AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 32 (2005), Pages 3-26

Balanced bipartite 4-cycle designs

Hung-LiN Fu*

Department of Applied Mathematics
National Chiao Tung University
Hsin Chu, Taiwan 30050

Abstract

Let (A1, A2, A3) Ky, 4, denote the graph G with V(G) = ViUV, ViNV, =
0, |Vi| = v1, |Va| = va, and the edges of G are obtained by joining (a) each
pair of vertices in V;, ¢ = 1,2, exactly \; times and (b) each pair of vertices
from Vj to V5 exactly A3 times. In this paper, we determine all quintuples
(A1, A, Az; v1,v9) such that (A1, A2, A3) Ky, 4, can be decomposed into 4-
cycles.

1 Introduction

A balanced bipartite block design BBBD (vy, va; k; A1, A2, A3) is a triple (V4, V3, B)
where Vi and V, are disjoint sets and B is a collection of subsets of V3 UV}, called
blocks each of size k, such that

(a) each pair of elements from V; or from V; occur together in exactly A; blocks,
1 =1,2, and

(b) each pair of elememts one from V; and the other from Vi, occur together in
exactly Az blocks.

The pairs of elements in (a) are called the first and second associates respectively,
and the pairs of elements in (b) are called the third associates. We say the BBBD is
defined on V] U V5.

The notion of BBBD was first introduced by Nair and Rao in 1942 [15]. Since
then, quite a few special BBBD’s have been constructed; see [1,4,11,12, 14, 16].
Recently, the combined works of Fu, Rodger and Savarte [8], and Fu and Rodger [7]
settled the existence of group divisible designs (GDD) with two associates for block
size 3.

A group divisible design GDD (n, m; k; A\, As) with two associates is an ordered
triple (X, G, B) where X is a set of elements or varieties, G is a partition of X into
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m sets of size n, each set being called a group, and B is a collection of subsets of X,
called blocks, each of size k, such that

(a) each pair of elements from the same group occur together in exactly A; blocks,
and

(b) each pair of elements from different groups occur together in exactly Ay blocks.

Theorem 1.1 [7,8] Let n, m, Ay > 1 and \; > 0. Then there exists a GDD(n,m; 3;
A1, A2) if and only if

(a) 2 divides Ai(n — 1) + Ao(m — 1)m,

(b) 3 divides \ymn(n — 1) + Aam(m — 1)n?,
(c) if m =2 then A\ > Aon/2(n — 1), and
(d) if n =2 then A\; < (m — 1)A,.

As a consequence of this result, when m = 2, the existence of BBBD(v, v; 3; A1, A1,
A3) is settled. We say that G|H if H can be decomposed into isomorphic copies of
graphs G. For example, it is well-known that C3|K7. In terms of graph decom-
positions, the above result determines the triples (v, A1, A3) such that the graph
(A1,A3) K, can be decomposed into triangles (K3 or C3), L.e., K3|(A\1, A3) K, ,. Here
(A1, A3) K, denotes the graph on V4 U V3 where V; and V; are disjoint sets of size v,
and each pair of vertices from V; or from V5 are joined by \; edges, and each pair of
vertices, one from V; and the other from V4, are joined by A3 edges. Therefore, the ex-
istence of a group divisible design GDD(n,m; k; A1, A2) is equivalent to decomposing
the modified balanced complete multipartite graph H = (A;, A,, ..., A;,) into Ky's
where Aj, A, ..., A, are disjoint sets each of size n, and each pair of vertices from
Ay, Ay, -+, or A, are joined by A; edges and each pair of vertices from two different
sets are joined by Xy edges. For convenience, H is also denoted by (A1, A2) Kpn)-
By replacing Kj with C4, we can determine the quadruples (A1, Ag; m,n) such that
Cal(M, A2) Kny. I Cal(A1, A2) Ky, then we say a 4-cycle GDD(n, m; Cy; Ar, A2)
with two associate classes exists.

Theorem 1.2 [10] There exists a 4-cycle group divisible design GDD(n,m;Cy;
A1, Aa) if and only if

(a) 2 divides A\i(n — 1) + Aan(m — 1),
(b) 8 divides A\ymn(n — 1) + Aan’m(m — 1),
(¢) if n =2 then Ay < 2(m — 1)\z, and

(d) if n =3 then Ay < 3(m —1)\y/2 —§(m —1)/9, where 6 =0 or 1 if and only if
Ao is even or odd, respectively.
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Clearly, the case m = 2 gives the bipartite designs and the above result shows
that C4| (A1, A2) Ky, if the triple (A1, Ag, v) satisfies the conditions in Theorem 1.2.
Indeed, this motivates the study of balanced bipartite block design with each block
a 4-cycle, Cy. Now, instead of two associate classes we have three associate classes;
furthermore the two partite sets can be of different sizes. In this paper, we shall
use the notation BBQD(v1,vs; A1, Ag, A3) to represent such a design, and prove the
following theorem.

Recall that the existence of a BBQD(v1, v2; A1, A2, A3) Is equivalent to Cy | (A1, As,
A3) Ky v,- Therefore, throughout this paper, we determine all the quintuples (A1, As,
Ag; V1, UZ) SllCh that 04 | ()\1, )\2, )\3)Kv1,v2.

Theorem 1.3 Let vy, v2, A1, A2 and A3 be non-negative integers such that 2 < vy <
vy, and A3 > 1. Then Cy | (A1, Mgy A3) Koy 0, if and only if

(a) 2 divides M\i(v1 — 1) + A3vg and Aa(va — 1) 4+ Agvq,

(b) 8 divides Av1(vy — 1) + Aava(v2 — 1) 4+ 2A3v1 02,

(c) if vi,v2 < 3, then A\ (1’21) + Ao (”22) < A3v1v9,

(d) if vy =2 and vy > 4, then A\ (1’22) > A1 and A3vy > Aq, and

(e) if vi =3 and vy > 4, then A3vy > A1 + 0y, [v2/6] where 6, =0 if x is even and

0, =1 if x is odd, and Ny > 0 provided that \; is odd.

2 Preliminary results

First, we prove the necessity of Theorem 1.3.

Here, (A1, A2, A3)K,, 4, is the modified complete bipartite graph G = (V4,V3)
where |Vi| = vy, [Va| = v, V1 N Vo = 0, each pair of vertices from V; are joined by A\
edges, each pair of vertices from V; are joined by A, edges, and each pair of vertices
from V4 and V; respectively are joined by A3 edges. For convenience, we shall also
use (V1,V5) to denote (A1, Az, A3) Koy 0, -

Lemma 2.1 Let vy, v2, A1, Ao and A3 be non-negative integers such that 2 < vy < vy,
and Ag Z ]. If C4| ()\1,)\2,)\3)]{1,1,1,2, then

(a) 2 divides Ai(v1 — 1) + Azv2 and Aa(ve — 1) + Asvy,

(b) 8 divides Avy(v1 — 1) + Agua(va — 1) + 2A30109,

(¢) if vi,v9 < 3, then A\ (”21) + Ag (U;) < 3010,

(d) if vy =2 and vy > 4, then A\ (”22) > A1 and A3vy > Aq, and

(e) if vi =3 and vy > 4, then A3vy > A\; + 0y, [v2/6] where 6, =0 if x is even and
0; =1 if x is odd, and Ay > 0 provided that )\, is odd.
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Proof. Let G = (V1,Va2) = (A1, A2, A3) Ky, 0y, where V4] = vy and [Va] = ve. Let E;
be the set of edges of G that are incident with two vertices in V; for i = 1,2, and let
E; be the set of edges incident with a vertex in V; and a vertex in V5. Suppose that
Cy | G. Then the degree of each vertex in G is even, so (a) is necessary. Also, the
number of edges in G is divisible by 4, so (b) is necessary. If vy, vy < 3, then every
4-cycle has either two edges in £y U Ey and two edges in Ej or four edges in Es. It
follows that |E1| + |E2| < |Es|. (Note that the fact |Es] is even follows from (a).)

If v; = 2, then there exist \; 4-cycles that have one edge in E;, one edge in £, and
two edges in Es. It follows that |Ey| > |E1| and |Es| > 2|E;i|. That is Ay (”22) >\
and 2\3v2 > 2\, so (d) is necessary.

Finally suppose v; = 3. Then any 4-cycle has at most two edges in E;. If a
4-cycle has one edge in Ej, then it has two edges in E3 and one edge in E,. If a
4-cycle has two edges in Ey, then it has two edges in Fs.

Since the edges in E£; cannot be decomposed into 4-cycles, they have to be com-
bined with either the edges in F3 or E, to obtain 4-cycles. Also every 4-cycle has at
most two adjacent edges of E;. This implies that if A3 is even, then |E;3| > |Ey| is
necessary. But, if A3 is odd, then vs is even and for each vertex x in V3, there is at
least one edge of F3 incident to & which cannot be used to form the type of 4-cycles
mentioned above. It can only be used to obtain a 4-cycle which uses an edge in Ej,
an edge in F, and two edges in E3. This implies that 3A3ve — vy > 3\ — ”72, ie.,
Asvg > Ay + [#]. By combining the case A3 is even, we have Azvy > A1 + 0x, [ 2]
This concludes the proof of the first half of condition (e). Finally, if A; is odd, then
|Eq| = 3A1 is also odd. Thus, some of the edges in E; have to be a part of 4-cycles
using the edges in E,. Hence Ay > 0 as mentioned in condition (e). |

Now, if v; = vy and A; = Ay, then Theorem 1.2 shows that the necessary con-
ditions in Theorem 1.3 are also sufficient. Therefore, our main goal in this paper
is to consider the case when v; # vy or \; # Ay, and prove the necessary con-
dition obtained in Lemma 2.1 is also sufficient. That is, we have to construct a
BBQD(vy,v9; A1, A2, A3) (or equivalently prove that Cy| (A1, Ag, A3) Ky, 4,) for each
admissible (A1, A2, As; v1, v2).

For clarity, we use Table 1 to depict the relationship between the pairs (vy,vs)
and the triples (A1, A2, A3) by using conditions (a) and (b), i.e., at this stage, we
consider only conditions (a) and (b).

Lemma 2.2 [3] A complete graph of order n and multiplicity A, AK,, can be decom-
posed into 4-cycles if and only if (a) 2 divides A(n—1), and (b) 8 divides An(n—1).

Whenever the pair (n, A) does not satisfy the above two conditions, we can pack
MK, with 4-cycles. After taking away the 4-cycles, we have a leave L left. If L
contains no 4-cycles, then the packing is maximal. A maximal packing with minimum
leave (size) is called a maximum packing. The following result is well-known and
plays an important role in our constructions.
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A1=0 A1 =1
[\ 1 [ 2 3 4 i 1 [ 2 [ 3 [ 4 |
(0dd;0) (even;0,4) (0dd;0) | (even;even) || (0:1)(1:0) (051,5) (0:1)(1:0) | (0s0dd)
1 (2:7)(7:2) (4;3,7) (2:3)(3:2)
(4:5)(5:4) (4:5)(5:4)
(3:6)(6:3) (6:7)(7:6)
(odd;5) | (even;0,1,4,5) | (even;l) | (even;any) (1;5) (1;0,3,4,7) (1;5) (1;even)
2 (even;1) | (0dd;0,3,4,7) | (odd;5) | (odd;even) (551) (5;1,2,5,6) (3;7) (5;0dd)
(353) (551)
(7:7) (7:3)
(0dd;0) (even;0,4) (0dd;0) | (even;even) || (0:1)(1:0) (051,5) (0:1)(1:0) | (0s0dd)
3 (2:7)(7:2) 4;3, (2:3)(3:2)
(4:5)(5:4) (4:5)(5:4)
(3:6)(6:3) (6:7)(7:6)
(any;1) | (any;0,1,4,5) | (any;1) | (anyjany) (1;1) (1;0,1,4,5) (1;1) (1;any)
4 (5:5) (5;2,3,6,7) (3;3)
(357) (535)
(7:3) (757)
A1=2 A1 =3
PeNde[ 1 ] 2 [ 3 4 1 v [ 2 [ 3 [ 4 ]
(0;1,5) (0,4;0,4) (1,5;0) (0,4;even) (0:1)(1:0) (0;1,5) (0:1)(1:0) | (0;0dd)
1 (4;3,7) (2,6;2,6) (3,7;4) (2:3)(3:2) (3,7;4) (2:7)(7:2)
(4:5)(5:4) (3:6)(6:3)
(6:7)(7:6) (4:5)(5:4)
(051,5) (0,4;0,1,4,5) | (0,3,4,7;1) (0,4;any) (1;5) (0,3,4,7;1) (1;5) (1;even)
2 (5:1,2,5,6) | (2,6:2,3,6,7) | (1,2,5,6;5) | (1,5;even) (3;7) (1,2,5,6;5) (5;1) (5;0dd)
(1,5;0,3,4,7) (3,7;0dd) (551) (3;3)
(3,7:1,2,5.,6) (7;3) (7;7)
(0;1,5) (0,4;0,4) (1,5;0) (0,4;even) (0:1)(1:0) (1,5;0) (1:0)(0:1) | (0;0dd)
3 (4;3,7) (2,6;2,6) (3,7;4) (2:3)(3:2) (3,7;4) (2:7)(7:2)
(4:5)(5:4) (3:6)(6:3)
(6:7)(7:6) (4:5)(5:4)
(1;0,1,4,5) (0,1,4,5; (0,1,4,5;1) |(0,1,4,5;any) (1;1) (0,1,4,5;1) (1;1) (L;any)
4 (5;2,3,6,7) 0,1,4,5) (2,3,6,7;5) (3;3) (2,3,6,7;5) (5:5)
(2,3,6,7; (555) (357)
2,3,6,7) (7;7) (7;3)
Table 1: Admissible pairs for (vq;vs).
Lemma 2.3 [3] The minimum leave L of a mazimum packing of \K, (n > 4) can

be described as in the following table.

([ A\» [ 0 | 1 ] 2 | 3 | 4[5 | 6 | 7 |
1 F | o | F | G | F | B | F | G
D) ¢ | ¢ 1 D D | ¢ | ¢ D D
3 F | 6| B | G | F| DB | G
4 ¢ ¢ ¢ ¢ ¢ o o o
(mod 4)

Table 2. F' is a 1-factor, Eg is an even graph with 6 edge, D = {uv,uv} is a set

of double edges, and F; is a spanning odd graph with g + 2 edges.

We also need a lemma about the packing of AK, ,. But, first, the following result
is worth mentioning.

Lemma 2.4 [17] Cy | K,y if and only if m and n are even, m, n > t and 2t
divides mn.
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The following result is known.

Lemma 2.5 [3,17] Let A be an even integer. Then Cy| AK,,,, if and only if m,n > 2
and 4 divides Amn.

Now we are ready to describe the maximum packing of A, , with 4-cycles. By
Lemma 2.5, it suffices to consider A = 1,2, 3 for m,n > 2.

Lemma 2.6 [2] The minimum leaves of the mazimum packings of XK, , (m < n)
are as follows:

A=1 A=2 A=3
[(mA\m[t]2[38]4[1[2]3[4]1[2[3[4]
1T |A]S, BlS, 1D o|DIo] A|S.| B|S,
2 5| ¢ | Sa| @ |G| D D) Sn]| ¢ |Sn]| ¢
3 | A|S, B|S.|D|é|D ¢ A S, B|Sn
4 | Sn| & [Sn| & |0 G| O D||Sn]| ¢ |Sn]| ¢
(mod 4)

Table 3 : Sy is a star with & edges, D is a double edge and A, B are as in the
following figures.

SRR
s: 11 S

The following lemma shows that we can combine two decompositions together.

Lemma 2.7 Let \; < \; fori = 1,2,3. If Cy | (A}, Ay, A3) Koy, and Cy | (Mg —
A;, AZ — )\12, )\3 — )\;)Kvlqm, then C4 | ()\17 A27 AS)Kvl,vz-

For the proof of the main theorem, we need several special decompositions given
in the next three lemmas.

Lemma 2.8 [9] Let H be a 2-regular subgraph of Kap1 such that (") — |E(H)|
is a multiple of 4. Then Cy | Kapr1 \ H.

A graph is odd (even) if each vertex is of odd (even) degree.

Lemma 2.9 [5] Let H be a spanning odd subgraph of Ky, m > 2, such that A(H) <
3. Then Koy, — H can be decomposed into 4-cycles if and only if 4| (2;”) — |E(H)|
except m = 4 and H is one of the following two graphs in Figure A.

Figure A.
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Lemma 2.10 [6] Let H be a 2-regular subgraph of 2K»,, such that 2(*)") — |E(H )|
is a multiple of 4. Then Cy | 2Kam \ H.

In fact, we have a stronger results about Lemma 2.8, 2.9 and 2.10. In what
follows, we let Ly = 0, Ly = Cs, Ly = B(bowtie) and Ly = C3. Note here that a
bowtie is the graph which is the union of two triangles with one common vertex.

Theorem 2.11 [6] Let H be a 2-regular subgraph of Kopy1, m > 2. Then Kopy1—H
has a mazimum packing with leave L; if and only if (*"5™) —|E(H)| = i (mod 4), i =
0,1,2,3.

Theorem 2.12 [6] Let F be an odd spanning forest of Kop, m > 2. Then Ko, — F
has a mazimum packing with leave L; if and only if (2m2+1) —|E(F)| =i (mod4), i =
0,1,2,3.

Theorem 2.13 [6] Let H be a 2-regular subgraph of K,. Then 2K, — H has a
mazimum packing with leave L; if and only zf2(;) —|E(H)|=1i(mod4), i=0,1,2,3,
and Ly can be a bowtie or a double edge here.

Lemma 2.14 Let Vi = {a1, a9, ..., ay, } and Vo = {b1, b2, ..., by, } be two disjoint sets.
Let Hy, Hy and Hj be three graphs defined on Vi, ViUV and Va respectively where Hy
is a bipartite graph with bipartite sets Vi and Vy. Let (Hy, Hy, H3) denote the graph
formed by the union of Hy, Hy and Hz. Then (C3,Cq,C3), (C3,2C4,C5), (Cs,Ce U
Cy,Cs), (Cs,Cs,9), (D,C4,D), (Cs,3Cs,Cs), (5K3,Ksg, M), (3K3, K34, K13),
(2.[{37 K3,4, MZ), (3.[{37 K3,6, K1’5), (2]{37 Kg,g, Kl,g @] Kl,g), and (I(g7 K3,67 Mg), where
M; is a matching with i edges, can be decomposed into 4-cycles respectively, provided
that the vertices of H;, i = 1,2,3, are properly selected.

Proof. Since the proofs are similar, we select five cases to prove. For the cases we
don’t prove here, we use Figure 1 to depict the graphs.

(1) C4|(C5,2C4,Cs).

Let Cg = (al,az,ag), 05 = (bl, b27 bg, b4,b5) and two 4—CyC1€S be (G/Q7 bhag,bg)
and (ai, be, as, bs) respectively. Then the decomposition is obtained by using
the 4-cycles: (as, b3, bs,bs), (az,b1,by,b3), (a1, bs,b1,a3) and (by,ay, as,as3).

(i) C4 | (Cs,3C4, Cp).

Let two 6-cycles be (a1, as,a¢) and (by,bs,...,bg) respectively and three 4-
cycles be (as, b2, as,b3), (as,b4,as,bs), and (ag, bs, a1, by) respectively. Then the
4-cycles in the decomposition are: (ay,as,bs,b1), (as,bs, by, as), (as,bs, bs, as),
(044,175,64,045)7 (a5,b5,bg7ae) and (ag,bl,be7al).
(iii) Cy | (5K, Ksg, Ms).

Let V(5K3) = {a1,a2,a3} and V(M;) = {b1, ba, b3, bs, b5, bg} where biby, bsbs
and bsbg are edges of M3. Let V(K;36) = V(5K3) U V(M;). Then the 4-
cycles in the decomposition are: (ai,as,b2,b1), (as2,as,bs,bs), (a1,as,be,bs),
(bl,az,al,ag), (bz,al,az,ag), (bg,(ll,CLZ,ag), (b4,a2,a3,a1), (b5,a2,a1,a3) and
(bs, a2, az, ay).
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(iv) Cu | (3K3, K34, K13).
Let V(3K3) = {GI,CLZ,GB}, V(Kl,g) = {bl,bZ,b37b4} where ble,blbg and blb4
are edges, and V(Kj34) = {a1,a2,a3} U {b1, b2, b3,b4} where a;b; is an edge for
each 1 < ¢ <3 and 1 < j < 4. Then the 4-cycles in the decomposition are:
(a1, az,bs,b1), (as,as,bs,b1), (ai,as,b1,bs), (ba,a1,as,a3), (bs,as,as,a;) and
(ba, a2, a1, a3).

(v) Cy4| (3K3, K36, Ky 5)

Let V(K15) = {b1,b2,b3,bs,b5,b6} such that b1b; is an edge for 2 < ¢ < 6.
Then the 4—cycle decomposition is {(al,ag, bg, b1)7 (al, b37 b17 b4), (a37 b57 bl,bg),
(b37a’27a37a1)7 (b27a17a27a3)7 (b57a27a37a1)7 (b37a27b47a3)7 (bﬁva27a37a1)}'

Cil(2Ks, K34, M>) Cil|(Ks, K36, Ms) Ci| (2K, Kss, K13 U K1 3)

Figure 1

In what follows, we shall use GV H to denoted the join of G and H,i.e. V(GVH) =
V(G)UV(H) (disjoint union) and E(GV H) = E(G)UE(H)UE(K|v ), vm))- The
following result is also essential to the proof of our main result.

Lemma 2.15 Let H be a 2-regular graph which has t edges and let F be a matching
with s edges. Then Cy | tKayV H and Cy | sKy V 2F.

Lemma 2.16 Let O, be an empty graph with two vertices. Then Cy | O3 V Cyy for
each t > 1.

Next, we consider the decomposition of a complete bipartite graph.

Lemma 2.17 Let m and n be odd integers such that m, n > 3. Let A = 2(mod 4).
Then AKp,,, can be packed with the leave a 6-cycle or a double edge.
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Proof. By Lemma 2.5, the maximum packing of 2K, has empty leave provided
that either one of s and t is even. Therefore, if m, n > 3, then AK,,, can be packed
with 4-cycles such that its leave is the same as the leave of packing 2Kj3 5, which is
a 6-cycle or a double edge. ]

Now let V(K,) = Z,. Then the difference of two vertices z and y with & < y is
defined to be min{|z — y|,n — |z — y|}. Let G(A) denote the graph induced by the
edges xy, where z,y € Z,, such that the difference of z and y is in A. If A is a set of
several positive integers, say, A = {1,2,3,4}, then we shall use G(1,2,3,4) to denote
the graph G(A). In the case that A is a multi-set, then G(A) will be a multigraph.

If n is odd then for each difference j € {1,2,..., 5]}, G(j) induces a 2-factor.
For distinct differences i,i+1, j,j+1, G(i,i+1, j,j+1) induces an 8-factor which has
a 4-cycle decomposition:{(k, k+1i,k+i+j+1,k+i+1)|k € Z,}. Now we consider the
graph G(1,2,3,4) defined on Z, where n is odd and n > 9. The following lemmas
will be useful later.

Lemma 2.18 Let z be a positive integer such that v < z < 2v. Then, G = G(1,2)
can be written as the union of a spanning even subgraph H of G with |E(H)| = z,
some 4-cycles and a cycle of length 3, 4,5 or 6 if 2v — x is 3, 0, 1, or 2 modulo 4,
respectively.

Proof. The proof follows by constructing edge-disjoint cycles which are of length 4
except possibly the last one and the total length is 2v — z. Let 2v — . = 4t + 1.

(i) @ =3 The collection of cycles is BU (4¢t+1,4¢,4t +2) where B = {(0, 1, 3,2) +
4jj = 0,1,2, ...t — 1}.

(i) 4 =0 The collection of cycles is B.

(i) ¢ = 1 The collection of cycles is (B \ (4t — 4,4t — 3,4t — 1,4t — 2)) U (4t —
4,4 — 3,4t — 1,4¢,4¢ — 2).

(iv) ¢ = 2 The collection of cycles is (B \ (4t — 4,4t — 3,4t — 1,4t — 2)) U (4t —
4,48 — 3,4t — 1,4t +1,4¢, 4t — 2). n

Lemma 2.19 G(1,2,3) has a mazimum packing with leave a cycle of length 4, 5, 6
or 3 depending on 3v = 0,1,2 or 3 (mod 4).

Proof. We split the proof into four cases.

(1) 3u =0 (mod 4) (v=0 (mod 4))
The decomposition of G(1,2,3) is By = {(0, 1,2, 3)+41, (2,4, 3,5)+44, (1,4,6, 3)
+4i (mod v) | i=0,1,2,...,“7%}.

(2) 3v =1 (mod 4) (v=3 (mod 4))
The maximum packing of G(1,2,3) is B; = {(0,1,2,3) + 4i,(2,4,3,5) + 44,
(1,4,6,3) +4i (mod v) |i=0,1,2, ..., %7} U{(0,v—1,1,v —2)} and its leave
is (0,2,v — 1,v — 2,v — 3).
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(3) 3v =2 (mod 4) (v=2 (mod 4))
The maximum packing of G(1,2,3) is B, = {(0,1,2,3) + 4i,(2,4,3,5) + 44,
(1,4,6,3) +4i (mod v) | i =0,1,2,..., 55 U{(0,v = 1,L,v = 2)}\ {(v = 5,0 —
2,0,v — 3)} and its leave is (2,0,v — 3,v — 5,0 — 2,0 — 1).

(4) 3v =3 (mod 4) (v=1 (mod 4))
The maximum packing of G(1,2,3) is B = {(0,1,2,3) + 4¢,(2,4,3,5) + 4i
(1,4,6,3) +4i (mod v) | i =0,1,2,..., %} and its leave is (2,v — 1,v—2). &

Lemma 2.20 Let @ be a positive integer such that v < x < 2v. Then G = G(1,2,3)
can be written as the union of a spanning even subgraph H of G with 2 < (5(H) <
A(H) <4 and |[E(H)| = z, some 4-cycles and leave L; where 3v —x = i(mod 4) and
Lg = 6147 L1 = 05, L2 = B, and L3 = 03.

Proof. Assume that 3v — z = 4s + i for some ¢ with 0 <4 < 3. Since 2 < §(H) <
A(H) <4 and & > v, the graph H' = G(1,2,3) — H also has maximum degree 4 and
minimum degree 2. So, we construct H' directly depending on 3v—z =i (mod 4),: =
3,0, 1, or 2. Let Hy be the largest possible such graph. Then H' can be obtained
by taking some edge-disjoint 4-cycles away from H,.

(1) v =0 (mod 4) (Hy has about 2v edges.)

()i=0  Hy=Bo={(0,1,23)+4(2435) + 4 (mod v) | i =
0,1,2,..., %% 1.
() =1 H() (Bo\{(v—4,v-3,v-2,v—-1),(v—-2,0,v—-1,1)})U{(0,v—
v—3,v—4,v—1)}

(iii) i=2 Hy=(B\{(v-4,v-3,v-2,v-1),(v—-2,0,v-1,D)}HU{(v—
4,v-3,v—2;v—2,v—1,0)}.

(iv) i=3 Ho=(B\{(v—-4v-3,v-2,v-1)}HU{(v—-2,0v—-3,v—-4)}.
(2) v =2 (mod 4)

)i =0 Hy = B, U {(0,v —1,1,v — 2)} where B, = {(0,1,2,3) +

4i,(2,4,3,5) + 4i (mod v) | i =0,1,2,..., 5%}
(i) i=1 Hy=(B\{(v-2,v-3,v—1,v— )})U{(l,v—l,v—4,v—2,0)}.
(i) i=2 Hyp= (B \{(v—-2,v-3,v-1Lv-H}U{(v—4,v—3,v—2;v—
2,0 1,0)}.

(iv) i=3 Ho=ByU{(v—2v-10)}
(3) v =1 (mod 4)

()i=0 Hy=B = {0123 +4 (2435 +4 (modv) | i =
071727' bl 4

(i) i=1 Hy=Bi\{(v—-2,v-1Lv-3,0})U{(v—2,1,0—-3,0,v—1)}.

(i) i =2 Ho=(B\{(v—2,0—1,0—3,00})U{(v—=3,0,u—1;0—1,1,0—2)}.
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(iv) i=3 Ho=(Bi\{(v-2,v-1,v-3,00}) U{(v—-2,v-1,0)}.
(4) v=3 (mod 4)

)i =0 Hy = B3 U {(v —1,0,v — )} where By = {(0,1,2,3) +
4i,(2,4,3,5) + 4i (mod v) | i =10,1,2,..., 5}

(i) i=1 Ho=BsU{(0,v—11uv-2uv-3)}

(i) i=2 Ho=BsU{(l,v—21v—1v-100v-3)}

(iv) i=3 Hy=B3U{(0,v—2,v—1)}. [ |

Combining the above two lemmas, we have the following result.

Lemma 2.21 Let 3 < z < 2v be a non-negative integer. Then G = G(1,2,3) can be
written as the union of a spanning even graph H of G with 2 < §(H) < A(H) <
and |E(H)| = z, some 4-cycles, and leave L; where 3z — v = i(mod 4) and Ly =

Cy, L1 =Cs, Ly = Cq or B, and L3 = Cj.

Proof. By Lemma 2.20, it remains to consider the case when & < v. The proof is
divided into four cases, based on the congruence classes of v modulo 4. Since the
proof of each of the four cases is similar, we present only one of them, v = 0(mod 4).

(i) i =1 (z =3 (mod 4))
So, we need a 2-regular subgraph of G(1,2,3) which has 4¢ + 3 edges, and
this can be done by taking ¢ edge-disjoint 4-cycles from {(0,1,2,3) + 4i|i =
0,1,2...,%} and transferring (v — 1,v — 2,v —3,v —4) U (0,2,v — 1,v — 3)
into (v—1,v—2,0—3)U(0,2,v—1,uv—4,v — 3). Now, the ¢ 4-cycles and the
3-cycle (v — 1,v — 2,v — 3) make up the graph H and the packing of G — H
has a leave (0,2,v — 1,v — 4,v — 3).

(ii) 1 =2 (z =2(mod 4) and z = 4t + 2.)

This can be done by finding ¢t —1 4-cycles and a 6-cycle. Now, since (0,1,2,3)U
(v—1,v=2,v—=3,v—4)U(0,v—1,1,v—2) can be replaced with two 6-cycles
(0,3,2,1,v—1,v—2) and (0,1,v—2,v—3,v—4,v—1), H is obtained by taking
the union of (0,3,2,1,v — 1,0 —2) and {(0,1,2,3) +4ili = 1,2,...,t — 1}.

(iii) i =3 (z =1 (mod 4))
Taking the 5-cycle in (i) instead of 3-cycle gives the graph H.
(iv) i =0 (2 =0 (mod 4))
This is obtained by using {(0,1,2,3)+4i|i=0,1,2,..., %} and choose the

desired number of 4-cycles. |

Lemma 2.22 For v odd, the gmph G(%s7 %) has a mazximum packing with 4-cycles
and leave Cy = (”51}—1 v—2—3v—3).

2
Proof. The packing of G(*5> ,T) is {(0,%5%,1, %) +i (mod w) | i =0,1,2,..., %5 }.
|
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Lemma 2.23 For v odd, the graph G(1,2,3, %, ”;—1) has a mazimum packing with

4-cycles and leave either Cs or C3 if 5u =1 or 3 (mod 4), respectively.

Proof. The result follows by combining the leaves of the maximum packings of
G(1,2,3) obtained in Lemma 2.21 and G(%52, *5*) obtained above. The details are
omitted here. |

Lemma 2.24 Let v be an even integer, then the differences i and two differences 3
induce a graph G(i,3,5) in 2K,,i € {1,2,..., ”2;2 , which has a 4-cycle decomposi-
tion. Moreover, if v =0 (mod 4), then we can make the decomposition resolvable by
taking i = 1 1.e., two resolution classes of 4-cycles.

Proof. The packing is {(0,4,% 4+ i,%) + j (mod v) | j =0,1,2,..., %52} |

IRSEDY

Lemma 2.25 In 2K, (v even), 2G(i,j) has a 4-cycle decomposition for all 1 < i #
j< 5
Proof. The decomposition is {(0,4,7 + j,j) + k(mod v) | k=0,1,2,...,%*}. N

Lemma 2.26 Let x be an integer such that 2 < x < 2v where v s an even integer.
Then 2G(1,2) can be written as the union of an even subgraph H of 2K, with 2 <
5(H) < A(H) <4 and |E(H)| = x, some 4-cycles and leave O, C5, D or Cs if dv —x
1s congruent to 0, 1, 2 or 3 modulo 4.

Proof. We split the proof into two cases.

(1) v =0 (mod 4)

Let x =4s+t for 0 <t < 3. Clearly, if t = 0, then we can choose s 4-cycles in
2G(1,2) starting with the first resolution class of 4-cycles {(0,1,3,2) + 4i|i =
0,1,2,...,%%} and then {(2,3,5,4) +4i]i = 0,1,2,...,%3*}. Since s < %, the
proof follows. Now, consider ¢ # 0. By combining (0,1,3,2) with (1,2,4,3)
(instead of (2,3, 5,4)) we have (1,2,3)U(0, 1, 3,4, 2), this handles the case when
t =1or 3. For t = 2, we combine (0,1,3,2) and (2,3,5,4) to obtain double
edge (2,3) and (0,1,3,5,4,2) which handles the case when x > 6.

(2) v =2 (mod 4)
Similar to the proof of (1), we consider z = 4s+t for 0 < ¢ < 3. If t =0, then
we choose 4-cycles from {(0,1,3,2) + 4i]i = 0,1,2, ..., 7%} first and then from
{(v—=1,v—-2,0,1) +4i (mod v)|i =0,1,2,...,272}. So, if t # 0, use the same
technique to combine two 4-cycles as in (1). This concludes the proof. |

Lemma 2.27 Let H be a spanning even subgraph of Ao K,, such that |E(H)| =X\ =
(s = Dvg +t,t < vy, A(H) — 6(H) < 2 and the number of major vertices (of degree
A(H)) ist < vy. Then the edge-disjoint union of \; Ky's where V(K,)NV(K,,) =0,
H and (s — 1)Ky, U Ky, (the first, second and third associate edges) has a 4-cycle
decomposition.

Proof. Since H is an even graph, H has an eulerian circuit. Let the circuit be
denoted as (uy,us,us,...,uy, ) where u; € V(A K,,). Also, let {a,b} be the vertex
set of the first associate edges. Then {(a,u;,u;+1,b) (mod A1) | ¢ = 1,2,...,A} is
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the desired decomposition. Note that in the decomposition a(or b) is incident to a
vertex © € V(A2 K,,) either s or s — 1 times depending on degy(z) = 2s(t of them)
or 2(s — 1). Therefore, the third associate edges induce (s — 1)Ky, U K. |

3 The proof of Theorem 1.3

Before we go through the details of the proof, we first describe the idea of how
to prove the theorem. Since (A1, Ay, A3)K,, 4, can be written as the disjoint union of
MK, , MK, and A\3K,, ,,, the decomposition of (A1, A2, A\3)K,, ,, can be obtained
by packing each of A\ K, \2K,y,, and A\3K,, ,, with 4-cycles and decomposing the
remaining edges into 4-cycles. For instance, if Cy | MKy, C1 | \oKy, and Cjy |
A3 Ky, 0y, then clearly Cy | (A1, A2, A3) Ky 0p- These cases do happen when vy, vy > 4.
Therefore, we skip the proof of these cases and focus on the cases such that Cy 1
MK, Cyt MK, or Cy t A\3K,, ,. Note that, since Agv;v; = 0 (mod 2) (follows
from (a)), we have A\; (7’21) + X2 (”22) = A\v1v2 (mod 4). Therefore, for vy, vy > 4, we

consider the cases when either A\; (”21) or Ao (7’22) is not a multiple of 4.

On the other hand, if v; is less than 4, then we have to combine the edges of
MK, with the edges of \3K,, 4, or A\2K,, to obtain the desired decomposition.

For convenience, we shall call a 4-cycle C of type («, 3,7) if the 4-cycle is obtained
from using « edges of A\ K, B edges of A\, K, and 7 edges of A3/, ,. Clearly, both
v and a4+ 3 are even and o+ +v =4

Now, if v; < 4, then v; = 2 or 3. In the case that v; = 2, then for all 4-cycles of
type («, 8,7) with a > 0, we have o« = 1, f =1 and y = 2. To prove such cases, we
shall use up the edges in A\ K, first (one edge of A\ K,, together with one edge of
XK, and two edges of A\3K,, ,,). Note that if vy = 2, then A\ = Xy; and if vy = 3,
then 3)\2 Z Al.

Finally, when v; = 3 and vy > 4 our strategy is to use up the edges of A\, K, with
as many type (2,2,0) 4-cycles as possible. Note that there are type (1,2,1) 4-cycles
if A1 is odd or A3 is odd. We remark finally that if v, = 3, then 3(A; + \2) < 9A;3 by
condition (c).

Proof of Theorem 1.3.
The proof is split into four cases: vi,v9 > 4; vy = 2,v9 > 4; vy = 3,v9 > 4; and
U1, V2 S 3.

Case 1: vy, vy > 4.
Case 1.1: v; + vy is even.

Clearly, v; and vy are of the same parity. First, if both v; and v, are odd, by
Lemma 2.3, \; K, and Ay K,, can be packed with leave either §) or a cycle of length
3, 5 or 6 as the case may be. (Note here, we can always select 4-cycles from the
packings to put them with the leave from the packings to obtain “new” leaves.) On
the other hand, if both v; and vy are even, then both A; and A, must also even,
otherwise the degrees of the vertices may be odd which violates (a).
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Moreover, since A3vivy is a multiple of 4, A\3K,, ,, can be packed with leave
either @ or 4-cycles (by Lemma 2.6) with some adjustment of the leave. This implies
that the packing of (A1, A2, A3) Ky, 4, can be obtained by combining the three leaves
(cycles) together to obtain the leave of the packing of (A1, Aa, A3) Ky, 4,. Of course,
if all the three leaves are (), then we are done. So, the possible cases are: (D, Cy, D)
and (CG,C4IS,CG) where the double edges or cycles are from A\ K,,, A\3K,, 4, and
A2 K, respectively. In each case, by Lemma 2.14, the graph has a decomposition
into 4-cycles. This completes the proof in this case.

Case 1.2: v, + vy is odd.

Without loss of generality, let v; be odd and vy be even. (The other case is
similar.) Now, if A, is even, then the proof is similar to Case 1.1. Thus, we assume
that Ay is odd and therefore A3 is also odd (by condition (a)). We consider the
following two cases.

(i) Ay >0. Let Xy =X =1, Xy =Xy — 1 and \; = A3 — 1. By Lemma 2.3, K, 1y,
can be packed with leave an empty graph, a bowtie (or a 6-cycle), C3 or Cs. Also,
MKy, MK, and AJK,, 4, can be packed with leaves which are cycles of proper sizes.
Thus, the decomposition is obtained by Lemma 2.14. (Now, we have four subgraphs,
but we can combine the ones from the third associates first.)

(ii) Ay = 0. It is not difficult to see A3K,, 4, can be written as the disjoint union of
K4, Ky—14, and N;K,, 4,. The latter two graphs can be decomposed into 4-cycles
by Lemma 2.6. Therefore, it remains to check Ci| Ki 4, U A K,,. But, K4, U K,
is the same as K,,+1 U (A — 1)K,,. Since both graphs can be packed with leaves
which are cycles and the number of edges in total is a multiple of 4, the proof follows
by combining the two cycles together properly. This concludes the proof of Case 1.

Case 2: v; = 2 and vy > 4.

Since v; = 2, we can make a smaller table to depict the admissible values of vy
modulo 8 for all possible A\;, Ay, and As.

AM=0(mod4) N =1(mod4) M\ =2 (mod4) N\ =3 (mod 4)
A\ O [T] 2 [3]0]1[2]3]0[t] 2 [3]0[1]2]3]
0 any | 10145 | L] -]-1-1-1-1-12367150-1-15]-
1 even | - 0,4 -1 T -3 - - 2,6 -l -3 -7
2 any |1 0045 | 1| - - 1-1-1-1-1236715]-1-15]-
3 even | - 0,4 -1 T -3 - - 2,6 -l -3 -7

(mod 4)
Table 4: Admissible v, (mod 8) for v; = 2. ( - : Not possible.)

Before we start the proof, it is worth of mentioning again that we shall reduce \;
first.

By condition (d), we have Ay (”22) > A1 and A3vy > \;. Therefore, in order to use
up the first associate edges, we also need \; edges in A\ K,, and the graph H induced
by these A; edges is also important. This is due to the fact that a part of the third
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associate edges will be used to obtain the 4-cycles. Basically, we shall make H as
regular as possible, i.e., if H has more than v, edges, we let the graph be a spanning
subgraph of Ay K, which contains Ay - ¥4~ L 9 factors. Note here that we can view
these 2-factors as the graphs which are induced by the differences in V(Ao Ky, ) = Zy,.

Since A\, < )\2(”22), let A\; = (s — 1)vg +t where 0 < s < W and 0 < t < v,.
Also, since A\3vy > A1, s < A3. Note that A\; and A3 have the same parity when v, is
odd.

First, consider the case when \; < vs. If Ay < 2, then the 4-cycle decomposition
of (A1, A2, A3) Ky, can be obtained directly. If A\; = 1, then use the fact that K,V Cj
has a 4-cycle decomposition. Now, since A3 and v, must be odd, the decomposition
follows by the 4-cycle decomposition of Ky ,,_5 U (A3 — 1)Ky, U (A2 Ky, — C5). On
the other hand, if A\; = 2, the proof follows by using C4|(K2 U K,) V B(bowtie), and
the packing of the other two parts A\3Kj,, — Ks5 and M\ K,, — B. Hence, in what
follows, we consider only the case where \; > 3.

Case 2.1: 3 < A\ < vy.

(1) A3 is even. Now, Ag(vy — 1) must be even, so is A;. Let H be a 2-regular
graph of size \; such that H contains either all 4-cycles or possibly one 6-cycle
in \oK,,. It is not difficult to see that A\; Ky V H can be decomposed into 4-
cycles. Hence, the edges (3rd associates) used to obtain Cy4|A; K> V H induced
Kj y,which is a subgraph of A3K»,,. By direct counting, A\3Ks,, — K3, has
even number of edges and thus can be packed with 4-cycles with leave either
an empty graph or D U Cy. In the first case, 4|A2(%2); thus A2K,, — H can be
decomposed into 4-cycles (Theorem 2.13). This implies Cy|(A1, Az, A3) Koy 05 -
On the other hand, we have a D U C, left from the third associate edges.
But, now A;(%?) =2 (mod 4). Hence, A\1K,, — H can be packed with 4-cycles
and the leave is a bowtie (by Theorem 2.13). By arranging these two leaves
together properly as in the following figure, we have a 4-cycle decomposition.
This concludes the proof of this case.

(ii) A3 is odd. Now, A; and v, have the same parity. First, let A; be odd and
let H be defined as in (i) except the last cycle is either a 3-cycle or a 5-cycle.
Since Koy, = Kop, U Koy Cal\iKy V H, and Cy|Ky ,,—»,, we conclude
that MKy U Ky,, U H can be decomposed into 4-cycles. By the facts that
Cy|(As — 1)Ky, and C4|A2K,, — H, we have the proof of the case when )\ is
odd. On the other hand, let A; and vy be even. Clearly, A, is also even. Due to
the reason that Cy| Ky ,,—y and Cy|\2K,, — H (by Lemma 2.10), we have the
proof of (ii) and thus Case 2.1.
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Case 2.2: \; > vs.

So A; = (s — 1)vg + ¢ where s > 2 and 0 < ¢t < vp. For convenience, we consider
the following two cases.

Case 2.2.1: vy is odd.

Note that again, in this case A\; and A3 are of the same parity, i.e., A\; is odd if
and only if A3 is odd. By observation A\, K, contains A, - ”22—_1 2-factors which are
induced by the differences 1,2,..., %% in Z,,. (Each difference occurs A times.)
Also, s < Ay - ”T’l = A. Our goal is to partition A\yK,, into two parts such that we
use one of them with exactly A\; edges to pair with the first associate edges and the

other part has a maximum packing with 4-cycles.

So the plan is to reserve a set of A\ — 4k differences for the first part such that
we have 4k differences left for the second part where k is as large as possible, i.e.,
s > A—4(k+1). It is worth noting that the reserved differences are chosen depending
on the relationship between s and A — 4k.

(i) s = A —4k: The differences 1 and 2 are reserved for the first part if t < vy — 3,
and if t = vy — 1 or vy — 2, we also reserve the differences 3, 4, 5, and 6 for the
second part.(Note that k > 1.)

(ii) s = A —4k — 1 or A — 4k — 2: The differences 1, 2 and 3 are reserved for the
first part.

(i) s = A — 4k — 3: The differences ”22—_3, ”22_1, 1, 2 and 3 are reserved for the first
part.

Now we are ready for the proof. In (i), if ¢ < vy — 3, then by Lemma 2.18,
G(1,2) contains a subgraph H of size vy + t such that G(1,2) — H has a maxi-
mum packing with 4-cycles. But, if t = v, — 2 or vy — 1, then we have to add an
extra 4-cycle from G(3,4,5,6), let the 4-cycle be (0, 3, 9, 4). Let H = G(1,2) —
(0,1,2) — (2,3,5,4) 4+ (0,2,3,5,4). Then |E(H)| = 2v, — 2 and G(3,4,5,6) becomes
G(3,4,5,6) — (0,3,9,4) + (9,4,2,1,0,3) which is a 4-cycle packing with leave a 6-
cycle. By exchanging (0, 2, 3, 5, 4) and (9, 4, 2, 1, 0, 3), we have an H of size 2vy — 1
and G(3,4,5,6) — (0,3,9,4) + (0,2,3,5,4) which is clearly a 4-cycle packing with
leave a Cy. By observation, the above situation occurs only at £ > 0. For otherwise,
the total number of edges won’t be a multiple of 4, since the number the first and
the third associate edges are of the same parity, so are A; and As.

After the graph H is obtained, we can use up all the first associate edges, the same
number of second associate edges, and the third associate edges in (s — 1)Ky, UK, .
Since A; and A3 have the same parity, (A3 — s + 1)Ky, U K5 ,,_; must be an even
graph. This is due to the reason that if A; is odd, then |E(H)| is odd. Therefore,
each vertex in the partite set with two vertices is adjacent to an odd number of
vertices in the other partite set V(A2K,,). This implies the degree of this vertex
left unused is Azvy — |E(H)| which is even. Now, it is a routine matter to pack
(A3 — s+ 1)Ky, U Ky ,,—¢ with 4-cycles and its leave is either an empty graph or
D U Cy as mentioned Case 2.1. In both cases, we can combine this leave with the
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leave from the packing of A\2K,, — H and the proof follows by the fact that total
number of edges is a multiple of 4.

The cases (ii) and (iii) can be obtained by the same idea as above except the
differences which are reserved for use are different. In (ii), we use G(1,2,3) to
construct H' which has v, + ¢ (or t) edges and H is obtained by taking the union of
H' and an edge-disjoint union of the graph induced by s — 2 (or s — 3) differences.
Then, apply Lemma 2.21 to obtain the decomposition. Finally, in (iii), we use
G2, 221 1,2,3) to find an H' with v, + ¢ edges (Lemma 2.23) and then H is
obtained by taking the union of H' and the graph induced by s — 5 differences. This

concludes the proof of the case when v, is odd.

Case 2.2.2: vy is even.

Since Ay must be even, instead of using the differences in K,,, we use the differ-

ences in 2K,,. Hence, we have the differences 1,2, ..., ”22’2 and 2 each occur twice.
Except for %2, each difference induces a 2-factor in Ay Ky. The difference % gives a
1-factor. Therefore, by using two differences %, we also have a 2-factor. Thus, in
total, we have vy — 1 2-factors in 2K,,, and we have % 2-factors which are induced by

the difference %. So in what follows, when % is used, we put two of them together.

So the proof follows in a similar way. We start with the construction of H
depending on A;. Since the difference % (two occurrences) with any other difference
i less than % can induce a graph which has a 4-cycle decomposition (Lemma 2.24),
the proof is simpler. Instead of 4k differences left (in Case 2.2.1) we only need even
differences left. Therefore, by reserving 1 and 2 for the first part and using Lemma

2.26, we are done.

Finally, after H is constructed, we use A; first associate edges, 2\; third associate
edges (induce (s — 1)Ky,, U Ky;) and H to obtain A\; 4-cycles (by Lemma 2.27).
Since A\; must be even, ¢ is also even. Hence (A3 — s + 1)Ky, U K>, has a 4-cycle
decomposition, so is \yK,, — H. This concludes the proof of this case and the case
vy = 2 and vy > 4.

Case 3: v; = 3 and vy > 4.

For clarity, we list the possible values for vy (mod 8) as in the following table.

AM=0(mod4) A =1(modd) A\ =2 (mod4d) A =3 (mod4)

[As\Xe | 0 [1] 2 [3]of1]2[3] 0 J1] 2 [3]0]1[2]3]

0 | any |1]0L45 1] -]7]- 3] - |-12367|5]-3|5]|7

1 - 0 - 0)l-161]-12 - - - 401-121416

2 |[even | 510347 5| -13|-17odd |- |1.256 1] -17|1]3

3 - 10 - 0f-16]-121( - |- - 40-121416
(mod 4)

Table 5: Admissible v, (mod 8) for v; = 3.
- : Not admissible.

Observe that no matter which case we consider, we shall use up the first associate
edges first.
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Case 3.1.: A3 is even.

We split the proof of Case 3.1 into four subcases depending A;. First, we observe
that A3 K3 ,, can be packed with 2/; »’s such that its leave is either 2K 3 or an empty
graph depending on whether 3Asv, = 6 or 0 (mod 12).

(1)

(i)

(i)

A1 =0 (mod 4).

This implies that either both 3A3vs and A, (1’22) are congruent to 0 modulo
4 or both are congruent to 2 modulo 4. In case that 3A\3v; = 0 (mod 4),
A3K3,, can be decomposed into 2K35’s. By the fact C4|(4K3,2K34,0) and
C4|2K3,5, we can decompose A K3 U A3 K3 ,, into 4-cycles. Hence, by condition
(a) and (b), 4|\, (”;) and \yK,, is an even graph, we have C4|\2K,,. Thus,
the 4-cycle decomposition of (A1, A2, A3) K3, is obtained. On the other hand,
if 3\3vy = 2 (mod 4), then A\3K3,, can be decomposed into 2Kj3,’s and one
2K33. Since 3\ < 3A3v2, M K3 U A\3K3,, can be packed with 4-cycles such
that the leave of the packing is 2K33. Now, since A, (7’22) = 2 (mod 4) and
A K, is an even graph, A2 K, can be packed with 4-cycles such that its leave
is a bowite. By decomposing (0,2K33, B) into 4-cycles, we have the desired
decomposition. See the following figure for the decomposition.

4-cycles are: (q,2,4,3),(b,1,2,3),(c,2,0,1),(a,2,b,1),(b,3,¢,2),(a,3,¢,1).

)\1 =2 (mod 4)

This implies that 3A\; = 2 (mod 4), and therefore one of 3A\3v; and Ay (”22) is
congruent to 2 modulo 4. In one hand, if Ay (”22) = 2 (mod 4), then 3\3vy =
0 (mod 12). Now, since AK,, is an even graph, by Lemma 2.3, \3K,, — D
can be decomposed into 4-cycles. Therefore, following the idea of the above
case and the fact C4|(2K3,2K34, D), we have the desired decomposition of
(MK, A3 K5 05, Mo Ky,). We remark here that if 3Asv, > 3A;, then 3\3vy >
3A1 + 2 (by the fact 3\3v2 = 0 (mod 12)). On the other hand, if Ay (”22) =
0 (mod 4), then 3A\3v; = 6 (mod 12). The proof follows by the fact that
Cul(2K3,2K5.5,0).

A1 = 1 (mod 4) (The proof of the case A\; = 3 (mod 4) is similar.)

Again, since 3\3vs = 0 or 2 (mod 4), A(*?) =1 or 3 (mod 4) correspondingly.
First, let 3As3v2, = 0 (mod 4). Since A3 is even, A\y(vy — 1) is also even. This
implies that Cy|(A2Ky, — C5). Thus, the decomposition follows by the fact
C4|(Ks,2K39U2K3 5, Cs) see the following figure. As to the case when 3\;v, =
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2 (mod 4), the decomposition follows from C4|(Kj3,2Kj3 3, K3) which is easy to
check.

4-cycles are: (a,4,5,1), (b,2,3,4), (a,¢,1,2), (3,a,b,¢), (b,1,¢,3), (b,1,a,3),
(a,2,¢,4), (b,2,c,4).

Case 3.2.: )3 is odd.

First, we observe that A3Kj3,, = K3,, U (A3 — 1)Kj3,,. Since v, must be even,
3(A3 — 1)vy =0 (mod 12), (A3 —1)K3,, can be decomposed into (A3 — 1) - % copies
of 2K3,. By Case 3.1, Cy|(4K3,2K35,0). Therefore, if \; < (A3 — 1)% - 4, we
first pack (K3, K34,, Ky,) = K34y, by using 4-cycles with proper 2-regular leave H
depending on 3 + v, which is odd(Lemma 2.8), and then we deal with the graph
(M — 1, A —1,A3 —1)K3,, UH. Since A3 — 1 is even, the decomposition follows by
a similar argument as in Case 3.1.(Note that if A3 = 1, then the above process is not
necessary. )

Now, it is left to consider the case when Azvy — [Z] > Ay > (A3 — 1)vs.

Since Azvz — [#] > A1 > (A3 — 1)vz, Ay = (A3 — 1)vy +t where v, — [2] >t > 0.
Thus, the number of first associate edges is 3(A3 — 1)vy + 3t which is between 0 and
3(As — 1)vg + 3v, — 3[]. So, our strategy is to find a collection of second and third
associate edges to match with these 3\; edges properly to form 4-cycles. It is worth
of nothing that we shall use as less second associate edges as possible. In fact, for
3(A3 — 1)v, first associate edges, we shall use only the third associate edges and the
rest of them, we will use a matching or a spanning odd forest in Ay, .

Now, if A3 > 1, by the reduction idea mentioned above, we have Cy|(A3—1)va K3U
(A3 — 1)K3,,. Hence, we have K3, left which we can use it to form 4-cycles with
3t first associates and at most % second associate edges. This shows that as long as
we can handle the case A3 = 1 and v, — [%] >t > 0, we have the proof of the case
when A3 is odd.

First, if 3A; < 2, 1ie. A\; < %, let V(\2K,,) =Y = Y1 UY, where |Y] = 6, and
|Y72| = Uy — 6)\1 By Lemma 214, C4|(K3, K3,67 Ms) and thus C4|()\1K3, KS,GAU M3)\1).
Observe that (A1, A2, A3) K3, = (A1 K3, Ksgn,s Kony ) UKy, —6x U K316n 060 U (A2 —
1)Ky, = (M K3, Ksgn,, Msx, )U(Kexn, — My, )UKo 460 00—63 UKy —6a 41U (Aa—1) Ko, .
Thus, by Lemma 2.3 and 2.4, the 4-cycle decomposition of (A1, A2, A\3)K3,, can be
obtained if K, _gx,+1U(A2 — 1)K, has a 4-cycle decomposition. Since both Ky, gz, +1
and (Ay—1)K,, are even graphs, the decomposition can be obtained by packing them
with 4-cycles respectively and them combine their leaves together. By the fact that

the number of edges is a multiple of 4, the union does have a 4-cycle decomposition.
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Finally, consider the case vy — [2] > A\; > 2. By direct counting, if vy = 6k + &'
where &' = 0, 2 or 4, then [%2] =k or k + 1 and v, — [%] = 5k, 5k 4 1 or 5k + 3.
Therefore, for convenience, we split the proof of this part into three cases. (Basically,
the idea of proof is similar.)

(1)

U2:6k

If k is even, then A3(%2) = 0 or 2 (mod 4) depending on k = 0 or 2 (mod 4).
In either case, |E(K3,,)] =0 (mod 4). Hence, A; = 0 or 2 (mod 4) depending
on k. First, if £ = 0 (mod 4), then by Lemma 2.14, Cy|(K3, K3, M3) for every
6-subset of V(A\2K,,), and thus C4|(kK3,K3,v2,Mv72). This implies if \; = k,
we have the decomposition to use up all first associate edges and the third
associate edges. The decomposition of (A1, A2, A3) K34, follows by decomposing
A2 Ky, — M. Now, if Ay >k, then Ay —k =0 (mod 4), let \; = k + 4h where
1 < h < k. Again, by Lemma 2.14, C4|(5K3, K36, M), we can use h disjoint
6-subsets of V(A2 K,,) which we have C4|(K3, K36, M3) by Cs|(5K3, K36, M3)
and conclude that Cy|(A1 K, Ky, Moz).

On the other hand, if & = 2 (mod 4), then A;(%?) (mod 4), and hence A; = 2
(mod 4). Since, we also start with %, the proof follows by a similar argument.

Now, if % is odd, then A, (7’22) =1 or 3 (mod 4) depending on k and A,. There-
fore, Ay = 3 or 1 (mod 4) correspondingly, since 3vy = 2 (mod 4).

First, if k = 1 (mod 4) and A; = 1 (mod 4), then Ay(*?) = 3 (mod 4), and \; =
1 (mod 4). Since A\; > k, the smallest possible \; is k, and the other possible
Av's are k+4h, 1 < h < k. So, the decomposition can be obtained easily. On
the other hand, if £ = 1 (mod 4) and A\, = 3 (mod 4), then X\, () = 1 (mod 4),
and A; = 3 (mod 4). Hence, the smallest possible \; is k + 2, and the others
are k + 2+ 4h where 1 < h <k —1. Now, let F = K;5 U MU ...U M.
By using the decomposition of (3K3, K36, K15) and (K3, K36, M3) in Lemma
2.15, we have a 4-cycle decomposition of ((k + 2)Kj, K3.,,, F'). Moreover, if we
replace Cy|(K3, K35, M3) by Ca|(5K3, K35, M3), we are able to obtain a 4-cycle
decomposition of ((k + 2 + 4h)Ks, K3 ,,, F) for each 1 < h < k — 1. Now, the
4-cycle decomposition of (A1, Ay, A3)Kj ,, will be obtained following the 4-cycle
decomposition of A\ K,, — F which is by Lemma 2.3.

With the above idea in hand, the case when & = 3 (mod 4) and Ay = 1 or 3
(mod 4) can also be obtained similarly.

vy =6k +2. ([Z]=Fk+1)

If k is even, then X\3(%?) =1 or 3 (mod 4) depending on Xy = 1 or 3 (mod 4).
Since 3vy = 2 (mod 4), A; = 1 or 3 (mod 4) as the case may be. By assumption,
k is even and thus & = 0 or 2 (mod 4). In the case where \; =1 (mod 4) and
k=0 (mod4) or \; =3 (mod 4) and k& = 2 (mod 4), the proof follows by using
the 4-cycle decomposition of ((k + 1)K3, K3.,, H) where H = Mw,-s U K3 U

2

K 3. Now, partition V(A K,,) into ”26—_8 6-subsets and one 8-subset such that
K 3U K, 3 defined on the 8-subset and the graph Mj is defined on a 6-subset.
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By Lemma 2].47 we have C4|(K3,K3,6,M3) and C4|(2K3,K3,3,K1,3 @] Kl,g).
Hence ((k + 1)K3, K3,,, H) has a 4-cycle decomposition. Then the 4-cycle
decomposition of ((k + 1 + 4h)Kj3, K3,,,H) for each 1 < h < (k — 1) can be
obtained by replacing C4|(K3, K35, M3) with C4|(5K3, K36, M3). Furthermore,
it we replace C4|(2K3,K3g, K13 U Ky3) with two 4-cycle decompositions of
(3K3, K34, K1 3), we have Ay = (6k 4+ 2) — (k + 1) = 5k + 1. By the same
technique as we have in the above case, we conclude the proof of this case.

Now, consider the case where A; = 1 (mod 4) and k¥ = 2 (mod 4) or \; =
3 (mod 4) and k = 0 (mod 4). Clearly, A\; = k£ + 3 in each case. Therefore,
the decomposition starts at considering ((k + 3)Kj, K3,,, H) where H is a
spanning odd forest and this can be done by using the 4-cycle decomposition
of (2K3, K34, M;) and (K3, K36, M;3). By replacing the 4-cycle decomposition
of (K3, K3, M) with the 4-cycle decomposition of (5K3, K36, M;) we have the
4-cycle decomposition of ((k + 3 + 4h) K3, K3y, Mz ) for each 1 < h <k - 1.
(Here H = My, .) Again, the 4-cycle decomposition of A2 Ky, — Mz, takes care
the remainding graph and we have the proof of this case.

On the other hand, if k is odd, then Ay(%) = 0 or 2 (mod 4) depending on
k=1 or 3 (mod 4). First, let £ = 1 (mod 4), then A\; = 0 (mod 4). This
implies that we consider the decomposition of ((k + 3)K3, K3,,, H) first and
this is easy to get from the same idea as above. Finally, if £ = 3 (mod 4), then
A2 (%) = 2 (mod 4). Thus, \; = 2 (mod 4). Again, the decomposition will
be started at A\; = k + 3 and ended at \; = 5k — 1. The proof of this case is
therefore concluded by a similar decomposition as above.

vy =6k +4. ([#] =k+1and v, — [#] =6k +3.)

First, if & is even, then A, (7’22) is also even. In the case where k& = 2 (mod 4),
then A; = 0 (mod 4). It suffices to find the decomposition of (X K3, K3 ,,, H)
with \y € {k+ 2,k +6,---,5k + 2} and H is a spanning odd forest of Ay K,,.
Clearly, A\; = k+ 2 can by obtained by using H = M3zUM3U---UMzU M, and
the 4-cycle decompositions of (K3, K35, M3) and (2K3, K34, Ms) respectively.
Then, by replacing (K3, K3, M3) with (5Ks, K36, M3), we have the 4-cycle
decompositions of all possible (/\1K3,K3,U2,M322) for each A\; € {k + 2,k +

6,---,5k+ 2}, and the rest of decompositions can be obtained similarly.

On the other hand, if ¥ = 0 (mod 4), then A\; = 2 (mod 4). The decomposition
also starts at the case A\; = k + 2. Thus the proof is similar.

Finally, it is left to consider the case where k is odd. By direct counting,
A2(2) = 1or 3 (mod 4) and \; = 3 or 1 (mod 4) correspondingly. (3v, =
2 (mod 4).) So, if k = 1 (mod 4) and A\» = 1 (mod 4), then X\»(*?) =1 (mod 4)
which implies that A; = 3 (mod 4). Hence, the decomposition starts at Ay = k+
2 and this is done as above, sois Ay € {k+6,k+10,---,5k+2}. If k = 1 (mod 4)
and Ay = 3 (mod 4), then A\; = 1 (mod 4). Since \; > k+1, the decomposition
starts at \y = k+4. Let H = K5 UMsU MzU---U M3z U M,. Then,
by Lemma 2.14, Cy|(3Ks, Ky6, K1 5), Cal(Ks, Ksg, Ms) or Cu|(5Ks, Ksg, M;),
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and C4|(2K3, K34, M) we can handle the cases where Ay = k+4,k+38,---,bk.
This gives the desired decomposition. On the other hand, if ¥ = 1 (mod 4) and
A2 = 3 (mod 4), then \; = 1 (mod 4). Since A\; > k + 1, the decomposition
starts at k£ + 4 which is exactly the same as the above case.

Finally, consider £ = 3 (mod 4). First, if A, = 1 (mod 4), then A\; = 3 (mod 4).
Thus, the decomposition starts at Ay = k 4+ 4. On the other hand, if A\, =
3 (mod 4), then A; =1 (mod 4) and the decomposition starts at \; = k+2. In
both cases, we have similar decompositions mentioned above. Hence the proof
follows by the same technique. This concludes the proof of the case v; = 3 and
vy > 4.

Case 4: vy,vy < 3.

Since the case where v; = v and A; = Ay has been proved in Theorem 1.2, it
suffices to consider the case when v; =2 and v9 = 3 or v; = v9 = 3 and \; < \y. We
shall use the idea mentioned in Case 2 to handle the first case. It is easy to see that we
can reduce 3 at a time by using one triangle in K, and one K, 3 in A\3K3 3. Therefore,
reduce Ay and A3 by 1 respectively. Hence, it is left to consider \; < 2. First, if
A1 =1, then Ay = 3 (mod 4) and A3 must be odd. By the 4-cycle decomposition
of (K3,3K53,3K3) (A3 = 1 is not possible), we have the desired decomposition by
combining (A3 — 3) Ky 3 and 4tK;. On the other hand, if A\; = 2, Ay must be even,
so is A3. Hence we can reduce each associate by 2 using a 4-cycle system of order
5 with index 2 and then find a 4-cycle decomposition of (A3 — 2) Ky 3 U (A2 — 2)Kj.
Now, it is left to consider the case where v; = v9 = 3 and A; < \s.

By condition (b), A3 must be even and by condition (c) 3A\3 > A; + A\p. First, if
Ap is even, then A is also even. Since it is not difficult to see both (2K3, Cs, () and
(0, Cs,2K3) have 4-cycle decompositions, the proof follows by decomposing A3 K33
into )‘1;)‘2 6-cycles and 4-cycles. By the fact that Cg|2K33, AKs3 has a 6-cycle
decomposition if and only if A is even. So, if A; + A2 = 0 (mod 6), 2422 K55 has
a 6-cycle decomposition which contains exactly )‘1;—)‘2’ 6-cycles. By condition (a)
(A3 — 22 K3 5 must have 4t edges and thus 4|(A; — 21322) which implies that the
graph has a 4-cycle decomposition. On the other hand, if A;+Xy = 2 or 4 (mod 6), let
A=A +As—2o0r A = A1+ )\ —4in corresponding cases. As mentioned above, %Kg,g
has a 6-cycle decomposition which contains % 6-cycles. For the first case, it suffices
to claim that (A3 — %)Ks,s — Cg has a 4-cycle decomposition and (A3 — %)K3,3 — 2K
has a 4-cycle decomposition for the second case. By condition (a), (A3 — 3) K33 — Ce
is an even graph, therefore A3 — 4 must be even. The condition (b) shows that
(A3 = 3) = 2 (mod 4). Hence, by the decompositions Cy|(As — 3 — 2)K33 and
C4]2K3 3 — Cg, we have the proof of the first case. Similarly, if A = A\; + Xy — 4, then
(A3 —%) = 0 (mod 4) and the proof follows by the decompositions Cy|(A3 —§ —4) K33
and O4|4K3,3 — 206-

Now, we have the case "A; is odd” left. Hence, Ay is also odd. By the fact
that C4|(Ks,Cs, K3), it suffices to consider the decomposition of the graph ((A; —
1)K3, A3K33 — Cs, (A2 —1)K3). Now, A\; — 1 and A3 — 1 are both even. Hence, by the

same idea as above, the decomposition depends on the 4-cycle packing of A\3/K33—Cs
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and this can be done similarly. Therefore, the proof of Case 4 is completed and the
proof of the theorem is concluded. |

Concluding Remarks

Since the notion of balanced bipartite block design BBBD(vy,v2; k; A1, A2, A3) was
introduced around 60 years ago, to determine all 6-tuples (vq,va; k; A1, A2, A3) such
that a BBBD exists becomes an interesting problem. But, so far, only partial results
have been obtained. A substantial effort has been spent on the case k¥ = 3 by Fu,
Mishima and Rodger in recent years which handles quite a few possible 5-tuples
(v1,v2; A1, A2, A3). Unfortunately, there are too many tiny pieces to write and it is
difficult to put them together in decent content. I wish this can be done soon.
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