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Abstract 

A partial Latin square is premature if it has no completion, but it admits 
a completion after removing any of its symbols. This type of partial Latin 
square has been introduced by Brankovic, Honik, Miller and Rosa [Ars 
Combinatoria, to appear] where the authors showed that the number of 
empty cells in an n x n premature latin square is at least 371 - 4. vVe 
improve this lower bound to 7n/2 - 0(71,). 

1 Introduction 

A partial Latin square is an n x n array partially filled by symbols numbers 
from {I, 2, ... , 71} such that each row and each column contains each symbol at 
most once. It is a (complete) Latin square if each cell of the array is filled by some 
number. A partial Latin square is premature if it cannot be completed to a Latin 
square, but such a completion exists after erasing the contents of any single one 
of its cells. Premature partial Latin squares were introduced in [1]. The property 
of being premature is quite close to that of being a critical set in a Latin square, 
which has several interesting applications, e.g. in design theory, group theory, graph 
theory or cryptography (a survey is given in [3]). However, as pointed out in [1], 
investigation of premature Latin squares requires different techniques from the ones 
used for critical sets. One of the natural problems, extensively studied in [1], is to 
characterize the spectrum of the size of premature Latin squares. The question as 
to how large a premature Latin square can be is of particular interest. The authors 
have shown in [1] that the size of a maximal premature Latin square of order n is 
asymptotic to n2 while there are always at least 3n 4 empty cells. They further 
stated a conjecture, that there are always at least n ~ empty cells. Recently Brankovic 
and Miller ([2]) showed that if a premature partial Latin square contains a row (or a 
column) with 71 - 1 full cells then it contains at least 471 10 empty cells. \Ve present 
here a slight improvement of the lower bound on the number of empty cells in any 
premature partial Latin square to 7n/2 - 0(71), being still far below the non-linear 
conjecture. 
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2 Preliminaries 

vVe will denote [nl {I, 2, ... , n} for n 2: 1. We will refer to the positions in an 
n x n array partially filled by elements of [n] as cells and to entries in these cells as 
symbols. Such an array is a partial Latin square (pls for short) if it contains each 
symbol in each row and in each column at most once. By S( i, j) we denote the 
symbol contained in the cell at position (i,j) of the pls S; we write S(i,j) = E if the 
cell is empty. A (complete) Latin square is a pls having all its cells filled. 

Alternatively, a pls S can be described as a set of triples (i, j, k) where each pair 
(i, j), (j, k), (k, i) occurs at most once. Using our previous notation, S = {( i, j, k) E 
[nJ3; SO, j) = k}. The partial Latin squares obtained from S by permutation of 
entries in the triples will be called conjugates of S. Using conjugacy, properties 
of partial Latin squares expressed in terms of rows, columns and symbols can be 
translated to conjugate properties obtained by permuting the three terms. 

An n x n pls S is premature, if it cannot be completed (i.e., as a set of triples, it 
is not a subset of any complete n x TL Latin square), but any proper subset of Scan 
be completed. The property of being premature is obviously preserved by conjugacy. 

In the remaining text we assume that L is an arbitrary but fixed n x n premature 
Latin square, n 2: 8. We will denote by Gi,j one (any) Latin square being a completion 
of the pis obtained from L by erasing the cell (i, j). Vve denote as ri, Cj, Sk respectively 
the number of empty cells in row i, the number of empty cells in column j, and 
the number of occurrences of symbol k missing in L (i.e. Sk = n- "the nurnber of 
occurrences of symbol k in L"). \Ve further let E = ~iri ~jCj L.kSk n 2 

- lSi, 
the total number of empty cells in L. 

For the rest of the paper, we will make an assumption that will exclude the 
singular case when all non-empty cells of L are in one row plus one column only. In 
this case L may not have some properties common to other premature squares. In 
such a premature square the row and the column may contain at most n 1 full cells 
each, hence there are at least n2 2n + 2 > ~n empty cells in L. Therefore we will 
assume that for each position (i,j) there is a position (i',j') with i' =I i, j' =I j and 
L('i',j') =IE. 

3 The lower bound 

3.1 Basic facts and the lower bound 

For proving our result we \vill need two easy-to-prove lemmas. Let us denote by 
R8Ci) the set of all symbols from [n] not occurring in row i of L and by CS(j) the 
set of all symbols from [nl not occurring in column j. Vle will call a row (a column) 
containing exactly m empty cells an m-row (m-column). 

Lemma 1 RS('i) n CS(j) =I (/) for each 'i,j E [n]. 

Proof. Let L( i, j) = E and let L( i', jf) =I E for sorne i' =I i, j' =I j. Then Cil,j' (i, j) 
belongs to the intersection. If L( i, j) =I E then Gi,j ei, j) belongs to the intersection . 

• 
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Corollary 2 The only symbol not occl1,rring in a I-row does not occur in L at all. 

From Lemma 1 we easily obtain a conjugate assertion of Theorem 2.3 from [1], 
based on a slightly different proof argument. 

Corollary 3 If n ~ 3 then L:k s~ ~ 17,2. 

Proof. A symbol k occurs in s~ different intersections RS(i) n CS(j). The 
inequality follows from the fact implied by Lemma 1 that the total number of symbol 
occurrences in all intersections RS (i) n C S (j) is at least 71,2. • 

The next lemma is a generalization of the assertions used in [1] for m = 1,2. 

Lemma 4 rr.h, j2, ... , jm are positions of all free cells in some m-TOW 'i, then the 
colmn:n.s .i 1, ... , jm together contain at least 17, empty cells. 

Proof. Let k be any symbol. Let us first assume that each of the columns 
j 1, .j2, ... , jm contains a single full cell with symbol k and there are no other full cells 
except in row i. Then m 2: 2, otherwise all full cells are in one row and one column 
only. Hence there are at least 2(17,- 1) 2: 17, free cells in columns j] ,j2, ... , jm. Let the 
former assumption be not true. \Ve will prove that the symbol k is missing in at least 
one of the columns j1, j2, ... , jm. If k occurs in row i at position jr then k is placed in 
row i of Ci,j,. to some cell f~ which was originally free in L. Hence column js does not 
contain k. If k is not contained in row i then there is a cell (if, j') being outside of 
row i and either outside columns j1, j2, ... , jm, or filled with a symbol different from 
k. In either case k may appear in row i of Ci',j' in one of the columns jl,j2, ... ,jm 
only; this column in L cannot contain k. • 

Corollary 5 If some TOW contains 17, - 1 symbols then its only em.pty cell belongs to 
an ernpty column. 

\Ne are now able to state our result; the principal part of the proof will be 
contained in Section 3.2 

Theorem 6 Each premature partial Latin square contains at lea.st 771./2-0(17,) empty 
squares. 

Proof. We will distinguish the following cases. 
1. mini r'i ~ 4 or minj c.l ~ 4. In this case E ~ 417, > 771./2. 
2. mini ri 3 and minj Cj ~ 3 (or the conjugate case mini ri :S; 3 and minj Cj = 3). 
\Ve apply Lemma 4 to a column with at most 3 empty cells. The corresponding 3 
rows contain at least 17, free cells and the remaining rows at least 3(17, - 3) free cells, 
hence E ~ 4n 9 ~ 7n/2 5. 
3. mini Ti 1, minj Cj ~ 2. Then L contains at least 4n 10 empty cells, as proved 
in [2]. 
4. mini Ti minj Cj 2. The lower bound will be proved in Section 3.2. • 
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3.2 Case rnin'i '{"i = minj Cj = 2 

In this section we assume that there are no I-rows or 1-columns but there is at least 
one 2-row and at least one 2-column. 

Let us denote as R = {'i E [n]; ri = 2} the set of all 2-rows and as C = {.j E 

[n]; Cj = 2} (the set of all 2-columns). 

Lemma 7 If there are at most n/2 2-rows or at most n/2 2-colurnns then E > 
7n/2 - 6. 

Proof. If there are at most 71/2 different 2-rows then the remaining rows contain 
at least 3 free cells each. Applying Lemma 4 to one 2-coluIlln we get two rows 
containing together at least n empty cells. Consequently, E ;::: n + 3(T~/2 - 2) + 
2(71/2) = 771/2 - 6. The assertion for columns is obtained using conjugacy properties . 

• 
For the rest of Part 3.2 we will assume that there are at least n/2 + 1 2:: 5 different 

2-rows. and at least 71/2 + 1 ;::: 5 different 2-columns. Then using Lemma 1 we get 
the following property of the square L. 

Lemma 8 Either one of the sets U iER RS(i), UjEc CS(j) contains at most 4 dif
ferent symbols, or niER RS(i) n njEc CS(j) =J 0. 

Proof. All our conclusions will be based on Lemma 1 using the fact that, for 
i E Rand) E C, IRSCi) I = IC S(j) I = 2. Only the following five situations are 
possible (i1' i2 denote pairwise different indices from R, )1, .h denote pairwise 
different indices from C, and a, b, e, d denote pairwise different symbols): 
1. For somejl,j2 there exist a,b,e,d such that CS(jd = {a,b} and CS(j.2) = {c,d}. 
Each RS(i) then contains one symbol from CS(jd and one symbol from C(iz), hence 
UiERR(i) C {a,b,c,d}. 
2. For some )1,12,):3 there exist a,b,e such that CS(jd = {a,b}, CS(j2) = {a,e}, 
CS(j3) = {b,e}. Then UiERRS(i) C {a,b,c}. 
3. For some j1,j2,j3 there exist a, b, c, d such that CSCiI) = {a, b}, CS(j2) = {a, e}, 
CS():3) = {a, d} and the situation 1. does not occur (therefore a. E njEc CS(i)). 
Then a E niER RS(i). 
4. There exist a, b, c such that for each .h E C either C S (jj) {eL, b} or C S(j1) = 
{a,e}. Then UjECCS(j) C {a,b,c}. 
5. There exist a,b such that for each ,71 E C, CSUl) = {a,b}. Then UjECCS(j) C 
{a, b}. • 

In our considerations we will concentrate on the relative position of the free cells 
in different 2-rows (or different 2-columns). We will distinguish the subcases listed 
in the following proposition. 

Proposition 9 One of the following a88ertions is true: 
1. There are at least two 2-rows such that no two out of the fo'ur free cell8 in these 
rows are in the same column. 
2. There are at least two 2-columns s1J,ch that no two out of the four free cells in 
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these columns are in the same row. 
S. There are three columns containing all free cell8 of all 2-rows but none of the three 
columns contain8 a free cell in each 2-row. 
4. Ther'e are thTee rows containing all free cells of all2-columns but none of the three 
rows contains a free cell in each 2-column. 
5. There is a column that contains a free cell in each 2-row and theTe is a TOW that 
contains a fTee cell in each 2-colmnn. 

Lelllllla 10 If 1. 01' 2. of PToposition 9 is true then E :.::: 4n - 8 :.::: 711,/2 - 4. 

Proof. If 1. is true then Lemma 4 applied twice (once for each of the two 
rows) implies existence of t\VO disjoint pairs of columns each containing at least 
n free cells. Each of the remaining columns contains at least 2 free cells, hence 
E :2: 2n + 2(n 4) = 4n - 8. The assertion for the case 2. is obtained using 
conjugacy. _ 

Lelllma 11 If S. 01' 4. of Proposition 9 is tTue then E :.::: 7n/2 6. 

Proof. Let 3. be true and let the indices of the three columns be )1,)2, )3. Since 
there are at least three 2-rows, Lemma 4 implies that each two of the columns contain 
together at least n empty cells. Hence Cjl + Cj2 :.::: n' c12 + ch :2: n, ch + cJI :.::: nand, 
consequently, ch + c12 + Cj3 :.::: 3n/2. Each of the remaining columns contains at least 
2 free cells. Therefore E :.::: 3n/2 + 2(n 3) = 7n/2 - 6. _ 

For the rest of Part 3.2, we will assume that 5. of Proposition 9 is true since this 
is the only case "vhen our lower bound on E remains to be proved. We will denote 
by io the index of the row that contains a free cell in each 2-column and by )0 the 
index of the column that contains a free cell in each 2-row. We will denote by a the 
symbol whose existence is guaranteed by the following Lemma 12. 

Lelllllla 12 TheTe exi8ts a symbol a E niER RS(i) n njEc CS(i). 

Proof. Since there are at least 52-columns, RS (io) contains at least 5 elements. 
For a similar reason C SUo) contains at least 5 elements as well. Lemma 8 implies 
existence of a symbol a E niER R(i) n njEc C(i). -

Lelllma 13 TheTe is at most one paiT of 2-7'OWS hav1:ng the fTee cells in two common 
columns. 

Proof. Let there be two such pairs of 2-rows. Both pairs have their empty cells 
in the column )0. Either four or three occurrences of the symbol a are missing in 
the two pairs of rows depending on whether the rows in the pairs are, or are not, 
pairwise different. Consider the completion of L after discarding a symbol outside 
the two pairs of rows. In this completion, four occurrences of the symbol a must be 
placed in at most three different columns in the former case, while three occurrences 
must be placed in only two different columns in the latter case. _ 
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Lemma 14 
(a) If there are two different 2-rows where the 8ame pair of symbol8is missing then 
E 2: 7n/2 - 8. 
(b) If two 2-TOWS have their free cell" in two common col'umns then E 2: 7n,j2 8. 

Proof. (a) By conjugacy, Lemma 13 implies that there is at most one pair 
of 2-rows where the same pair of symbols is missing. Let iI, i2 E R be the only 
two different rows with equal pair of missing symbols. There exist IRI - 2 symbols 
different from a, each missing in one 2-row different from iI, ·i 2 . Lemma 13 implies the 
existence of at least (IRI 2)/2 columns different from jo having free cells in the rows 
from R - {iI, i 2 }. If none of these columns contains any of the IRI- 2 symbols (we 
know that no one contains a) then each of these columns contains at least IRI - 1 
free cells. Moreover, the column jo contains at least IRI free cells and there are 
n- (IRI-2)/2-1 = n-IRI/2 additional columns containing at least 2 free cells each. 
Therefore (since IRI 2: n/2+1) we get E 2: (IRI-1)(IRI 2)/2+IRI+2(n-IRI/2) ~ 
n(n + 12)/8 2: 7n/2 8. Let, on the other hand, some column .h contain a free cell 
in a row i3 E R - {'iI, i 2} and at the same time a symbol b, which is missing in 
a row i4 E R - {iI, i 2}. The symbol b cannot be missing in row i.'3' Consider the 
Latin square C being the completion of L after b has been removed from row i:3. 

Then C(i3,jo) = b, otherwise b would be in position (i;3, jd and column j1 already 
contains b. Consequently, C( i 4 , jo) = a. vVe obtain a contradiction, since one of the 
values COl"io), C(i2 ,.io) must be a. 

(b) The assertion is obtained from (a) by conjugacy when symbols are replaced 
by columns. _ 

Let us now adopt the last two assumptions valid till the end of the current Part 
3.2 (we assume so far that IRI 2: n/2+1 2: 5, lei 2: n/2+1 ~ 5 and 5. of Proposition 
9 is true). '0le will further assume that in no two different 2-rows the same pair of 
symbols is missing and that no two 2-rows have their free cells in the same pair of 
columns. 

Denote by x the number of 2-columns sharing a free cell with some 2-row. Each 
such column has only one of its free cells in some 2-row, the other one is in row i o, 
hence the number of 2-rows sharing a free cell with some 2-column is x as "vell. The 
free cells of a1l2-rows are placed in at least n/2+2 columns (including the column Jo). 
Since there are at least n/2+ 1 different 2-columns, :1: 2: 3. Let i l , . , . , ix be the indices 
of pairwise different 2-rows and j1, ... ,1:r the indices of pairwise different 2-columns 
such that, for r = l, ... ,x, L(ir,jr) = c. Let RS(ir) = {a,br}, CSUr) {a,cr}, 
hence the symbols bl , ... , bx and C1, ... , Cx are pairwise distinct. 

Lemma 15 FOT T 1, ... , x, br = Cr. 

Proof. VVe will use the fact that :r 2: 3. If bl =j: C1, bi =j: C2, b1 =I C3 then 
Ci1,h(il,jo) = CiJ,j3(i 1,jo) = bi and L(i1,h) = CiJ,j2(i l ,j1) Cl Ci1,h(il,Jr) 
L(il"h) - a contradiction, Therefore bi E {Cl,C2,C3}' Analogously, b2 E {C1,C2,Ca} 

and b3 E {Cl,C2,C3}, therefore {b 1 ,b2 ,b3 } {CI,C2,C3}. Assume bi = C2 (the case 
b1 = C3 leads to an analogous contradiction). Let the row ia contain b I in the position 
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(i3,j'). Then Ci3 ,j,U,3,.70) = bl , therefore Ci2 ,)'(i1,jo) = a, therefore Ci2 ,)'(i1,jl) = bl 

yielding a contradiction, since b1 is not missing in the column jl' The other equalities 
follow in a similar way. _ 

Lemma 16 The subsqv,aT'e cansisting af TOWS iI, ... , ix and calumns .71, ... ,jx daes 
nat cantain any af the symbals b1 , ... , bx . 

Proof. vVithout loss of generality, let L( iI, j2) = b3. Consider the Latin square 
C = Cil ,.72' Since a #- b3 #- b], the only possibility is C( iI, .70) = b3 , therefore 
C(i3,)0) = a, therefore C(i3,)3) = b3, therefore C(iO,j3) = a, therefore C(io,.h) = b1 , 

therefore C(i1 ,.7d = a, therefore C(il,h) = bl , yielding a contradiction, since bl is 
not missing in the column .72. _ 

Lemma 17 If same TOW cantains some af the symbols bl , ... , bx in column j8) 1 :::; 
s :::; :r, then the symbal b.s is missing in this TOW. 

Proof. Without loss of generality, let L( i, jd = b2 , i tJ. R. Consider the Latin 
square C= Ci,j]' Then C(io,jd = b2, therefore C(iO,.i2) = a, therefore C(i2,.72) = b2, 
therefore C(i2 ,.io) = a, therefore C(il,.io) = b1 , therefore C(i 1 ,jl) = a, therefore 
C( i, j d = b1 , therefore b1 is missing in row i. -

Corollary 18 No, TOW fmm R contains in any of the columns .h, ... , jx any of the 
8ymbals b1, ... , bx. No, calumn from C cantain.s in any of the Ta'W8 iI, ... , ix any af 
the 8ymbals h, ... , bx · 

Corollary 19 Each af the symbal8 b1 , ... , bx i8 missing in at lea8t x-I of the rows 
nat belanging to R and in at least x-I af the calumns nat belanging to, C. 

Proof. Corollary 18 implies that symbols b1 , ... , bx appear in columns from C 
outside rows from R. The assertion follows from Lemma 17. • 

Lemma 20 min(IRI, ICI) :::; (n +:r - 1)/2 < 3n/4. 

Proof. There are IRI- x different 2-rows not having an empty cell in any of the 
columns from C. Their empty cells must occur (besides .70) in IRI - x additional 
columns, since no two 2-rows have their empty cells in the same two columns. Hence 
IRI-x :::; n-ICI-l, and, consequently, min(IRI, ICI):::; (IRI+ICI)/2:::; (n+x-1)/2. 

-
Lemma 21 E ~ 7n/2 a(n). 

Proof. Let e.g. ICI = min(IRI, ICI)· Lemma 4 applied to row jl implies that 
column ]0 contains at least n - 2 free cells. The 2-columns contain 2 free cells each, 
while all the remaining columns contain at least 3 free cells each. Using Lemma 
20 we obtain E ~ n - 2 + 21CI + 3(n - ICI - 1) = 4n - ICI - 5 ~ 7n/2 - x/2 -
9/2. On the other hand we may use Corollary 19 for another estimation yielding 
E 2: n - 2 + 21CI + :r(:r: - 1) ~ n - 2 + 2x + x(:r - 1) = n - 2 + :r2 + x. Hence 
E 2: min3SxSn/2max(7n/2-x/2-9/2,n-2+x2+:r:) = 7n/2-(v'40n - 31+33)/8 = 
7n/2 - a(n). _ 

11 



Acknowledgment 

The author would like to thank Peter Honik for introduction to the problem and for 
stimulating discussions. 

References 

[1] L. Brankovic, P. Honik, M. Miller and A. Rosa, Premature partial latin SCj1wres, 
Ars Combinatoria, to appear. 

[2] L. Brankovic and M. Miller, The spectrum of premature partial latin square8, 
Proceedings of the Tenth Australasian \Vorkshop on Combinatorial Algorithms 
(A\NOCA'99) , Perth, Australia, July 25-27, 1999, 168--175. 

[3] A.D. Keedwell, Critical sets for latin 8quares, graphs and block designs: a survey, 
Congressus Numerantiurn 113(1996), 231-245. 

(Received 19/10/99) 

12 


