _{d} n\right)^{2}}{\log _{d} n}-1\right\} \tag{14}
\end{equation*}
$$

For $m=\log _{d} n-\frac{1}{2} \log _{d} \log _{d} n+c(n) \in \mathbb{Z}^{+}$where $c(n)$ is a bounded function, standard estimates give,

$$
\log _{d}\left(\frac{\log _{d} n}{m}\right)=\frac{\log _{d} \log _{d} n}{2 \ln d \log _{d} n}+o\left(\frac{\log _{d} \log _{d} n}{\log _{d} n}\right)
$$

hence, (1) and Stirling's formula imply,

$$
\begin{equation*}
\tilde{\lambda}_{m}=n^{2-2 c(n)+\log _{d}(\mathrm{e} p / 2)+\left\{c(n)+1 / 2 \ln d-0.5 \log _{d}(\mathrm{e} p / 2)\right\} \frac{\log _{d} \log _{d} n}{\log _{d} n}+o\left(\frac{\log _{d} \log _{d} n}{\log _{d} n}\right)} \tag{15}
\end{equation*}
$$

We are now ready to prove that $\operatorname{sm}\left(G_{n, p}\right)$ is one of only two possible values for a.e. $G_{n, p} \in \mathcal{G}(n, p)$.
Theorem 1. Fix $0<p<1<2 c<2$ and let $m=\left\lceil\log _{d} n-\frac{1}{2} \log _{d} \log _{d} n+c+\right.$ $\left.\frac{1}{2} \log _{d}\left(\frac{e p}{2}\right)\right\rceil$. For all constant $0<\delta<2-2 c$,

$$
\operatorname{Pr}\left(m-1 \leq \operatorname{sm}\left(G_{n, p}\right) \leq m\right)=1-o\left(n^{-\delta}\right)
$$

Proof. From (15) (and $\lambda_{m+1} \sim \widetilde{\lambda}_{m+1}$), we have

$$
\lambda_{m+1}=o\left(n^{-2 c+\epsilon}\right) \quad(0<\epsilon<1)
$$

hence, Markov's inequality implies

$$
\begin{equation*}
\operatorname{Pr}\left(Y_{m+1} \geq 1\right)=o\left(n^{-2 c+\epsilon}\right) \quad(0<\epsilon<1) \tag{16}
\end{equation*}
$$

It is readily seen that $m-1=\left\lfloor\log _{d} n-\frac{1}{2} \log _{d} \log _{d} n+c+\frac{1}{2} \log _{d}\left(\frac{\mathrm{ep}}{2}\right)\right\rfloor$ for $n \in \mathbb{Z}^{+}$ with density 1 ; otherwise, $m-1=\left\lfloor\log _{d} n-\frac{1}{2} \log _{d} \log _{d} n+c-1+\frac{1}{2} \log _{d}\left(\frac{\mathrm{e} p}{2}\right)\right\rfloor$. From (15) (and $\lambda_{m-1} \sim \widetilde{\lambda}_{m-1}$), we have in either case

$$
\begin{equation*}
\lambda_{m-1} \gg n^{2-2 c-\epsilon} \quad(\epsilon>0) \tag{17}
\end{equation*}
$$

hence, (14) (applied to Y_{m-1} with $\left.\bar{c}=2 c+\left|\log _{d}(\mathrm{e} p / 2)\right|+3\right)$, (17) and Chebyshev's inequality imply

$$
\begin{equation*}
\operatorname{Pr}\left(Y_{m-1}=0\right)=o\left(n^{-2+2 c+\epsilon}\right) \quad(0<\epsilon<2-2 c) \tag{18}
\end{equation*}
$$

Hence, for all constant $0<\epsilon<2-2 c$, (16) and (18) imply
$\operatorname{Pr}\left(m-1 \leq \operatorname{sm}\left(G_{n, p}\right) \leq m\right)=\operatorname{Pr}\left(Y_{m-1} \geq 1\right)-\operatorname{Pr}\left(Y_{m+1} \geq 1\right)=1-o\left(n^{-2+2 c+\epsilon}\right)$
since the event $\left(Y_{k} \geq 1\right)$ contains the event $\left(Y_{\ell} \geq 1\right)$ for all $1 \leq k \leq \ell$. Our result follows upon letting $\delta=2-2 c-\epsilon$.
Remark. It is readily seen that the theorem remains true if $\epsilon=\epsilon(n) \rightarrow 0$ slowly enough.

We now discuss the Stein-Chen method of approximating the distribution of a random variable with a Poisson distribution (see [1-3]). For $A \subseteq \mathbb{N}$ and $\lambda>0$, let $x=x_{\lambda, A}: \mathbb{N} \rightarrow \mathbb{R}$ by $x(0)=0$ and

$$
x(m+1):=\lambda^{-m-1} \mathrm{e}^{\lambda} m!\left\{\operatorname{Po}\left(\lambda, A \cap C_{m}\right)-\operatorname{Po}(\lambda, A) \operatorname{Po}\left(\lambda, C_{m}\right)\right\}, m \in \mathbb{N}
$$

where $C_{m}:=\{0, \cdots, m\}$ and $\operatorname{Po}(\lambda, B):=\mathrm{e}^{-\lambda} \sum_{k \in B} \lambda^{k} / k!$ for $B \subseteq \mathbb{N}$. Then (1) $\Delta x:=\sup _{m \in \mathbb{N}}|x(m+1)-x(m)| \leq 2 \min \left\{1, \lambda^{-1}\right\}$ and
(2) for any probability space $(\Omega, \mathcal{F}, \operatorname{Pr})$ and any \mathcal{F}-measurable non-negative integer valued random variable $Y: \Omega \rightarrow \mathbb{N}$,

$$
\begin{equation*}
\operatorname{Pr}(Y \in A)-\operatorname{Po}(\lambda, A)=E\{\lambda x(Y+1)-Y x(Y)\} \tag{19}
\end{equation*}
$$

Define the total variation distance $d_{T V}(Y, \operatorname{Po}(\lambda))$ between Y and $\operatorname{Po}(\lambda)$ by

$$
d_{T V}(Y, \operatorname{Po}(\lambda)):=\sup _{A \subseteq \mathbb{N}}|\operatorname{Pr}(Y \in A)-\operatorname{Po}(\lambda, A)|
$$

For a sequence $\left(\Omega_{n}, \mathcal{F}_{n}, \operatorname{Pr}_{n}\right)$ of probability spaces and a sequence Y_{n} of $\mathcal{F}_{n^{-}}$ measurable non-negative integer valued random variables with expectation λ_{n}, if

$$
d_{T V}\left(Y_{n}, \operatorname{Po}\left(\lambda_{n}\right)\right)=o(1) \text { as } n \rightarrow \infty,
$$

we say Y_{n} is Poisson convergent. Necessarily, $Y_{n} \xrightarrow{d} \operatorname{Po}(\lambda)$ when $\lim _{n \rightarrow \infty} \lambda_{n}=$ $\lambda \in(0, \infty)$ while $\left(Y_{n}-\lambda_{n}\right) / \sqrt{\lambda_{n}} \xrightarrow{d} N(0,1)$ when $\lim _{n \rightarrow \infty} \lambda_{n}=\infty$. Here, $\left(\Omega_{n}, \mathcal{F}_{n}, \operatorname{Pr}_{n}\right)=\mathcal{G}(n, p)$.

Again, $m=\log _{d} n-\frac{1}{2} \log _{d} \log _{d} n+c(n) \in \mathbb{Z}^{+}$where $c(n)$ is a bounded function. For $1 \leq i \leq t$, let

$$
V_{i}:=\sum_{\substack{\left|s_{i} \cap s_{j}\right| \geq 2 \\ i \neq j}} X_{j} \text { and } W_{i}:=\sum_{\substack{\left|s_{i} \cap \cap_{j}\right| \leq 1 \\ i \neq j}} X_{j}
$$

so that X_{i} and W_{i} are independent in $\mathcal{G}(n, p)$ and $Y_{m}=V_{i}+W_{i}+X_{i}$ for each $1 \leq i \leq t$. For any function $x: \mathbb{N} \rightarrow \mathbb{R}$,

$$
\begin{align*}
\lambda_{m} x\left(Y_{m}+1\right)-Y_{m} x\left(Y_{m}\right)= & p^{m} q^{M} \sum_{i=1}^{t}\left\{x\left(Y_{m}+1\right)-x\left(W_{i}+1\right)\right\} \\
& +\sum_{i=1}^{t}\left(p^{m} q^{M}-X_{i}\right) x\left(W_{i}+1\right) \\
& +\sum_{i=1}^{t} X_{i}\left\{x\left(W_{i}+1\right)-x\left(Y_{m}\right)\right\} . \tag{20}
\end{align*}
$$

First,

$$
\left|x\left(Y_{m}+1\right)-x\left(W_{i}+1\right)\right| \leq \Delta x\left(X_{i}+V_{i}\right)
$$

while crude estimates give,

$$
E\left(X_{i}+V_{i}\right) \stackrel{*}{\leq} p^{m} q^{M} \frac{10 m^{4}(n)_{2 m}}{m!2^{m} n^{2}}=\frac{10 m^{4} \lambda_{m}}{n^{2}}
$$

hence,

$$
\begin{equation*}
p^{m} q^{M} \sum_{i=1}^{t} E\left|x\left(Y_{m}+1\right)-x\left(W_{i}+1\right)\right| \stackrel{*}{\leq} \frac{20 m^{4} \lambda_{m}}{n^{2}} . \tag{21}
\end{equation*}
$$

Next,

$$
\left|X_{i}\left\{x\left(W_{i}+1\right)-x\left(Y_{m}\right)\right\}\right| \leq \Delta x X_{i} V_{i}
$$

hence, (13) implies

$$
\begin{equation*}
\sum_{i=1}^{t} E\left|X_{i}\left\{x\left(W_{i}+1\right)-x\left(Y_{m}\right)\right\}\right| \stackrel{*}{\leq}\left\{4+(2 \widehat{c}+4) \widetilde{\lambda}_{m}\right\} n^{\left\{\frac{2 \bar{c}\left(\log _{d} \log _{d} n\right)^{2}}{\log _{d} n}-1\right\}} \tag{22}
\end{equation*}
$$

Consequently, (19), (20), (21), (22) and the independence of X_{i} and W_{i} imply,

$$
\begin{equation*}
d_{T V}\left(Y_{m}, \operatorname{Po}\left(\lambda_{m}\right)\right) \stackrel{*}{\leq} \frac{20 m^{4} \lambda_{m}}{n^{2}}+\left\{4+(2 \widehat{c}+4) \tilde{\lambda}_{m}\right\} n^{\left\{\frac{2 \bar{c}\left(\log _{d} \log _{d} n\right)^{2}}{\log _{d} n}-1\right\}} \tag{23}
\end{equation*}
$$

since our estimates are independent of the set A.
We are now ready to prove that Y_{m} is Poisson convergent for appropriate m and, hence, determine the probability that $\operatorname{sm}\left(G_{n, p}\right)=m-1$ or m for $G_{n, p} \in \mathcal{G}(n, p)$.
Theorem 2. Fix $0<p<1<2 c<2$ and let $m=\left\lceil\log _{d} n-\frac{1}{2} \log _{d} \log _{d} n+c+\right.$ $\left.\frac{1}{2} \log _{d}\left(\frac{\mathrm{ep}}{2}\right)\right]$. Then, for all constant $0<\delta^{\prime}<2 c-1$,

$$
d_{T V}\left(Y_{m}, \operatorname{Po}\left(\lambda_{m}\right)\right)=o\left(n^{-\delta^{\prime}}\right) .
$$

Hence, for all constant $0<\delta<2-2 c, 0<\delta^{\prime}<2 c-1$,

$$
\begin{aligned}
& \operatorname{Pr}\left(\operatorname{sm}\left(G_{n, p}\right)=m-1\right)=\mathrm{e}^{-\lambda_{m}}-o\left(n^{-\delta}\right)+o\left(n^{-\delta^{\prime}}\right) \\
& \operatorname{Pr}\left(\operatorname{sm}\left(G_{n, p}\right)=m\right)=1-\mathrm{e}^{-\lambda_{m}}-o\left(n^{-\delta^{\prime}}\right) .
\end{aligned}
$$

Proof. From (15) (and $\lambda_{m} \sim \widetilde{\lambda}_{m}$), we have

$$
\begin{equation*}
\lambda_{m}=o\left(n^{2-2 c+\epsilon}\right) \quad(\epsilon>0) \tag{24}
\end{equation*}
$$

hence, for all constant $0<\epsilon^{\prime}<2 c-1$, (23) (with $\bar{c}=2 c+\left|\log _{d}(\mathrm{e} p / 2)\right|+5$) and (24) imply

$$
\begin{equation*}
d_{T V}\left(Y_{m}, \operatorname{Po}\left(\lambda_{m}\right)\right)=o\left(n^{1-2 c+\epsilon^{\prime}}\right) \tag{25}
\end{equation*}
$$

Hence, for all constant $0<\epsilon<2-2 c, 0<\epsilon^{\prime}<2 c-1$, (16), (18) and (25) imply

$$
\begin{aligned}
\operatorname{Pr}\left(\operatorname{sm}\left(G_{n, p}\right)=m-1\right) & =\operatorname{Pr}\left(Y_{m-1} \geq 1\right)-\operatorname{Pr}\left(Y_{m} \geq 1\right) \\
& =\mathrm{e}^{-\lambda_{m}}-o\left(n^{-2+2 c+\epsilon}\right)+o\left(n^{1-2 c+\epsilon^{\prime}}\right) \\
\operatorname{Pr}\left(\operatorname{sm}\left(G_{n, p}\right)=m\right) & =\operatorname{Pr}\left(Y_{m} \geq 1\right)-\operatorname{Pr}\left(Y_{m+1} \geq 1\right) \\
& =1-\mathrm{e}^{-\lambda_{m}}-o\left(n^{1-2 c+\epsilon^{\prime}}\right),
\end{aligned}
$$

since the event $\left(Y_{k} \geq 1\right)$ contains the event $\left(Y_{k+1} \geq 1\right)$. Our result follows upon letting $\delta=2-2 c-\epsilon$ and $\delta^{\prime}=2 c-1-\epsilon^{\prime}$.

Finally, we find the limiting distribution of the number of maximum strong matchings in $G_{n, p} \in \mathcal{G}(n, p)$.
Corollary 3. Fix $0<p<1<2 c<2$ and let $m=\left\lceil\log _{d} n-\frac{1}{2} \log _{d} \log _{d} n+c+\right.$ $\left.\frac{1}{2} \log _{d}\left(\frac{e p}{2}\right)\right]$. If $\lim _{n \rightarrow \infty} \lambda_{m}=\lambda \in(0, \infty)$, then

$$
Y_{m} \xrightarrow{d} \mathrm{Po}(\lambda),
$$

while, if $\lim _{n \rightarrow \infty} \lambda_{m}=\infty$, then

$$
\frac{Y_{m}-\lambda_{m}}{\sqrt{\lambda_{m}}} \xrightarrow{d} N(0,1) .
$$

Remark. For all such c and m, there exists a set S of positive integers having positive density with $\lim _{n \rightarrow \infty} \lambda_{m}=\infty$ when $n \in S$.

References

[1] A.D. Barbour, Poisson convergence and random graphs, Mathematical Proceedings Cambridge Philosophical Society 92 (1982), 349-359.
[2] A.D. Barbour, L. Holst and S. Janson, Poisson Approximation, Oxford University Press, New York, 1992.
[3] B. Bollobás, Random Graphs, Academic Press, New York, 1985.
[4] A. El Maftouhi and L. Marquez Gordones, The maximum size of a strong matching in a random graph, Australasian Journal of Combinatorics 10 (1994), 97104.
[5] A. El Maftouhi, The minimum size of a maximal strong matching in a random graph, Australasian Journal of Combinatorics 12 (1995), 77-80.
[6] R.J. Faudree, R.H. Schelp, A. Gyárfás and Zs. Tuza, The strong chromatic index of graphs, Ars Combinatoria 29B (1990), 205-211.
[7] J. Liu and H. Zhou, Maximum induced matchings in graphs, Discrete Mathematics 170 (1997), no. 1-3, 277-281.

