Decompositions of λK_v into k-circuits with one chord^{*}

QINGDE KANG

HUIJUAN ZUO YANFANG ZHANG

Institute of Mathematics Hebei Normal University Shijiazhuang 050016 P.R. China qdkang@heinfo.net

Abstract

Let λK_v be the complete multigraph with v vertices, where any two distinct vertices x and y are joined by λ edges $\{x, y\}$. Let G be a finite simple graph. A G-design of λK_v , denoted by (v, G, λ) -GD, is a pair (X, \mathcal{B}) , where X is the vertex set of K_v and \mathcal{B} is a collection of subgraphs of K_v , called blocks, such that each block is isomorphic to G and any two distinct vertices in K_v are joined in exactly λ blocks of \mathcal{B} . In this paper, the graphs discussed are $C_k^{(r)}$, i.e., one circle of length k with one chord, where r is the number of vertices between the ends of the chord, $1 \leq r < \lfloor \frac{k}{2} \rfloor$. We give a unified method to construct $C_k^{(r)}$ -designs. In particular, for $G = C_6^{(r)}(r = 1, 2), C_7^{(r)}(r = 1, 2)$ and $C_8^{(r)}(r = 1, 2, 3)$, we completely solve the existence spectrum of (v, G, λ) -GD.

1 Introduction

A complete multigraph of order v and index λ , denoted by λK_v , is a graph with v vertices, where any two distinct vertices x and y are joined by λ edges $\{x, y\}$. A *t*-partite graph is one whose vertex set can be partitioned into t subsets X_1, X_2, \dots, X_t , such that two ends of each edge lie in distinct subsets. Such a partition (X_1, X_2, \dots, X_t) is called a *t*-partition of the graph. A complete *t*-partite graph with replication λ is a *t*-partite graph with *t*-partition (X_1, X_2, \dots, X_t) , in which each vertex of X_i is joined to each vertex of X_j by λ edges (where $i \neq j$). Such a graph is denoted by $\lambda K_{n_1, n_2, \dots, n_t}$ if $|X_i| = n_i$ $(1 \le i \le t)$. We denote a path of k vertices by P_k and an undirected cycle of length m by C_m . By $C_m^{(r)}$ we mean one cycle of length m with one chord, where r is the number of vertices between the ends of the chord, $1 \le r < \lfloor \frac{m}{2} \rfloor$. In [3], Blinco introduced the so-called theta-graph, that is a graph which consists of three internally disjoint paths with common end points and lengths a, b and c with

^{*} Research supported by NSFC Grant 10371031 and NSFHB Grant 103146.

 $a \leq b \leq c$ and $b \neq 1$. This graph is denoted by $\Theta(a, b, c)$. Obviously, the graph $C_m^{(r)}$ is just $\Theta(1, r+1, m-r-1)$.

Let G be a finite simple graph. A G-design of λK_v , denoted by (v, G, λ) -GD, is a pair (X, \mathcal{B}) , where X is the vertex set of K_v and \mathcal{B} is a collection of subgraphs of K_v , called *blocks*, such that each block is isomorphic to G and any two distinct vertices in K_v are joined in exactly λ blocks of \mathcal{B} . It is well known that if there exists a (v, G, λ) -GD, then

$$\lambda v(v-1) \equiv 0 \pmod{2e(G)}$$
 and $\lambda(v-1) \equiv 0 \pmod{d}$,

where e(G) denotes the number of edges in G and d is the greatest common divisor of the degrees of the vertices of G. For the path P_k and the star $K_{1,k}$, the existence problems of (v, P_k, λ) -GD and $(v, K_{1,k}, \lambda)$ -GD have been solved (see [4] and [8]). For some graphs, which have fewer vertices and fewer edges, the problem of their graph designs has already been researched (see [1], [5]–[7], [9] and [11]–[19]).

Let (X_1, X_2, \dots, X_t) be the *t*-partition of $\lambda K_{n_1, n_2, \dots, n_t}$, and $|X_i| = n_i$. Let $v = \sum_{i=1}^t n_i$ and $\mathcal{G} = \{X_1, X_2, \dots, X_t\}$. For any given graph G, if the edges of $\lambda K_{n_1, n_2, \dots, n_t}$ can be decomposed into edge-disjoint subgraphs \mathcal{A} , each of which is isomorphic to G and is called a *block*, then the system $(X, \mathcal{G}, \mathcal{A})$ is called a *holey* G-design with index λ , denoted by G- $HD_{\lambda}(T)$, where $T = n_1^1 n_2^1 \cdots n_t^1$ is the *type* of the holey G-design. Usually, the type is denoted by exponential form, for example, the type $1^{i_2 r_3 k} \cdots$ denotes *i* occurrences of 1, *r* occurrences of 2, etc. A G- $HD_{\lambda}(1^{v-w}w^1)$ is called an *incomplete* G-design, denoted by G- $ID_{\lambda}(v; w) = (V, W, \mathcal{A})$, where |V| = v, |W| = w and $W \subset V$. Obviously, a (v, G, λ) -GD is a G- $HD_{\lambda}(1^v)$ or a G- $ID_{\lambda}(v; w)$ with w = 0 or 1. Let H_1, H_2 and W be three disjoint sets. A G- $IHD_{\lambda}(h_1, h_2; w)$ is a pair $((H_1, H_2, W), \mathcal{A})$, where \mathcal{A} is a collection of subgraphs in $H_1 \cup H_2 \cup W$, called *blocks*, such that each block is isomorphic to G and any two distinct vertices x, y are joined in

 $\begin{cases} \text{ exactly } \lambda \text{ blocks of } \mathcal{B} & \text{if } x, y \in H_1 \text{ or } x, y \in H_2 \text{ or } x \in H_1 \cup H_2, y \in W \\ \text{ no block of } \mathcal{B} & \text{ otherwise} \end{cases}$

For HD_{λ} , ID_{λ} and IHD_{λ} , the subscript can be omitted when $\lambda = 1$.

In this paper, the graphs discussed are $C_k^{(r)}$. We provide a method to construct $C_k^{(r)}$ -designs. The general structures will be given. In particular, for k = 6, 7, 8 and any r, λ , we completely solve the existence spectrum of $(v, C_k^{(r)}, \lambda)$ -GD, where $v \ge k$. Considering the results have been known to all when $\lambda = 1$ (see [2]–[3]), we do not want to mention our method of solving the problem when $\lambda = 1$. We solve the existence problem only for $\lambda > 1$ in this paper.

2 General structures

Theorem 2.1 Let G be a simple graph. For positive integers h, λ, m and nonnegative w, if there exist G-HD_{λ}(h^m), G-ID_{λ}(h + w; w) and (w, G, λ)-GD (or ($h + w, G, \lambda$)-GD), then there exists ($mh + w, G, \lambda$)-GD, too.

Proof. Let $X = (Z_h \times Z_m) \cup W$, where W is a w-set. Suppose there exist $G-HD_{\lambda}(h^m) = (Z_h \times Z_m, \mathcal{A}),$ $G-ID_{\lambda}(h+w;w) = ((Z_h \times \{i\}) \cup W, \mathcal{B}_i), i \in Z_m \text{ or } i \in Z_m \setminus \{0\}, \text{ and}$ (w, G, λ) - $GD = (W, \mathcal{C})$ or $(h + w, G, \lambda)$ - $GD = ((Z_h \times \{0\}) \cup W, \mathcal{D}),$ then (X, Ω) is a $(mh + w, G, \lambda)$ -GD, where

$$\Omega = \mathcal{A} \cup (\bigcup_{i=0}^{m-1} \mathcal{B}_i) \bigcup \mathcal{C} \text{ or } \mathcal{A} \cup (\bigcup_{i=1}^{m-1} \mathcal{B}_i) \bigcup \mathcal{D}.$$

Note that

$$\begin{aligned} |\Omega| &= \frac{\lambda\binom{mh+w}{2}}{e(G)} = \begin{cases} \frac{\lambda\binom{m}{2}h^2}{e(G)} + m \times \frac{\lambda\binom{h}{2}+wh}{e(G)} + \frac{\lambda\binom{w}{2}}{e(G)} \\ \frac{\lambda\binom{m}{2}h^2}{e(G)} + (m-1) \times \frac{\lambda\binom{h}{2}+wh}{e(G)} + \frac{\lambda\binom{w+h}{2}}{e(G)} \end{cases} \\ &= \begin{cases} |\mathcal{A}| + \sum_{i=0}^{m-1} |\mathcal{B}_i| + |\mathcal{C}| \\ |\mathcal{A}| + \sum_{i=1}^{m-1} |\mathcal{B}_i| + |\mathcal{D}| \end{cases}. \end{aligned}$$

However, the theorem can not be used to construct all orders mh + w. For example, when $G - HD_{\lambda}(h^m)$ exist only for odd m (see Theorem 2.4), or $G - ID_{\lambda}(h + h)$ w; w) merely exist for smaller w. Thus we have to present other structures, such as IHD etc.

Theorem 2.2 Let G be a simple graph. For positive integers h, w, t and λ , if there exist G-HD_{λ} (h^{2t+1}) , G-IHD_{λ}(h,h;w) and $(h+w,G,\lambda)$ -GD, then ((2t+1)h+ w, G, λ)-GD exists.

Proof. Let $X = (Z_h \times Z_{2t+1}) \cup W$, where |W| = w. Suppose there exist $G-HD_{\lambda}(h^{2t+1}) = (Z_h \times Z_{2t+1}, \mathcal{A}),$ $G\text{-}IHD_{\lambda}(h,h;w) = ((Z_h \times \{2i\}, Z_h \times \{2i+1\}, W), \mathcal{B}_i) \text{ for } 0 \le i \le t-1,$

and

$$(h+w,G,\lambda)$$
- $GD = ((Z_h \times \{2t\}) \cup W, C),$
then $(X, \mathcal{A} \cup (\bigcup_{i=0}^{t-1} \mathcal{B}_i) \cup C)$ forms a $((2t+1)h+w,G,\lambda)$ - GD . In fact, we have

$$\mathcal{A}|+t|\mathcal{B}_i|+|\mathcal{C}| = \frac{\lambda\binom{2t+1}{2}h^2}{e(G)} + \frac{\lambda t(2hw+h(h-1))}{e(G)} + \frac{\lambda\binom{w+h}{2}}{e(G)} = \frac{\lambda\binom{(2t+1)h+w}{2}}{e(G)}.$$

Theorem 2.3 There exist $C_{2k}^{(r)}$ - $HD((2k+1)^t)$ for $t \ge 2$ and even r.

Proof. Let $X = Z_{2k+1} \times Z_t = \bigcup_{x \in Z_t} V_x$, where $V_x = Z_{2k+1} \times \{x\}$. For $x \neq y \in V_x$ $\{1, 2, \dots, t\}$ and $a_i, b_i \in \mathbb{Z}_{2k+1}$, define a 2k-circuit C as follows: $((a_0, x), (b_0, y), (a_1, x), (b_1, y), \cdots, (a_{k-1}, x), (b_{k-1}, y)),$

where

$$a_{i} = \begin{cases} i, & i = 0, 1\\ i+2, & 2 \le i \le \lfloor \frac{k}{2} \rfloor\\ \frac{k}{2} + 5 \text{ or } \frac{1-k}{2}, & i = \lfloor \frac{k}{2} \rfloor + 1 \ (k \text{ even or odd})\\ i-k, & \lfloor \frac{k}{2} \rfloor + 2 \le i \le k-1 \end{cases},$$

$$b_i = \begin{cases} 3, & i = 0\\ -(i-1), & 1 \le i \le \lfloor \frac{k}{2} \rfloor - 1\\ \frac{k}{2} + 3 \text{ or } \frac{3-k}{2}, & i = \lfloor \frac{k}{2} \rfloor \ (k \text{ even or odd})\\ \frac{k}{2} + 2 \text{ or } -\frac{3+k}{2}, & i = \lfloor \frac{k}{2} \rfloor + 1 \ (k \text{ even or odd})\\ k+3-i, & \lfloor \frac{k}{2} \rfloor + 2 \le i \le k-1 \end{cases}$$

It is easy to see that, for odd or even k, the 2k vertices in C are different. Furthermore, the 2k edges in C just correspond to all mixed differences $\pm d_{xy}(1 \le d \le k)$. The remaining mixed difference 0_{xy} may correspond to any chord $((a_i, x), (a_i, y))$ or $((b_i, x), (b_i, y))$. Thus, the chord of $C_{2k}^{(r)}$ can be chosen as $((a_i, x), (a_i, y))$ if r = 4i - 2or $((b_i, x), (b_i, y))$ if r = 4i. Clearly, for all $x \ne y \in Z_t$, C modulo (2k + 1, -) gives the expected G-HD $((2k + 1)^t)$.

Theorem 2.4 There exist $C_{2k}^{(r)}$ -HD $((2k+1)^{2t+1})$ for $t \ge 1$ and odd r.

Construction. Let $X = Z_{2k+1} \times Z_{2t+1}$ and k = p + q, where p and q are positive integers. For any $x \in \{1, 2, \dots, t\}$ define the following 2k-circuit over X:

$$A_x = (a_0, a_1, a_2, \cdots, a_{2p}, b_{2q-1}, b_{2q-2}, \cdots, b_1),$$

where $a_0(=b_0)$ and $a_{2p}(=b_{2q})$ will become the ends of the unique chord of $C_{2k}^{(r)} = A_x + a_0 a_{2p}$. These vertices a_i and b_i are defined as follows:

$$\begin{array}{l} \text{when } p \text{ odd} \qquad \left\{ \begin{array}{l} a_{2j} = \left\{ \begin{array}{l} (-j,0) & 0 \leq j \leq \frac{p-1}{2} \\ (p-j,2x) & \frac{p+1}{2} \leq j \leq p \end{array} \right.; \\ a_{2j-1} = (j,x) & 1 \leq j \leq p \end{array} \right. \\ \text{when } p \text{ even} \qquad \left\{ \begin{array}{l} a_{2j} = \left\{ \begin{array}{l} (-j,0) & 0 \leq j \leq \frac{p}{2} - 1 \\ (j-p,x) & \frac{p}{2} \leq j \leq p - 1 \\ (0,2x) & j = p \end{array} \right.; \\ a_{2j-1} = \left\{ \begin{array}{l} (j,-x) & 1 \leq j \leq \frac{p}{2} \\ (-j,0) & \frac{p}{2} + 1 \leq j \leq p \end{array} \right. \\ \text{when } q \text{ odd} \qquad \left\{ \begin{array}{l} b_{2j} = \left\{ \begin{array}{l} (j,0) & 0 \leq j \leq \frac{q-1}{2} \\ (j-q,2x) & \frac{q+1}{2} \leq j \leq q \end{array} \right.; \\ b_{2j-1} = (-(p+j),x) & 1 \leq j \leq q \end{array} \right. \\ \text{when } q \text{ even} \qquad \left\{ \begin{array}{l} b_{2j} = \left\{ \begin{array}{l} (j,0) & 0 \leq j \leq \frac{q-1}{2} \\ (j-q,2x) & \frac{q+1}{2} \leq j \leq q \end{array} \right. \\ b_{2j-1} = (-(p+j),x) & 1 \leq j \leq q \end{array} \right. \\ b_{2j-1} = \left\{ \begin{array}{l} (-(p+j),-x) & 1 \leq j \leq \frac{q}{2} \\ (q-j,x) & \frac{q}{2} \leq j \leq q-1 \\ (0,2x) & j = q \end{array} \right. \\ b_{2j-1} = \left\{ \begin{array}{l} (-(p+j),-x) & 1 \leq j \leq \frac{q}{2} \\ (p+j,0) & \frac{q}{2} + 1 \leq j \leq q \end{array} \right. \end{array} \right. \end{array} \right.$$

If $r \equiv 3 \mod 4$ (say r = 4n - 1) then take p = 2n and q = k - 2n. If $r \equiv 1 \mod 4$ (say r = 4n + 1) then take "p = 2n + 1 and q = k - 2n - 1" (when k even) or "q = 2n + 1 and p = k - 2n - 1" (when k odd). The blocks $\{A_x + a_0 a_{2p} : 1 \le x \le t\}$

module (2k + 1, 2t + 1) will be the desired $C_{2k}^{(r)} - HD((2k + 1)^{2t+1})$. **Proof.** First, by the given construction, we can list the differences $\langle d, d' \rangle$ corresponding to the edges ((a, b), (a', b')) in A_x , where d = a' - a and d' = b' - b, $a, a' \in Z_{2k+1}, b, b' \in Z_{2t+1}$.

From the following table, it is easy to see that, for any p and q, the differences corresponding to all edges of A_x are just $\langle \pm d, d' \rangle$, where $1 \leq d \leq p + q$, d' = x or 2x. Furthermore, we have

$$\{\pm x: x \in \{1, 2, \cdots, t\}\} = \{\pm 2x: x \in \{1, 2, \cdots, t\}\} = Z_{2t+1}^*$$

and the chord $a_0a_{2p} = b_0b_{2q}$ corresponds to the difference $\langle 0, 2x \rangle$. Therefore, the blocks $\{A_x + a_0a_{2p} : x \in \{1, 2, \dots, t\}\}$ module (2k + 1, 2t + 1) cover exactly all the edges of $K_{2k+1,\dots,2k+1}$ with 2t + 1 parts. In this table, the symbol $[m, n]_2$ represents the set $\{m, m+2, \dots, n-2, n\}$, where $m \equiv n \pmod{2}$. And, the rows in this table are separated into four parts: odd p, even p, odd q and even q, in order down.

edges in A_x	differen	ces $\langle d, d' \rangle$	range of d
((j,x),(-j,0))	$\langle 2j, x \rangle$	$1 \le j \le \frac{p-1}{2}$	$[2, p-1]_2$
((j,x),(p-j,2x))	$\langle p-2j,x\rangle$	$\frac{p+1}{2} \le j \le p$	$[-p, -1]_2$
((-j,0), (j+1,x))	$\langle 2j+1, x \rangle$	$0 \le j \le \frac{p-1}{2}$	$[1, p]_2$
((p-j,2x),(j+1,x))	$\langle p-2j-1,x\rangle$	$\frac{p+1}{2} \le j \le p-1$	$[-(p-1), -2]_2$
((j, -x), (-j, 0))	$\langle -2j, x \rangle$	$1 \le j \le \frac{p}{2} - 1$	$[-(p-2),-2]_2$
$((\frac{p}{2}, -x), (-\frac{p}{2}, x))$	$\langle -p, 2x \rangle$	$j = \frac{p}{2}$	-p
((-j, 0), (j - p, x))	$\langle 2j - p, x \rangle$	$\frac{p}{2} + 1 \le j \le p - 1$	$[2, p-2]_2$
((-p,0),(0,2x))	$\langle p, 2x \rangle$	j = p	p
((-j,0),(j+1,-x))	$\langle -2j-1, x \rangle$	$0 \le j \le \frac{p}{2} - 1$	$[-(p-1),-1]_2$
((j - p, x), (-j - 1, 0))	$\langle 2j+1-p,x\rangle$	$\frac{p}{2} \le j \le p-1$	$[1, p-1]_2$
((-p-j,x),(j,0))	$\langle -p-2j,x\rangle$	$1 \le j \le \frac{q-1}{2}$	$[-(p+q-1), -(p+2)]_2$
$\left((-p-j,x),(j-q,2x)\right)$	$\langle p-q+2j,x\rangle$	$\frac{q+1}{2} \le j \le q$	$[p+1, p+q]_2$
((-p - j - 1, x), (j, 0))	$\langle -p - 1 - 2j, x \rangle$	$0 \le j \le \frac{q-1}{2}$	$[-(p+q), -(p+1)]_2$
((j-q,2x),(-p-j-1,x))	$\langle p-q+1+2j, x\rangle$	$\rangle \frac{q+1}{2} \le j \le q-1$	$[p+2, p+q-1]_2$
((-p-j,-x),(j,0))	$\langle p+2j,x\rangle$	$1 \le j \le \frac{q}{2} - 1$	$[p+2, p+q-2]_2$
$((-p - \frac{q}{2}, -x), (\frac{q}{2}, x)$	$\langle p+q, 2x \rangle$	$j = \frac{q}{2}$	p+q
((p+j,0), (q-j,x))	$\langle q - p - 2j, x \rangle$	$\frac{q}{2} + 1 \le j \le q - 1$	$[-(p+q-2), -(p+2)]_2$
((p+q,0),(0,2x))	$\langle -p-q, 2x \rangle$	j = q	-(p+q)
((j,0), (-p-j-1, -x))	$\langle p+2j+1,x\rangle$	$0 \le j \le \frac{q}{2} - 1$	$[p+1, p+q-1]_2$
((q-j,x), (p+j+1,0))	$\langle q-p-1-2j,x\rangle$	$\frac{q}{2} \le j \le q-1$	$[-(p+q-1), -(p+1)]_2$

However, in some cases (for example p odd and q even) A_x does not form a circuit. In fact, we have the values of the vertices in A_x as follows.

v	ertices	(y,0)	(y,x)	(y, -x)	(y, 2x)
	p odd	$[-\frac{p-1}{2},0]$	[1, p]		$[0, \frac{p-1}{2}]$
	p even	$[-p,0]\setminus\{-\frac{p}{2}\}$	$[-\frac{p}{2},-1]$	$[1, \frac{p}{2}]$	0
y	q odd	$[0, \frac{q-1}{2}]$	[-(p+q), -(p+1)]		$\left[-\frac{q-1}{2},0\right]$
	q even	$[0, \frac{q}{2} - 1] \cup [p + \frac{q}{2} + 1, p + q]$	$[1, \frac{q}{2}]$	$[-(p+\frac{q}{2}),-(p+1)]$	0

Note that $a_0 = b_0 = (0, 0)$ and $a_{2p} = b_{2q} = (0, 2x)$ for any p and any q. It is easy to verify that the values of all vertices in A_x are distinct for the following cases:

(1) p even and q even; (2) p odd and q odd; (3) p even and q odd.

However, when p odd and q even, the values of vertices in the form (u, x) will be repeated. It is the reason that we take different p and q for r = 4n + 1 in our construction.

Theorem 2.5 There exist $C_{2k-1}^{(r)}$ -HD((2k)^{2t+1}) for $k \ge 3$, $t \ge 1$ and $1 \le r \le k-2$.

Proof. Let $X = Z_{2k} \times Z_{2t+1} = \bigcup_{x \in Z_{2t+1}} V_x$, where $V_x = Z_{2k} \times \{x\}$. For $1 \le x \le t$ and $a_i, b_i \in Z_{2k}$, define the following (2k-1)-circuits \mathcal{A}_x over X:

$$(k = 2l + 1)$$

$$u = a_0$$

$$(k = 2l + 2)$$

The vertices u, v, a_i, b_i are defined as follows:

$$\begin{cases} u = (0, -x), \\ v = (-\frac{k-1}{2}, 0) \text{ or } (-\frac{k-4}{2}, 0), & \text{k even or odd} \\ a_i = (i, x), & 0 \le i \le k-1 \text{ and } i \ne \lfloor \frac{k+1}{2} \rfloor, \\ b_i = (-i, 2x), & 1 \le i \le k-1 \text{ and } i \ne \lfloor \frac{k}{2} \rfloor; \end{cases}$$

In each \mathcal{A}_x , $1 \leq x \leq t$, the 2k-1 vertices are distinct obviously. The edge (u, a_0) just corresponds to the mixed difference 0_{2x} . The mixed differences $1_{2x}, -1_{2x}, (k-1)_x$ and $-(k-1)_x$ correspond to the edges $(u, a_1), (v, b_{l+1}), (v, a_l)$ and (a_0, b_{2l}) , when k = 2l + 1, or the edges $(u, a_1), (v, b_l), (v, a_{l+2})$ and (a_0, b_{2l+1}) , when k = 2l + 2. Other edges just correspond to the mixed differences $\pm d_x$ $(2 \le d \le k-2)$, and the remaining mixed difference k_x may correspond to any chord $(a_i, b_{2l+1-i}), 1 \leq i \leq 2l$ and $i \neq l+1$, when k = 2l+1, or $(a_i, b_{2l+2-i}), 1 \leq i \leq 2l+1$ and $i \neq l+1$, when k = 2l + 2. Thus, the chord of $C_{2k-1}^{(r)}$ can be chosen as $(a_i, b_{2l+1-i}), \forall 1 \le i \le 2l$ and $i \neq l+1$, when k = 2l+1 or $(a_i, b_{2l+2-i}), \forall 1 \leq i \leq 2l+1$ and $i \neq l+1$, when k = 2l + 2. Clearly, when k = 2l + 1, let $C_{2k-1}^{(r)} = \mathcal{A}_x + (a_i, b_{2l+1-i})$, the blocks $\{\mathcal{A}_x + (a_i, b_{2l+1-i}): 1 \le x \le t,\} \ (\forall \ 1 \le i \le 2l \text{ and } i \ne l+1) \mod (2k, 2t+1) \text{ give}$ the expected $C_{2k-1}^{(r)}$ - $HD((2k)^{2t+1})$; when k = 2l + 2, let $C_{2k-1}^{(r)} = \mathcal{A}_x + (a_i, b_{2l+2-i})$, the blocks $\{A_x + (a_i, b_{2l+2-i}): 1 \le x \le t,\}$ ($\forall 1 \le i \le 2l+1$ and $i \ne l+1$) module (2k, 2t+1) give the expected $C_{2k-1}^{(r)}$ - $HD((2k)^{2t+1})$.

Theorem 2.6 There exist $C_{2k-1}^{(r)}$ - $HD((4k)^{2t+1})$ for $k \ge 3$, $t \ge 1$ and $1 \le r \le k-2$.

The vertices $u, v, p, q, a_i, b_i, a'_i, b'_i$ are defined as follows:

$$\begin{array}{ll} u = (k,0), \\ v = (\frac{k+1}{2},0) \text{ or } (\frac{k+4}{2},0), & k \text{ odd or even} \\ p = (-(2k-1),x), \\ q = (-\frac{k+3}{2},0), \text{ or } (-\frac{k}{2},0), & k \text{ odd or even} \\ a_i = (i,x), & 1 \leq i \leq k \text{ and } i \neq \lfloor \frac{k+1}{2} \rfloor, \\ b_i = (-i,2x), & 1 \leq i \leq k-1 \text{ and } i \neq \lfloor \frac{k}{2} \rfloor, \\ a'_i = (i,2x), & 0 \leq i \leq k-1 \text{ and } i \neq \lfloor \frac{k+1}{2} \rfloor, \\ b'_i = (-i,x), & 1 \leq i \leq k-1 \text{ and } i \neq \lfloor \frac{k}{2} \rfloor; \end{array}$$

In each \mathcal{A}_x or \mathcal{B}_x , $1 \leq x \leq t$, the 2k - 1 vertices are distinct obviously.

For odd k, say k = 2l + 1, we can verify that the edge (u, a_{2l+1}) in \mathcal{A}_x and the edge (p, a'_1) in \mathcal{B}_x just correspond to the mixed differences 0_x and $(2k)_x$. The mixed differences $(2l+2)_{2x}$ and $-(2l+2)_{2x}$ correspond to the edge (a'_l, q) in \mathcal{B}_x and the edge (v, b_{l+1}) in \mathcal{A}_x respectively. Other edges in \mathcal{A}_x and \mathcal{B}_x just correspond to the mixed differences $\pm d_x$ $(1 \leq d \leq 4l + 1 \text{ and } d \neq 2l + 1)$, and the remaining mixed differences $(2l+1)_x$ and $-(2l+1)_x$ may correspond to any chord (a'_i, b'_{2l+1-i}) in \mathcal{B}_x and any chord (a_i, b_{2l+1-i}) in \mathcal{A}_x , where $1 \leq i \leq 2l$ and $i \neq l+1$. Thus, the chord of $C_{2k-1}^{(r)}$ can be chosen as (a'_i, b'_{2l+1-i}) and (a_i, b_{2l+1-i}) , $\forall 1 \leq i \leq 2l$ and

 $i \neq l+1$. Clearly, let $C_{2k-1}^{(r)} = \mathcal{A}_x + (a_i, b_{2l+1-i})$ or $\mathcal{B}_x + (a'_i, b'_{2l+1-i})$, the blocks $\{\mathcal{A}_x + (a_i, b_{2l+1-i}), \mathcal{B}_x + (a'_i, b'_{2l+1-i})\}$ $(1 \leq x \leq t, \forall 1 \leq i \leq 2l \text{ and } i \neq l+1)$ module (4k, 2t+1) give the expected $C_{2k-1}^{(r)}$ - $HD((4k)^{2t+1})$.

For even k, say k = 2l + 2, we can verify that the edge (u, a_{2l+2}) in \mathcal{A}_x and the edge (p, a'_1) in \mathcal{B}_x just correspond to the mixed differences 0_x and $(2k)_x$. The mixed differences $(2l+3)_{2x}$ and $-(2l+3)_{2x}$ correspond to the edge (q, a'_{l+2}) in \mathcal{B}_x and the edge (b_l, v) in \mathcal{A}_x respectively. Other edges in \mathcal{A}_x and \mathcal{B}_x just correspond to the mixed differences $\pm d_x$ ($1 \le d \le 4l + 3$ and $d \ne 2l + 2$), and the remaining mixed differences $(2l+2)_x$ and $-(2l+2)_x$ may correspond to any chord (a'_i, b'_{2l+2-i}) in \mathcal{B}_x and any chord (a_i, b_{2l+2-i}) in \mathcal{A}_x , where $1 \leq i \leq 2l+1$ and $i \neq l+1$. Thus, the chord of $C_{2k-1}^{(r)}$ can be chosen as (a'_{i}, b'_{2l+2-i}) and $(a_{i}, b_{2l+2-i}), \forall 1 \le i \le 2l+1$ and $i \neq l+1$. Clearly, let $C_{2k-1}^{(r)} = \mathcal{A}_x + (a_i, b_{2l+2-i})$ or $\mathcal{B}_x + (a'_i, b'_{2l+2-i})$, the blocks $\{\mathcal{A}_x + (a_i, b_{2l+2-i}), \mathcal{B}_x + (a'_i, b'_{2l+2-i})\}$ $(1 \leq x \leq t, \forall 1 \leq i \leq 2l+1 \text{ and } i \neq l+1)$ module (4k, 2t + 1) give the expected $C_{2k-1}^{(r)}$ - $HD((4k)^{2t+1})$.

Lemma 2.7 If there exists a $C_{2k}^{(r)}$ -ID(2k+1+w;w) for odd r, then there are $\lfloor \frac{k+2}{3} \rfloor$ nonnegative integers $j_0, j_1, \cdots, j_{\lfloor \frac{k-1}{2} \rfloor}$ such that

$$\sum_{i=0}^{\lfloor \frac{k-1}{3} \rfloor} j_i = w \quad and \quad \sum_{i=0}^{\lfloor \frac{k-1}{3} \rfloor} ij_i \leq \min\{\frac{k}{2}, k^2 - w\}.$$

Proof. Suppose $(X \cup Y, \mathcal{B})$ be a $C_{2k}^{(r)}$ -ID(2k+1+w; w), where |X| = 2k+1, |Y| = w, $X \cap Y = \emptyset$ and $|\mathcal{B}| = k + w$. A vertex $y \in Y$ appearing in a block B of \mathcal{B} may be 2-degree or 3-degree, denoted by d(y, B) = 2 or d(y, B) = 3 respectively. For any $y \in Y$, denote

$$m_s(y) = |\{B \in \mathcal{B} : y \in B, d(y, B) = s\}|, s = 2, 3.$$

Then, the equation $2m_2(y) + 3m_3(y) = |X| = 2k + 1$ will give solutions

$$m_2(y) = k - 3i - 1, \ m_3(y) = 2i + 1, \ 0 \le i \le \lfloor \frac{k - 1}{3} \rfloor.$$

For $0 \le i \le \lfloor \frac{k-1}{3} \rfloor$, denote

 $j_i = |\{y \in Y : m_2(y) = k - 3i - 1, \ m_3(y) = 2i + 1\}|,$ then $\sum_{i=0}^{\lfloor \frac{k-1}{3} \rfloor} j_i = |Y| = w.$ Let $N = \sum_{i=0}^{\lfloor \frac{k-1}{3} \rfloor} ij_i$, then the total number of 2-degree vertices and 3-degree vertices belonging to Y is respectively

$$M_{2} = \sum_{i=0}^{\lfloor \frac{k-1}{3} \rfloor} (k-3i-1)j_{i} = (k-1)w - 3N, \text{ and}$$
$$M_{3} = \sum_{i=0}^{\lfloor \frac{k-1}{3} \rfloor} (2i+1)j_{i} = w + 2N.$$

Since Y is a hole for the incomplete graph design, any vertices of Y can not be adjacent in any block. Thus, for any block B of \mathcal{B} , there are two cases:

(1) The block B contains one 3-degree $Y\mbox{-vertex}$ and at most p 2-degree $Y\mbox{-vertices},$ where

$$p = \lfloor \frac{r}{2} \rfloor + \lfloor \frac{2k - 2 - r}{2} \rfloor = k - 1 + \lfloor \frac{r}{2} \rfloor - \lceil \frac{r}{2} \rceil = \begin{cases} k - 1 & (r \text{ even}) \\ k - 2 & (r \text{ odd}) \end{cases}$$

(2) The block B contains no 3-degree $Y\mbox{-vertex}$ and at most q 2-degree $Y\mbox{-vertices},$ where

$$q = \lceil \frac{r}{2} \rceil + \lceil \frac{2k - 2 - r}{2} \rceil = k - 1 - \lfloor \frac{r}{2} \rfloor + \lceil \frac{r}{2} \rceil = \begin{cases} k - 1 & (r \text{ even}) \\ k & (r \text{ odd}) \end{cases}$$

Therefore, we have the following conditions

$$\begin{cases} M_3 \le |\mathcal{B}|, \text{ i.e. } N \le \frac{k}{2} \\ M_2 \le pM_3 + q(|\mathcal{B}| - M_3) = \begin{cases} (w+k)(k-1) & (r \text{ even}) \\ (w+k)k - 2(w+2N) & (r \text{ odd}) \end{cases} \end{cases}$$

When r even the second condition is $k(k-1) + 3N \ge 0$, which always holds. As for odd r, the second condition is $N \le k^2 - w$. Thus, for odd r, a necessary condition to exist $C_{2k}^{(r)}$ -ID(2k+1+w;w) is $N = \sum_{i=0}^{\lfloor \frac{k-1}{3} \rfloor} ij_i \le \min\{\frac{k}{2}, k^2 - w\}$.

Corollary 2.8 There exists no $C_{2k}^{(r)}$ -ID(2k+1+w;w) for the following parameters: (k,r) = (2,1) and $5 \le w \le 9$; (k,r) = (3,1) and $10 \le w \le 13$; (k,r) = (4,1), (4,3) and w = 17.

Proof. When r is odd and $w > k^2$, we have $\min\{\frac{k}{2}, k^2 - w\} < 0$. Since $N = \sum_{i=0}^{\lfloor \frac{k-1}{3} \rfloor} \sum_{i=0}^{j} ij_i \ge 0$, there exists no $C_{2k}^{(r)} \cdot ID(2k + 1 + w; w)$ by Lemma 2.7. For our constructing method stated in Theorem 2.1, the needed $C_{2k}^{(r)} \cdot ID(2k + 1 + w; w)$ are only for

 $3 \le w \le 2k$ (r even) and $3 \le w \le 4k+1$ (r odd).

However, $k^2 > 4k + 1$ when $k \ge 5$. So, when r is odd, the non-existence of the needed $C_{2k}^{(r)}$ -ID(2k + 1 + w; w) happens only for $2 \le k \le 4$ and $k^2 < w \le 4k + 1$, i.e., it is impossible that the following incomplete $C_{2k}^{(r)}$ -ID(2k + 1 + w; w) exist for the parameters listed in the Collorary.

Lemma 2.9 There exists no $C_{2k-1}^{(r)}$ -ID(2k+w;w) for any $w \ge 0$.

Proof. The graph $C_{2k-1}^{(r)}$ consists of 2k edges. A $C_{2k-1}^{(r)}$ -ID(2k + w; w) will cover k(2k-1) + 2kw pairs, which is not a multiple of 2k. So there exists no $C_{2k-1}^{(r)}$ -ID(2k + w; w) for any w.

3 $C_6^{(1)}$ and $C_6^{(2)}$

The necessary conditions for the existence of $(v, C_6^{(r)}, \lambda)$ -GD are $\lambda v(v-1) \equiv 0 \pmod{14}$ and $v \geq 6$, i.e., $v \equiv 0, 1 \pmod{7}$ for any λ , and $v \equiv 2, 3, 4, 5, 6 \pmod{7}$ for $\lambda \equiv 0 \pmod{7}$. For convenience, we denote $C_6^{(1)} \pmod{C_6^{(2)}}$ by (a, b, c, d, e, f), where the edges on C_6 are ab, bc, cd, de, ef, fa and the chord is $ac \pmod{ad}$. It is enough to discuss the cases only for $\lambda = 1$ and 7. Because the results for $\lambda = 1$ are known (see [2,3]), we only need to solve the cases for $\lambda = 7$. By Theorem 2.1 or Theorem 2.2 and the following tables, we only need to give the constructions of ID or IHD, GD for the pointed orders.

(Table 3.1) For $C_6^{(1)}$						
v	HD	I	D	I	HD	GD
$\pmod{14}$						$\lambda = 7$
2	7^{2t-1}	(16	;9)			9
3	7^{2t-1}			(7,	7;10)	17
4	7^{2t-1}			(7,	7;11)	18
5	7^{2t-1}			(7, 1)	7; 12)	19
6	7^{2t-1}			(7,	7;13)	20
9	7^{2t+1}	(9;	2)		- /	9
10	7^{2t+1}	(10	;3)			10
11	7^{2t+1}	(11	;4)			11
12	7^{2t+1}	(12	;5)			12
13	7^{2t+1}	(13	;6)			6
(Table 3.2) For $C_c^{(2)}$						
	<u>`</u>	UD	, 	D		
i i	,	HD	1.	D	GD	_
(mo	d 7)				$\lambda = 7$	
2 2	2	7^t	(9)	;2)	9	
ę	3	7^t	(10	;3)	10	
4	1	7^t	(11	;4)	11	
Ę	5	7^t	(12)	;5)	12	
(5	7^t	(13)	;6)	6	

3.1 Incomplete $C_6^{(r)}$ -designs

Lemma 3.1 There exist $C_6^{(1)}$ -ID(7 + w; w) for $2 \le w \le 6$ and w = 9.

Proof. Let $X = Z_7 \cup \{\infty_1, \infty_2, \dots, \infty_w\}$ and $C_6^{(1)}$ - $ID(w + 7; w) = (X, \mathcal{B})$, where $|\mathcal{B}| = w + 3$. The family \mathcal{B} consists of the blocks listed in Appendix A(L3.1). \Box

Lemma 3.2 There exist $C_6^{(1)}$ -*IHD*(7,7; h) for $10 \le h \le 13$.

Proof. Let $X = Z_7 \cup \overline{Z_7} \cup \{\infty_1, \infty_2, \cdots, \infty_h\}$ and $C_6^{(1)}$ -*IHD* $(7,7;h) = (X, \mathcal{B})$, where $|\mathcal{B}| = 2(w+3)$. The family \mathcal{B} consists of the blocks listed in Appendix A(L3.2). \Box

Lemma 3.3 There exist $C_6^{(2)}$ -ID(7 + w; w) for $2 \le w \le 6$.

Proof. Let $X = Z_7 \cup \{\infty_1, \infty_2, \dots, \infty_w\}$ and $C_6^{(2)}$ - $ID(w + 7; w) = (X, \mathcal{B})$, where $|\mathcal{B}| = w + 3$. The family \mathcal{B} consists of the blocks listed in Appendix A(L3.3). \Box

3.2 Graph designs

Lemma 3.4 There exist $(w, C_6^{(1)}, 7)$ -GD for w = 6, 9, 10, 11, 12, 17, 18, 19, 20.

Proof. For each order w, the corresponding base blocks under the automorphism group Z_m are listed in Appendix B(L3.4), where the vertex-set X is Z_m or $Z_m \cup \{\infty\}$.

Theorem 3.5 There exist $(v, C_6^{(1)}, \lambda)$ -GD if and only if $\lambda v(v-1) \equiv 0 \pmod{14}$ and $v \geq 6$.

Proof. By Theorems 2.1, 2.2 and Lemmas 3.1, 3.2, 3.4 and the result for $\lambda = 1$ in [19].

Lemma 3.6 There exists $(7, C_6^{(2)}, \lambda)$ -GD for any $\lambda \ge 2$.

Proof.
$$(7, C_6^{(2)}, 2)$$
- GD : $X = (Z_3 \times Z_2) \cup \{\infty\}$
 $(0_0, \infty, 0_1, 1_0, 1_1, 2_1) \mod (3, 2)$.
 $(7, C_6^{(2)}, 3)$ - GD : $X = (Z_3 \times Z_2) \cup \{\infty\}$
 $(\infty, 0_0, 1_1, 1_0, 2_0, 0_1) \mod (3, 2)$.
 $(0_0, 2_0, 1_0, 0_1, 2_1, 1_1) \mod (3, -)$.

Obviously, there are nonnegative integers m and n such that $\lambda = 2m + 3n$ for any $\lambda \ge 2$. Thus, we may assert that $(7, C_6^{(2)}, \lambda)$ -GD exists for any $\lambda \ge 2$.

Lemma 3.7 There exist $(w, C_6^{(2)}, 7)$ -GD for w = 6, 9, 10, 11 and 12.

Proof. For each order w, the corresponding base blocks under the automorphism group Z_m are listed in Appendix B(L3.7), where the vertex-set X is Z_m or $Z_m \cup \{\infty\}$.

Theorem 3.8 There exist $(v, C_6^{(2)}, \lambda)$ -GD if and only if $\lambda v(v-1) \equiv 0 \pmod{14}$, $v \geq 6$ and $(v, \lambda) \neq (7, 1)$.

Proof. By Theorem 2.1 and Lemmas 3.3, 3.6, 3.7 and the result for $\lambda = 1$ in [2, 3].

4 $C_7^{(1)}$ and $C_7^{(2)}$

For convenience, we denote $C_7^{(1)}$ and $C_7^{(2)}$ by (a, b, c, d, e, f, g), where the edges on C_7 are ab, bc, cd,

de, ef, fg, ga and the chord is ac (or ad). It is clear that the necessary conditions for the existence of $(v, C_7^{(r)}, \lambda)$ -GD are $\lambda v(v-1) \equiv 0 \pmod{16}$ and $v \geq 7$, that is

- (i) $v \equiv 0$ or 1 (mod 16) and any λ ;
- (ii) $v \equiv 8 \text{ or } 9 \pmod{16}$ and $\lambda \equiv 0 \pmod{2}$;
- (iii) $v \equiv 4, 5, 12 \text{ or } 13 \pmod{16}$ and $\lambda \equiv 0 \pmod{4}$;

(iv) $v \equiv 2, 3, 6, 7, 10, 11, 14$ or 15 (mod 16) and $\lambda \equiv 0 \pmod{8}$.

When $\lambda = 1$, the results are known in [2, 3], so by Theorem 2.1 or Theorem 2.2 and the following table, we only need to construct *ID*, *GD*, and *IHD* for the pointed orders. (Table 4.1) For $C^{(r)}(r = 1, 2)$

(Table 4.1) For C_7 $(7 - 1, 2)$						
v	HD	ID	IHD	GD	GD	GD
$\pmod{16}$				$\lambda = 2$	$\lambda = 4$	$\lambda = 8$
2	8^{2t-1}		(8, 8; 10)			18
3	8^{2t-1}		(8, 8; 11)			19
4	8^{2t-1}		(8, 8; 12)		20	
5	8^{2t-1}		(8, 8; 13)		21	
6	16^{2t+1}	(38; 22), (22, 6)				22
7	16^{2t+1}	(39; 23), (23, 7)				7, 23
8	16^{2t+1}	(40; 24), (24, 8)		8,24		
9	16^{2t+1}	(41; 25), (25, 9)		9,25		
10	8^{2t+1}		(8, 8; 2)			10
11	8^{2t+1}		(8, 8; 3)			11
12	8^{2t+1}		(8, 8; 4)		12	
13	8^{2t+1}		(8, 8; 5)		13	
14	8^{2t+1}		(8, 8; 6)			14
15	8^{2t+1}		(8, 8; 7)			15

4.1 Incomplete $C_7^{(r)}$ -designs

By Lemma 2.9, there exists no $C_7^{(r)}$ -ID(8 + w; w) for $w \ge 0$ and r = 1, 2.

Lemma 4.1 There exist $C_7^{(1)}$ -*IHD*(8,8;h) for $2 \le h \le 7$ and $10 \le h \le 13$.

Proof. Let $X = (Z_8 \times Z_2) \cup \{\infty_1, \infty_2, \cdots, \infty_h\}$ and $C_7^{(1)}$ -*IHD*(8,8;*h*) = (*X*, \mathcal{B}), where $|\mathcal{B}| = 7+2h$. The block set \mathcal{B} consists of the blocks listed in Appendix C(L4.1).

Lemma 4.2 There exist $C_7^{(1)}$ -ID(16 + w; w) for $6 \le w \le 9$ and $22 \le w \le 25$.

Proof. Let $X = Z_{16} \cup \{\infty_1, \infty_2, \dots, \infty_w\}$ and $C_7^{(1)}$ - $ID(16 + w; w) = (X, \mathcal{B})$, where $|\mathcal{B}| = 2w + 15$ and $6 \le w \le 9$. The block set \mathcal{B} consists of the blocks listed in Appendix C(L4.2).

For $22 \le w \le 25$, let $C_7^{(1)}$ -*IHD*(8, 8; w - 12) = (*X*, \mathcal{B}_0), where $X = (Z_8 \times Z_2) \cup \{\infty_{1}, \infty_{2}, \cdots, \infty_{w-12}\}$, \mathcal{B}_0 is from Lemma 4.1 and $|\mathcal{B}_0| = 2w - 17$. Then $C_7^{(1)}$ -*ID*(16+w; w)=(*Y*, $\mathcal{B}_0 \cup \mathcal{B}_1$), where $Y = X \cup \{\infty_{w-11}, \infty_{w-10}, \cdots, \infty_w\}$ and $|\mathcal{B}_1| = 32$, so $|\mathcal{B}_0| + |\mathcal{B}_1| = (2w - 17) + 32 = 2w + 15$. The family \mathcal{B}_1 consists of the following blocks: w = 22: $(0_0, \infty_{22}, 0_1, \infty_{20}, 1_0, 2_1, \infty_{21})$, $(0_0, \infty_{19}, 2_1, \infty_{17}, 1_0, 4_1, \infty_{18})$, $(0_0, \infty_{16}, 4_1, \infty_{14}, 1_0, 6_1, \infty_{15})$, $(0_0, \infty_{13}, 6_1, \infty_{21}, 1_0, 0_1, \infty_{12})$. $\left\{ \text{(mod 8)}$ w = 23: $(0_0, \infty_{22}, 0_1, \infty_{20}, 1_0, 2_1, \infty_{21})$, $(0_0, \infty_{19}, 2_1, \infty_{17}, 1_0, 4_1, \infty_{18})$, $(0_0, \infty_{16}, 4_1, \infty_{14}, 1_0, 6_1, \infty_{15})$, $(0_0, \infty_{13}, 6_1, \infty_{23}, 1_0, 0_1, \infty_{24})$. $\left\{ \text{(mod 8)}$ w = 24: $(0_0, \infty_{22}, 0_1, \infty_{20}, 1_0, 2_1, \infty_{21})$, $(0_0, \infty_{19}, 2_1, \infty_{17}, 1_0, 4_1, \infty_{18})$, $(0_0, \infty_{16}, 4_1, \infty_{14}, 1_0, 6_1, \infty_{15})$, $(0_0, \infty_{13}, 6_1, \infty_{23}, 1_0, 0_1, \infty_{24})$. $\left\{ \text{(mod 8)}$ w = 25: $(0_0, \infty_{22}, 0_1, \infty_{20}, 1_0, 2_1, \infty_{21})$, $(0_0, \infty_{19}, 2_1, \infty_{17}, 1_0, 4_1, \infty_{18})$, $(0_0, \infty_{16}, 4_1, \infty_{14}, 1_0, 6_1, \infty_{15})$, $(0_0, \infty_{23}, 6_1, \infty_{24}, 1_0, 0_1, \infty_{25})$. $\left\{ \text{(mod 8)}$

Lemma 4.3 There exist $C_7^{(2)}$ -IHD(8,8;h) for $2 \le h \le 7$ and $10 \le h \le 13$.

Proof. Let $X = (Z_8 \times Z_2) \cup \{\infty_1, \infty_2, \cdots, \infty_h\}$ and $C_7^{(2)}$ -*IHD*(8,8;*h*) = (*X*, *B*), where $|\mathcal{B}| = 7+2h$. The block set \mathcal{B} consists of the blocks listed in Appendix C(L4.3).

Lemma 4.4 There exist $C_7^{(2)}$ -ID(16 + w; w) for $6 \le w \le 9$ and $22 \le w \le 25$.

Proof. Let $X = Z_{16} \cup \{\infty_1, \infty_2, \dots, \infty_w\}$ and $C_7^{(2)}$ - $ID(16 + w; w) = (X, \mathcal{B})$, where $|\mathcal{B}| = 2w + 15$ and $6 \le w \le 9$. The block set \mathcal{B} consists of the blocks listed in Appendix C(L4.4-1).

For $22 \leq w \leq 25$, let $X = (Z_8 \times Z_2) \cup \{\infty_1, \infty_2, \dots, \infty_w\}$ and $C_7^{(2)}$ - $ID(16 + w; w) = (X, \mathcal{B})$, where $|\mathcal{B}| = 2w + 15$. The family \mathcal{B} consists of the blocks listed in Appendix C(L4.4-2).

4.2 Graph designs for $C_7^{(r)}$

In this section, the symbol $(a, b, c, d, e, f, g) \times n$ means the block (a, b, c, d, e, f, g) occurs n times.

Lemma 4.5 There exist $(w, C_7^{(1)}, \lambda)$ -GD for (i) $\lambda = 2$ and w = 8, 9, 24, 25. (ii) $\lambda = 4$ and w = 12, 13, 20, 21. (iii) $\lambda = 8$ and w = 7, 10, 11, 14, 15, 18, 19, 22, 23.

Proof. The constructions are listed in Appendix D (L4.5).

Theorem 4.6 There exist $(v, C_7^{(1)}, \lambda)$ -GD if and only if $\lambda v(v-1) \equiv 0 \pmod{16}$ and $v \geq 7$.

Proof. By Lemmas 4.1, 4.2, 4.5 and the result for $\lambda = 1$ in [2,3].

Lemma 4.7 There exist $(w, C_7^{(2)}, \lambda)$ -GD for (i) $\lambda = 2$ and w = 8, 9, 24, 25; (ii) $\lambda = 4$ and w = 12, 13, 20, 21;(iii) $\lambda = 8$ and w = 7, 10, 11, 14, 15, 18, 19, 22, 23.

Proof. The constructions are listed in Appendix D (L4.7).

Theorem 4.8 There exist $(v, C_7^{(2)}, \lambda)$ -GD if and only if $\lambda v(v-1) \equiv 0 \pmod{16}$ and $v \geq 7$.

Proof. By Lemmas 4.3, 4.4, 4.7 and the result for $\lambda = 1$ in [2,3].

5 $C_8^{(1)}, C_8^{(2)}$ and $C_8^{(3)}$

The necessary conditions for the existence of $(v, C_8^{(r)}, \lambda)$ -GD are $\lambda v(v-1) \equiv 0 \pmod{18}$ and $v \geq 8$, i.e.,

(i) $v \equiv 0, 1 \pmod{9}$ for any λ ,

- (ii) $v \equiv 3, 4, 6, 7 \pmod{9}$ for $\lambda \equiv 0 \pmod{3}$,
- (iii) $v \equiv 2, 5, 8 \pmod{9}$ for $\lambda \equiv 0 \pmod{9}$.

For convenience, we denote $C_8^{(1)}$ (or $C_8^{(2)}$, or $C_8^{(3)}$) by (a, b, c, d, e, f, g, h), where the edges on C_8 are ab, bc, cd, de, ef, fg, gh, ha and the chord is ac (or ad, or ae). The results for $\lambda = 1$ have been known in [2,3], so by Theorem 2.1 or Theorem 2.2 and the following tables, we only need to construct ID or IHD, and GD for the pointed orders. (Table 5.1) For $C^{(1)}$ and $C^{(3)}$

(1000001) for 0.8 and 0.8						
v	HD	ID	IHD	GD	GD	
$\pmod{18}$				$\lambda = 3$	$\lambda = 9$	
2	9^{2t-1}	(20; 11)			11	
3	9^{2t-1}	(21; 12)		12		
4	9^{2t-1}	(22; 13)		13		
5	9^{2t-1}	(23; 14)			14	
6	9^{2t-1}	(24; 15)		15		
7	9^{2t-1}	(25; 16)		16		
8	9^{2t-1}		(9, 9; 17)		26	
11	9^{2t+1}	(11; 2)			11	
12	9^{2t+1}	(12;3)		12		
13	9^{2t+1}	(13; 4)		13		
14	9^{2t+1}	(14;5)			14	
15	9^{2t+1}	(15; 6)		15		
16	9^{2t+1}	(16;7)		16		
17	9^{2t+1}	(17; 8)			8,17	

(Table 5.2) For $C_8^{(2)}$					
v	HD	ID	GD	GD	
$\pmod{9}$			$\lambda = 3$	$\lambda = 9$	
2	9^t	(11; 2)		11	
3	9^t	(12; 3)	12		
4	9^t	(13; 4)	13		
5	9^t	(14; 5)		14	
6	9^t	(15; 6)	15		
7	9^t	(16;7)	16		
8	9^t	(17; 8)		8	

5.1 Incomplete designs for $C_8^{(r)}$

Lemma 5.1 There exist $C_8^{(1)}$ -ID(9+w;w) for $2 \le w \le 8$ and $11 \le w \le 16$.

Proof. w = 2: $X = (Z_3 \times Z_3) \cup \{x_1, x_2\}$

 $(x_1, 1_0, 0_1, 2_0, 2_2, 1_1, 0_2, 1_2), (x_2, 1_2, 1_1, 0_1, 0_0, 2_0, 0_2, 1_0) \mod (3, -).$ When $w \ge 3$, let $X = Z_9 \cup \{x_1, x_2, \cdots, x_w\}$ and $C_8^{(1)}$ - $ID(w + 9; w) = (X, \mathcal{B})$, where $|\mathcal{B}| = w + 4$. The block set \mathcal{B} consists of the blocks listed in Appendix E(L5.1). \Box

Lemma 5.2 There exists a $C_8^{(1)}$ -IHD(9,9;17).

Proof. Let $X = Z_9 \cup \overline{Z}_9 \cup \{x_1, x_2, \dots, x_{17}\}$ and (X, \mathcal{B}) be a $C_8^{(1)}$ -*IHD*(9,9;17), where $\mathcal{B} = \mathcal{B}_1 \cup \overline{\mathcal{B}}_1 \cup \mathcal{B}_2$ and $\overline{\mathcal{B}}_1$ is obtained from \mathcal{B}_1 by replacing every $i \in Z_9$ with $i \in \overline{Z}_9$. The families \mathcal{B}_1 and \mathcal{B}_2 consist of the following blocks:

\mathcal{B}_1 :	$(x_1, 1, 0, x_3, 3, 2, x_2, 8),$	$(x_6, 4, 5, x_3, 7, 0, x_4, 6),$	$(x_{11}, 6, 1, x_7, 4, 3, x_8, 0),$
	$(x_2, 5, 1, x_5, 8, 7, x_1, 6),$	$(x_7, 7, 6, x_3, 8, 2, x_4, 5),$	$(x_{12}, 7, 2, x_7, 8, 6, x_8, 0),$
	$(x_3, 1, 2, x_1, 5, 3, x_2, 4),$	$(x_8, 4, 7, x_5, 5, 2, x_6, 1),$	$(x_{13}, 6, 3, x_9, 2, 0, x_{11}, 4),$
	$(x_4, 1, 3, x_1, 4, 0, x_2, 7),$	$(x_9, 1, 8, x_6, 7, 3, x_7, 0),$	$(x_{14}, 1, 4, x_9, 5, 0, x_{13}, 2),$
	$(x_5, 2, 4, x_4, 8, 0, x_6, 3),$	$(x_{10}, 3, 0, x_5, 6, 5, x_8, 2),$	$(x_{15}, 8, 5, x_{10}, 4, 6, x_9, 7).$

$$\mathcal{B}_{2}: \quad (5, x_{11}, 7, x_{16}, 0, x_{17}, 1, x_{13}), \quad (4, x_{16}, 8, x_{13}, 7, x_{17}, 5, x_{12}), \\ (6, x_{14}, 0, x_{15}, \bar{1}, x_{17}, 3, x_{16}), \quad (7, x_{10}, 1, x_{12}, 6, x_{15}, 3, x_{14}), \\ (8, x_{12}, 3, x_{11}, 2, x_{15}, 4, x_{17}), \quad (2, x_{17}, 6, x_{10}, 8, x_{14}, 5, x_{16}), \\ (\bar{5}, x_{11}, \bar{7}, x_{17}, \bar{0}, x_{16}, \bar{1}, x_{13}), \quad (\bar{4}, x_{17}, \bar{8}, x_{13}, \bar{7}, x_{16}, \bar{5}, x_{12}), \\ (\bar{6}, x_{14}, \bar{0}, x_{15}, 1, x_{16}, \bar{3}, x_{17}), \quad (\bar{7}, x_{10}, \bar{1}, x_{12}, \bar{6}, x_{15}, \bar{3}, x_{14}), \\ (\bar{8}, x_{12}, \bar{3}, x_{11}, \bar{2}, x_{15}, \bar{4}, x_{16}), \quad (\bar{2}, x_{16}, \bar{6}, x_{10}, \bar{8}, x_{14}, \bar{5}, x_{17}). \quad \Box$$

Lemma 5.3 There exist $C_8^{(2)}$ -ID(9 + w; w) for $2 \le w \le 8$.

Proof. w = 2: $X = (Z_3 \times Z_3) \cup \{x_1, x_2\}$

 $(x_1, 1_0, 1_1, 0_1, 0_2, 1_2, 2_0, 2_2)$, $(x_2, 0_0, 1_0, 0_1, 2_0, 0_2, 1_1, 2_2) \mod (3, -)$. When $w \ge 3$, let $X = Z_9 \cup \{x_1, x_2, \dots, x_w\}$ and $C_8^{(2)}$ - $ID(w + 9; w) = (X, \mathcal{B})$, where $|\mathcal{B}| = w + 4$. The block set \mathcal{B} consists of the blocks listed in Appendix E(L5.3). \Box **Lemma 5.4** There exist $C_8^{(3)}$ -ID(9+w;w) for $2 \le w \le 8$ and $11 \le w \le 16$.

Proof. $\underline{w=2}$: $X = (Z_3 \times Z_3) \cup \{x_1, x_2\}$ $(x_1, 0_0, 0_1, 0_2, 1_2, 2_0, 1_1, 2_1), (x_2, 1_0, 2_0, 0_1, 1_2, 0_0, 0_2, 1_1) \mod (3, -).$ When $w \ge 3$, let $X = Z_9 \cup \{x_1, x_2, \dots, x_w\}$ and $C_8^{(3)}$ - $ID(w + 9; w) = (X, \mathcal{B})$, where $|\mathcal{B}| = w + 4$. The block set \mathcal{B} consists of the blocks listed in Appendix E(L5.4). \Box

Lemma 5.5 There exists a $C_8^{(3)}$ -IHD(9,9;17).

Proof. Let $X = Z_9 \cup \overline{Z}_9 \cup \{x_1, x_2, \dots, x_{17}\}$ and (X, \mathcal{B}) be a $C_8^{(3)}$ -*IHD*(9,9;17), where $\mathcal{B} = \mathcal{B}_1 \cup \overline{\mathcal{B}}_1 \cup \mathcal{B}_2$ and $\overline{\mathcal{B}}_1$ is obtained from \mathcal{B}_1 by replacing every $i \in Z_9$ with $i \in \overline{Z}_9$. The families \mathcal{B}_1 and \mathcal{B}_2 consist of the following blocks:

$$\begin{split} \mathcal{B}_{1}: & (x_{1},4,8,x_{2},0,1,x_{3},7), (x_{10},1,4,x_{6},0,2,x_{7},5), (x_{6},8,x_{5},2,5,x_{4},1,3), \\ & (x_{2},6,x_{3},8,1,x_{1},5,4), (x_{13},1,x_{9},7,3,x_{8},8,2), (x_{7},7,1,x_{6},6,8,x_{4},4), \\ & (x_{3},0,7,x_{2},2,x_{1},6,3), (x_{12},0,x_{9},3,2,x_{8},5,6), (x_{8},1,2,x_{6},7,x_{5},3,0), \\ & (x_{4},0,5,x_{2},3,x_{1},8,7), (x_{11},6,7,x_{12},1,x_{7},0,4), (x_{9},5,x_{5},0,8,x_{7},3,4), \\ & (x_{5},6,x_{4},2,4,x_{3},5,1), (x_{14},2,x_{9},6,4,x_{10},3,5), (x_{15},2,6,x_{13},5,7,x_{11},3). \end{split}$$

5.2 Graph designs

Lemma 5.6 There exist $(w, C_8^{(1)}, 3)$ -GD for w=12, 13, 15, 16.

Proof. The blocks are listed in Appendix F(L5.6).

Lemma 5.7 There exist $(w, C_8^{(1)}, 9)$ -GD for w = 8, 11, 14, 17, 26.

Proof. For each order w, the corresponding base blocks under the automorphism group Z_m are listed in Appendix F(L5.7), where the vertex-set X is Z_m or $Z_m \cup \{\infty\}$ and one base block $B \times k$ will always mean that it is repeated k times.

Theorem 5.8 There exist $(v, C_8^{(1)}, \lambda)$ -GD if and only if $\lambda v(v-1) \equiv 0 \pmod{18}$ and $v \geq 8$.

Proof. By Lemmas 5.1, 5.2, 5.6, 5.7 and the result for $\lambda = 1$ in [19].

Lemma 5.9 There exist $(w, C_8^{(2)}, 3)$ -GD for w=12, 13, 15, 16.

Proof. The blocks are listed in Appendix F(L5.9).

Lemma 5.10 There exist $(w, C_8^{(2)}, 9)$ -GD for w = 8, 11, 14.

Proof. For each order w, the corresponding base blocks under the automorphism group Z_m are listed in Appendix F(L5.10), where the vertex-set X is Z_m or $Z_m \cup \{\infty\}$.

Theorem 5.11 There exist $(v, C_8^{(2)}, \lambda)$ -GD if and only if $\lambda v(v-1) \equiv 0 \pmod{18}$ and $v \geq 8$.

Proof. By Lemmas 5.3, 5.9, 5.10 and the result for $\lambda = 1$ in [3].

Lemma 5.12 There exist $(9, C_8^{(3)}, \lambda)$ -GD for $\lambda \geq 2$.

Proof. $(9, C_8^{(3)}, 2)$ -GD: $X = Z_8 \cup \{\infty\}$, $(0, 1, \infty, 5, 2, 7, 6, 4) \mod 8$. $(9, C_8^{(3)}, 3)$ -GD: $X = Z_8 \cup \{\infty\}$, $(\infty, 3, 6, 1, 0, 4, 5, 7) \mod 8$; (0, 1, 3, 6, 4, 5, 7, 2), (1, 2, 4, 7, 5, 6, 0, 3), (2, 3, 5, 0, 6, 7, 1, 4), (3, 4, 6, 1, 7, 0, 2, 5).

Obviously, there are nonnegative integers m and n such that $\lambda = 2m + 3n$ for any $\lambda \ge 2$. Thus, we may assert that $(9, C_8^{(3)}, \lambda)$ -GD exists for any $\lambda \ge 2$.

Lemma 5.13 There exist $(w, C_8^{(3)}, 3)$ -GD for w=12, 13, 15, 16.

Proof. The blocks are listed in Appendix F(L5.13).

Lemma 5.14 There exist $(w, C_8^{(3)}, 9)$ -GD for w = 8, 11, 14, 17, 26.

Proof. For each order w, the corresponding base blocks under the automorphism group Z_m are listed in Appendix F(L5.14), where the vertex-set X is Z_m or $Z_m \cup \{\infty\}$. \Box

Theorem 5.15 There exist $(v, C_8^{(3)}, \lambda)$ -GD if and only if $\lambda v(v-1) \equiv 0 \pmod{18}$, $v \geq 8$ and $(v, \lambda) \neq (9, 1)$.

Proof. By Lemmas 5.4, 5.5, 5.12, 5.13, 5.14 and the result for $\lambda = 1$ in [3].

The electronic results in Appendices A, B, C, D, E, F are available on our website: http://qdkang.hebtu.edu.cn .

References

- J.C. Bermond, C. Huang, A. Rosa and D. Sotteau, Decomposition of complete graphs into isomorphic subgraphs with five vertices, Ars Combinatoria 10 (1980), 211–254.
- [2] A. Blinco, On diagonal cycle systems, Australas. J. Combin. 24 (2001), 221–230.
- [3] A. Blinco, Decompositions of complete graphs into theta graphs with fewer than ten edges, *Utilitas Mathematica* **64** (2003), 197–212.

- [4] J. Bosak, *Decompositions of graphs*, Kluwer Academic Publishers, Boston, 1990.
- [5] Y. Caro and Y. Roditty, A note on packing trees into complete bipartite graphs and on fishburn's conjecture, *Discrete Math.* 82 (1990), 323–326.
- [6] Y. Caro and R. Yuster, Covering graphs: the covering problem solved, J. Combin. Theory, Ser. A 83 (1988), 273–282.
- [7] Gennian Ge, Existence of holey LSSOM of type 2ⁿ with application to G₇-packing of K_v, J. Statist. Plan. Infer. 94 (2001), 211–218.
- [8] K. Heinrich, Path-decompositions, Le Matematiche (Catania), XLVII (1992), 241–258.
- [9] D. G. Hoffman, C.C. Linder, M.J. Sharry and A.P. Street, Maximum packings of K_n with copies of $K_4 e$, Aequationes Mathematicae **51** (1996), 247–269.
- [10] Qingde Kang and Zhihe Liang, Optimal packings and coverings of λDK_v with k-circuits, J. Combin. Math. Combin. Comput. **39** (2001), 203–253.
- [11] J.A. Kennedy, Minimum coverings of K_n with hexagons, Australas. J. Combin. 16 (1997), 295–303.
- [12] C.C. Linder, Multiple minimum coverings of K_n with copies of $K_4 e$, Utilitas Math. 52 (1997), 223–239.
- [13] Y. Roditty, Packing and Covering of the complete graphs with a graph G of four vertices or less, J. Combin. Theory, Ser. A 34 (1983), 231–243.
- [14] Y. Roditty, Packing and covering of the complete graph, II : The trees of order six, Ars Combinatoria 19 (1985), 81–94.
- [15] Y. Roditty, Packing and covering of the complete graphs with a graph G: The forest of order five, Int. J. Math. & Sci. Math. 9 (1986), 277–282.
- [16] Y. Roditty, Packing and covering of the complete graph, IV: The trees of order seven, Ars Combinatoria 35 (1993), 33–64.
- [17] Y. Roditty, Packing and covering of the complete graph, V: The forests of order six and their multiple copies, Ars Combinatoria 44 (1996), 55–64.
- [18] J. Schonheim, On maximal system of k-tuples, Studia Sci. Math. Hungar. 1 (1996), 363–368.
- [19] J. Schönheim and A. Bialostocki, Packing and covering of the complete graph with 4-cycles, *Canad. Math. Bull.* 18 (1975), 703–708.

(Received 2 Mar 2003; revised 9 Jan 2004)