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Abstract

In this paper, we will prove necessary and sufficient conditions for tetrava-
lent metacirculant graphs, the first symbol of which is empty, to be con-
nected. The case where the first symbol is nonempty was treated previ-
ously by the authors. Based on these results we develop an algorithm for
determining connectedness of tetravalent metacirculant graphs.

1 Introduction

In the last decades vertex-transitive graphs have been paid attention by many re-
searchers. The reason for this is the high symmetry of these graphs, which makes
them have many pleasant properties and to have use in designing parallel-processing
computers and interconnection networks (see, for example, [3]). Metacirculant
graphs, introduced in [1] by Alspach and Parsons, are interesting vertex-transitive
graphs. They have a rather simple transitive subgroup of automorphisms. These
graphs are not necessarily connected. But for many applications, we need to use
only connected metacirculant graphs. So a natural question raised here is to develop
an algorithm for determining connectedness of a given metacirculant graph. For this
purpose, we try to find necessary and sufficient conditions for these graphs to be
connected.

The necessary and sufficient conditions for cubic metacirculant graphs and for
tetravalent ones with the non-empty first symbol to be connected have been obtained
in [4] and [6], respectively. In this paper we continue to consider connectedness of
tetravalent metacirculant graphs for the case of the empty first symbol. We use
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successfully here general techniques, which were developed in [6] and [4], to obtain
the necessary and sufficient conditions for tetravalent metacirculant graphs with
the empty first symbol to be connected (see Theorem 3.5 in Section 3). Based
on this result and the result obtained in [6], we get an algorithm for determining
connectedness of tetravalent metacirculant graphs. The results obtained in this paper
and in [6] are useful not only for practical but also for theoretical problems. For
example, they may be applied in the Hamilton problem for tetravalent metacirculant
graphs: in [7] we have used the conditions for tetravalent metacirculant graphs with
the nonempty first symbol to be connected to obtain some results on the existence
of Hamilton cycles in these graphs.

2 Preliminaries

All graphs considered in this paper are finite undirected graphs without loops and
multiple edges. Unless otherwise indicated, our graph-theoretic terminology will
follow [2], and our group-theoretic terminology will follow [8]. For a graph G we will
denote by V(G), E(G) and Aut(G) the vertex-set, the edge-set and the automorphism
group of G, respectively. If W C V(G) then we denote by G[W] the subgraph of G
induced by W. For a positive integer n, we will denote the ring of integers modulo
n by Z, and the multiplicative group of units in Z,, by Z,.

Let n be a positive integer and S be a subset of Z, such that 0 ¢ S = —S.
Then we define the circulant graph G = C(n,S) to be the graph with vertex-set
V(G) = {v, | y € Z,} and edge-set E(G) = {vyu, | y,h € Zy; (h —y) € S},
where subscripts are always reduced modulo n. The subset S is called the symbol of
C(n,S).

Let m and n be two positive integers, a € Z}, n = |m/2] and Sy, Sy, ..., S, be
subsets of Z,, satisfying the following conditions:

2) a™S, =8, for 0 < r < p;
3) If m is even, then oS, = —5,.

Then we define the metacirculant graph G = MC(m,n,a, Sg, ..., S,) to be the graph
with vertex-set V(G) = {v! | i € Zy; j € Z,} and edge-set

E(G) = {U;U;L_H |0< 7 < ;i € Zpi jyh € Zy & (R — 7) € 'S, },

where superscripts and subscripts are always reduced modulo m and modulo n,
respectively. The subset S; is called (i + 1)-th symbol of G.

It is easy to see that the permutations p and 7 on V(G) with p(v}) = v}
T(v}) = v@“—l are automorphisms of G and the subgroup (p, 7) generated by p and 7 is
a transitive subgroup of Aut(G). Thus, metacirculant graphs are vertex-transitive.

Denote the degree of a vertex v of a graph G by deg(v). It is not difficult to see

that for any vertex v € V(@) of a metacirculant graph G = MC(m,n, a, Sy, ..., S,)

i
.1 and

i

(1)

deg(v) |So| + 2|S1| + -+ +2]S,] if m is odd,
eg(v) =
! |So| +2[S1] + -+ + 2|Su1] + S| if m is even.
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A graph G is called cubic if for any v € V(G), deg(v) = 3 and it is called tetravalent
if for any v € V/(G), deg( ) =4.

Let W = vﬁv;z v be a walk in a metacirculant graph G = MC(m,n,a,
S0 .y Sy). Then the value (j; — j1) modulo n is called the change (in subscripts) of
W and is denoted by ch(W). The walk W= = v! _.v%2v!! is called the inverse walk
of W. Let U =° U;:i ;Z*i be another walk in G Wthh starts at the vertex where

W terminates. Then the walk P = U;iU;; v}jvéiﬂvé’:i is called the concatenation
of W and U and is denoted by W = U. It is easy to see that the concatenation
operation of walks is associative, i. e. , (Wy * Wa) x Wy = Wy * (W, x W3). Further
we have ch(W=1) = —ch(W) (mod n), ch(W x U) = ch(W) + ch(U) (mod n) and if
a walk W has the form W = W, x Q x Q=1 x W, then ch(W) = ch(W, x Wy).

Let G = MC(m,n,a, Sy, ..., S,) be a metacirculant graph and s be an element
of S;. Then an edge of G is called an s*-edge if it has the type vjv ;Iaws and an
s~ -edge if it has the type UyU;,Z,w-is- An edge is called s-edge if it is either an
st-edge or s™-edge and it is called an Sj -edge (resp. S; -edge, S;-edge) if it is an
st-edge (resp. s™-edge, s-edge) for some s € S;. If all edges of a walk W are s*-
edges (resp. s -edges, s-edges, S; -edges, S; -edges, S;-edges) then W is called an
st-walk (vesp. s~ -walk, s-walk, S;-walk, S; -walk, S;-walk). A maximal s™-subwalk
(resp. s -subwalk, s-subwalk, AS”;r—subwalk7 S; -subwalk, S;-subwalk) of W is called
an sT-interval (vesp. s~ -interval, s-interval, S -interval , S -interval, S;-interval)
of W. A subwalk W' of a walk W is called an interval of W if it is an S;-interval
for some i € {0,1,...,u}. So each walk W in G can be represented in the form
W = Wy x Wy * ... %« W}, where Wy, W, ..., W}, are intervals of WW.

Let G = MC(m,n,a, Sy, ..., S,) be a metacirculant graph. Denote Vi = {v]’ |j e
Z,}. We define graphs G and G' as follows. The graph G has the vertex-set V(G) =
V ={VO V! .,V™ '} and the edge-set E(G) = E = {V'V7 | i # j and there exists
viv) € E(Q) for some p,q € Zy,}. The graph G* has the vertex-set V(G*) = V" and
the edge-set E(G') = E* = {viv} | k # | and there exists a walk in G joining v} to
vi}, 1 €{0,1,...,m—1}.

The following results, proved in [4] and [6], will be useful for considering connect-
edness of tetravalent metacirculant graphs.

Lemma 2.1 ([6]). Let G = MC(m,n,a,Sy, ..., S,) be a metacirculant graph. Then
(1) G is isomorphic to C(m, S), where S = {h € Z,, | V°V" € E};
(2) G¥ is isomorphic to C(n, S%), where S' = {j € Z, | UéU; € E'};
(3) All graphs G, i € Z,,,, are isomorphic to each other.

By this lemma, we can identify G with C(m, S), G* with C(n, S') and may write
G =C(m,S) and G* = C(n, S?).

Lemma 2.2 ([6]). Let G = MC(m,n,a, Sy, ...,S,) be a metacirculant graph. Then
G is connected if and only if both G and G° are connected.

Lemma 2.3 ([4]). Let G = C(n,S) be a circulant graph with symbol S = {%£s;,
+89, ..., xs,}. Then G is connected if and only if ged(si, s, ..., Sg,n) = 1.
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Let G = C(n,S) be a circulant graph and R be a subset of S satisfying the
following conditions:

(i) R = —FR;

(ii) For each s € S, we can write s = Z?:l t;r;, where t; € Z,r; € R.
Then we say that S is generated by R and denote this fact by S = (R).

Lemma 2.4 ([6]). Let G = C(n,S) be a circulant graph with S = (R). Then G is
connected if and only if C(n, R) is connected.

Lemma 2.5. Let G = MC(m,n,a, Sp, ...,S,) be a metacirculant graph. Then G is
tetravalent if and only if one of the following cases holds:

1. |So|=4and S; =---=5,=10;

2. m and n are even, |So| =3, S; =0 forj€{1,2,...,u—1} and |S,| =1;

3. m is even, |So| =2, S; =0 for j € {1,2,...,p— 1} and |S,| = 2;

4.m > 2, |So| = 2,|S)| =1 for some i € {1,2,...,p} if m is odd or i €

{1,2,...,u—1} if m is even and S; =0 for i #j € {1,2,...,u};
5. m and n are even, |So| =1, S; =0 for j € {1,2,...,p— 1} and |S,| = 3;

6. m > 2, m and n are even, |So| = 1, |S;| = 1 for some i € {1,2,...,u — 1},
S;=0fori£je{l,2,...,u—1} and |S,| =1.

7. m is even, So =-+-=S,_1 =0 and |S,| = 4;

8. m > 2 is even, |S;| = 1 for somei € {1,...,u— 1}, S; = 0 for all j €
{0, n— 1\ (i} and 18, = 2,

9.m > 2, 18| = |Sj| = 1 for some i,5 € {1,...,u} if m is odd or i,j €
{1,...,u—1} ifm is even withi # j and S, =0 for all k € {0,...,u}\{i,5};

10. m > 2, |S;| = 2 for some i € {1,...,pn} if misodd ori€ {1,...,u—1} if m
is even, S; =0 for all j € {0,...,u}\ {i}.

Proof. The lemma follows immediately from Formula (1). O

In [6] we have obtained the following result, which we need for describing the
algorithm for determining connectedness of tetravalent metacirculant graphs.

Theorem 2.6 ([6]). Let G = MC(m,n,a, Sy, ..., S,) be a tetravalent metacirculant
graph with So # 0. Then the graph G is connected if and only if one of the following
conditions holds:

1. m=1, So={£s,£r} and ged(s,r,n) =1;
2. m=2,nis even, So = {*s,5}, S1 = {k} and gcd(s, §) = 1;
3. m=2,8 = {£s}, S1 ={k, 1} and gcd(s,k —l,n) = 1;
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4.m > 2, Sy = {xs}, S; = {k} for some i € {1,2,...,u} if m is odd or
i€ {1,2,...,u—1} if m is even such that ged(i,m) = 1, S; = 0 for any
i#7€{1,2,...,u} and ged(s,r,n) =1, where r = k(1 + o’ + - - - + o™=V,

5. m =2, niseven, So = {43}, S1 ={h,k,1} and ged(h =k, k—-1,%) =1;

6. m > 2 is even, n is even, So = {5}, S; = {s} where i is odd and gcd(i,m) =1,
S;=0foranyi#je{l,2,...,u—1}, S, = {r} and gcd(p, %) = 1, where p
is [r—s(l4+a'+a® +--- + a=V9)] reduced modulo n;

7. m > 2 is even, but p = 3 is odd, n is even, Sy = {4}, S; = {s} where i is
even and ged(i,m) =2, S; =0 foranyi#je€{1,2,...,u— 1} S, ={r} and
ged(q, %) = 1, where i = 24" with i is odd and q is [r(1 +a® + o 4t

a(Zt_l)il) —s(1+ al +a¥ .ot a(“_l)il)] reduced modulo n.

3 Results

Necessary and sufficient conditions for tetravalent metacirculant graphs with the non-
empty first symbol to be connected have been obtained in [6]. In this section, we
give necessary and sufficient conditions for tetravalent metacirculant graphs with the
empty first symbol to be connected. Based on these two results we get an algorithm
for determining connectedness of tetravalent metacirculant graphs. We assume that
all tetravalent metacirculant graphs considered in this section have the first symbol
So = 0

In Lemma 3.1 below we get a necessary and sufficient condition for a tetravalent
metacirculant graph in Case 7 of Lemma 2.5 to be connected.

Lemma 3.1. Let G = MC(m,n,«, Sy, ..., S,) be a tetravalent metacirculant graph
with m even, So = -+ = Sy,_1 =0 and S, = {51, 52, s3,54}. Then G is connected if
and only if m =2 and ged(sy; — 3,82 — 3,83 — s4,n) = 1.

Proof. 1t is easy to see that G = C(m,S) with S = {£u}. We will prove that
G® = C(n, S% with S® =< R > where R = {£(s; — s2),£(s2 — s3), £(s3 — 84)}.

Let W be a walk in G starting at a vertex v) and terminating at a vertex vj) of
the block V. Then W = Qy % Qy * - - - * Qp, where Q; is of the form v v}, . with
s € S, if i is odd and of the form v# 00 _ with s € S, if i is even. It is clear that the
number p of (); must be even. We will prove that ch(W) € (R) by induction on p.

If p=2then W = Q * Q2, where Q; = vava+sl and @ = Ua+s1112+s1__5k for some
i,k € {1,2,3,4}. Therefore ch(W) = ch(Q1) + ch(Q2) = s; — sy € (R).

Assume now that ch(P) € (R) for any walk P which has its endvertices in
V0 and the number of edges @; of which is less than or equal to 2t. Let W =
Q1%Qa%- - -x(Qa11) be a walk of G, which has its endvertices in V9 and the number of
edges Q; of whichis 2(t+1). Set W = Q1%Qa%. .. %Qy and Wa = Qoyr1 #Q212. Then
W, and W, are subwalks of W, which have their endvertices in V° and the numbers of
edges QQ; in both Wy and Wy are less than or equal to 2¢. By the induction hypothesis,

ch(Wy), ch(Ws) € (R). This implies that ch(W) = ch(W;) 4+ ch(Ws) € (R).
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Thus, ch(W) € (R) for any walk W with its endvertices in V°. This implies that
G® = C(n, S with S° =< R >.

Since G = C(m, S) with S = {Zu}, by Lemma 2.3, G is connected if and only if
ged(p,m) = 1. We have u = m/2 because m is even. So ged(u, m) = u. Therefore G
is connected if and only if m = 2. Since G° = C(n, §°) with S° =< R >, by Lemmas
2.3 and 2.4, G° is connected if and only if gcd(s; — s2, 59 — 83,53 — s4,n) = 1. Now
by Lemma 2.2, we may conclude that G is connected if and only if m = 2 and
ged(sy — s2, 83 — $3, 83 — sa,m) = 1. |

Necessary and sufficient conditions for a tetravalent metacirculant graph in Case
8 of Lemma 2.5 to be connected are obtained in the following lemma.

Lemma 3.2. Let G = MC(m,n,a, Sy, ...,S,) be a tetravalent metacirculant graph
with m > 2 even, Sy = 0, S; = {k} for somei € {1,...,u—1}, S; = 0 for any
i#£je{l,....,u—1} and S, = {s,r}. Then

1. If G is connected, then either i is odd and ged(i,m) = 1 or i is even, u is odd
and ged(i,m) = 2.

2. Ifi is odd and ged(i,m) =1, then G is connected if and only if ged(p, u,n) = 1,
whereuw =s—1 and p= k(1 +a' +--- +aF=Y) — 5.

3. If i is even, p is odd and ged(i,m) = 2, then G is connected if and only if
ged(&,u,n) =1, wherew = s —r and § = [k(1+ a + o 4Ty
s(L+a” +a* + .o+ a® V)] with t > 1 and i' an odd integer such that
i =2t

Proof. (1) Since G is connected, by Lemma 2.2, the graph G is connected. But
G = C(m,S) with S = {&i, u} by Lemma 2.1. So by Lemma 2.3, we have gcd (i, u, m)
= ged(4,u) = 1. Therefore either i is odd and ged(i,m) = 1 or ¢ is even, w is odd
and ged(7,m) = 2. Assertion (1) is proved.

(2) Suppose that G = MC(m,n,a, Sy, ..., S,) is a tetravalent metacirculant graph
with m > 2 even, Sop = 0, S; = {k} for some odd i € {1,...,u — 1} such that
ged(i,m)=1,S;=0forany i #j € {1,...,p— 1} and S, = {s,r}. Since 7 is odd
and ged(i,m) = 1, it is not difficult to see that the smallest positive integer d such
that di = pu (mod m)isd=p. Let p=k(1+a’+---+aP ) —sand u = s — 7.
It is clear that G = C(m, S) with S = {=£i, u}. We show that G° = C(n, S°) with
S0 = ({£p, £u}).

Let P be a walk in G starting at v and terminating at a vertex v # v of the
block V0. Let 2(P) be the number of S,-edges in P. We will prove that ch(P) € S°
by induction on z(P). Without loss of generality we may assume that P has no
subwalks of the type Q * Q™! and the only vertices of P in V? are its endvertices.

If z(P) = 0 then P is either an S;"-walk or an S; -walk. In the former case, P
has the form P = vgvy 02, - 'v2+k(1+a1+---+a(2“—l)i)' So ch(P) = k(1 + o' +
et a(2#*1)i) =k(l4+ai+---+ a(#*l)i) +k(aki 4+ a(2#*1)i) =k(l4+a’+--+
a(#—l)i) +alk(14+al 4 -+ a(#—l)i).
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On the other hand, pi = p (mod m) because i is odd and u = m/2. It follows
that ui = p+ am for some a € Z. So oS, = a*a"™S, = oS, = —S,. Since
S, = {s,r}, we have either a*'s = —s or a*'s = —r in Z,,. If a's = —s (mod n) then
ch(P) = k(1+ai+. . .+a(#—1)i)+a#ik(1+ai+. . .+a(#—1)i) = k(1+ai+. . .+a(#—1)i)_
s—ats+al k(1o +- - .+a(#*1)i) =[k(1+ai+-- .+a(#*1)i)_3]+a#i[k(1+ai+. c
o=V —s] = [k(1+a'+ - -+alF~D%) —s](1+a™). Therefore ch(P) = p(1+at?) € S°.
If a*'s = —r (mod n) then ch(P) = k(1 +a’ + - + o=V + aPk(1 +al +--- +
a(ﬂfl)i) = k(1 + ol 4+ - + a(ﬂfl)i) —r — aMs + Oz“ik(l +at+ -+ a(#*l)i) =
El+ai+--+atV) st s—r]+a” k(1 +a+ - +at V) —s] = [k(1+a' +
v aY g (s—r) Fat k(1 +ai4- - AoV —5] = prutatip = (1+a™)p+u.
Therefore ch(P) is in S° again. Thus, ch(P) € S°if 2(P) = 0.

Let z(P) = 1. Then the following cases may happen for P:

1. P = P, x P,, where either

) Py is an Sj-interval and P is an S,-edge or

) Pp is an S; -interval and P, is an S,-edge or
(¢) P is an S,-edge and P, is an S; -interval or

)

(d) Py is an S,-edge and P, is an S; -interval.
2. P = P, x Py * P3, where either

1 and P3 are S;"-intervals and P, is an S,-edge or
Py and P, Sit-i Is and P; i Sy-ed
) Py is an Sj-interval, P, is an S,-edge and P is an S; -interval or
(¢c) P, and Pj are S; -intervals and P, is an S,-edge or
)

P, is an S -interval, P, is an S,-edge and Pj is an S;“—interval.

We now consider the above cases in turn.

(l.a) P = P, P, with P, an S; -interval and P, an S,-edge.
In this case, since s and r play the equal role in S,, we may assume that P has
the form

i

_ .0 2% i 0
P = 000 kVk(14ad) -+ - Vot k(1o +tai—1) Vo b k(1 ai-tan=1) anis:

As before, we can show that either a*s = —s or a#'s = —r in Z,. So ch(P) = p or
¢h(P) = p+wu. Thus ch(P) € S°.

(1.b) P, is an S; -interval and P, is an S,-edge.

Without loss of generality we may assume that

P= Ug”;ia—ik cee U;f;—ik,a—zik,___,a_,u'kUz_a—ik_a—mk_..._a—uik_s-

So ch(P) = —a k—a ¥k—-+-—a Pk—s = —s—a Mk—a Pk —. .. —q #FEDiL,
But we have again o #k = a *k = ok (mod n) and either —s = a¥s or —s = alr
in Z,. If —s = a*s then ch(P) = a*s —a k(1 +a'+- -+ a1 = aks — a’k(1+
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al 4+t = —atp € SO If —s = atr then ch(P) = atr — a k(1 + o’ +
st = ab(r — s+ 5) —alk(1+al 4 - + @Y = —aky — atp € SO
The proof of the assertion that ch(P) € S° for Cases (1.c) and (1.d) is reduced
to that of (1.a) and (1.b), respectively, by replacing the walk P with the walk P~!.
We omit them here.
Let viv,l;‘ be an edge of G. When the subscript h is completely determined by
1, J, k, we will write the edge v’ X simply as UZ k.

(2.a) Py and Py are S; -intervals and P, is an S,-edge.

We can write P = v0viv? .. ylipf THytitetiy ”*’”*22 ..vy for some t # p and
0<t<m.

First suppose that 0 < ¢ < p. Then since ui = p (mod m), we
can rewrite P = v%viv*.. v“vé”’” titpitigtitpit2i ..’UZH_# Hu=ti Then P, =
Wiyl Py = U”U;H—m and Py = vél+#lvtz+uz+zvtz+ui+2i ”'UZHWr(uft)i. Let

Q= ;Hm fitpizigtitni=2 = gt and P’ = PyxPyxQ* Q7 % P3. Then ch(P') = ch(P).
We will show that ch(P') € S°.

We have ch(P') = [ch(Py) + ch(Ps) + ch(Q1)] + [ch(P2) + ch(Q)]. But the
walk P, % () has the type similar to Case (1.c). So it is not difficult to see that
ch(Py*Q) = ch(Py)+ch(Q) € S°. On the other hand ch(Py) = k+a'k+---+at~Vik;
Ch(Pg) _ ati+uik+_ . _+ati+m’+(u—t—1)ik and Ch(Q—l) _ atik+a(t+1)ik+_ . '—f—O((H—‘u_l)ik.
This implies that ch(P;)+ch(Ps)+ch(Q7!) = k+a'k+---+a*~Vik. By arguments
similar to that of the case z(P) = 0, we have k + a'k + - + oY% € S°. Thus
ch(P) = ch(P') = [ch(P1) + ch(P3) + ch(Q™Y)] + [ch(P,) + ch(Q)] € S°.

By similar arguments we can prove (2.a) when p < t < m. The detailed proof is
left to the reader.

2.b) P = P, x P, x P;, where P, is an S -interval, P, is an S,-edge and P; is an
i u
S; -interval.

. ; ¢
In this case P = vQviv? . vliv) Thytitn-iytitn=2i vy for some ¢ # p and 0 <

t < m. First suppose that 0 < ¢t < u. Then since pi = p (mod m), we can rewrite
; _ P

P = UOUZUR vnvbl‘l“l” titpi— zUtz+,uz 22 . Ug' Then Pl — UOUZUR . v(t# P2 — U(tlzvbﬂrl/«l

and Py = UZ'H-#Z titpi—igtitpi—2i 0 [ at Q= U;iﬂ“ titpitig titpit2i -US and P =
Py« Py Q+Q % P3. Then ch(P) = ch(P') = ch(P * Py Q) +ch(Q™ % P;). It is clear
that P % P, x ) has the type similar to walks in Case (2.a) where 0 < ¢ < p which
we have considered above and Q7! * P; has the type similar to one of the walks in
the case z(P) = 0. Therefore ch(P) = ch(P') = ch(Py x Py * Q) + ch(Q7 ! % P3) is in
SO,

By similar arguments we can prove (2.b) when u < ¢ < m. Also, the proof that
ch(P) € S° for Cases (2.c) and (2.d) is similar to that of (2.a) and (2.b). So we omit
them here.

Suppose now that the assertion ch(W) € S° has been proved for any walk W
with the number of S,-edges less than h (h > 2) and let P be a walk with z(P) = h.
We show that ch(P) € S°.

Let e be the first S,-edge we encounter going along P from its beginning vertex
and let vj be the last vertex of e. Then we can write P = P, * e * P,. Since pu is
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the smallest positive integer d such that di = p (mod m) and ged(i,m) = 1, we can
construct a walk @ which starts at v? and terminates at a vertex of V° and consists
of only S;-edges. Consider the walk P’ = (P, *xe* Q) x (Q71 % P,). We have ch(P') =
ch(P), both (P xe*Q) and (Q~** P,) have their endvertices in V° and the number of
S,-edges in these walks less than h. By the induction hypothesis, ch(P; * e * Q) and
ch(Q7 '+ Py) are in S°. Therefore ch(P) = ch(P') = ch(PxexQ)+ch(Q™'*P,) € S°.

Thus, the assertion ch(P) € S° has been proved for any walk P, the only vertices
of which in V? are its endvertices.

By Lemmas 2.2, 2.3, and 2.4 we see that, if 7 is odd and ged(7,m) = 1 then the
graph G is connected if and only if ged(p,u,n) = 1.

(3) Let G = MC(m,n,a, Sy, ..., S,) be a tetravalent metacirculant graph, where
m > 2 is even, but u = m/2 is odd, Sy = 0, S; = {k} for some eveni € {1,...,u—1}
such that ged(i,m) =2, 5; =0 forany i # j € {1,...,u—1} and S, = {s,r}. First
we prove the following claims.

Claim 1. Ifi is even, p is odd, ged(i,m) = 2 and i = 2%’ witht > 1 and i’ odd, then
the graph G is isomorphic to the metacirculant graph G' = MC(m,n,a', S;, ..., S,),
where o/ = o, Sj = -+ = Sp_ =0, Sy = {k}, Shyy =+ =S, =0 and
S, ={s,r}.

Proof of Claim 1. Since 7 is even, p is odd and gcd(i,m) = 2, the integers
0,¢,2i,...,(u—1)i are all distinct even integers and p, 7+ 1,2 + i, ..., (p— )i+ u
are all distinct odd integers in Z,. Since 7' is odd, wi’ = p (mod m). Let
@ V(G) = V(G): v = v;y and v U;Zt“. Then ¢ is an isomorphism
between G and G'. The detailed verification is not difficult. So we omit it here.

Claim 2. Let G = MC(m,n,a,Sy,...,S,) be a tetravalent metacirculant graph,
where m > 2 is even, = m/2 is odd, So = -+ = Sar_y = O with t > 1, Sy = {k},
Sptpy = =8,1=0and S, = {s,r}. If a walk P of G joins two vertices of V°
then ch(P) € (xp,+u), whereu =s—r andp=k(l+a+a®+---+a* 1) —s(1+
a+a?4 -+ oY) modulo n.

Proof of Claim 2. Let G be such a tetravalent metacirculant graph, P be a walk
in G joining a vertex v to a vertex v} of V?. Without loss of generality, we may
assume that P has no subwalks of the type Q * Q™! and the only vertices of which
in V? are its endvertices. Let z(P) be the number of S,-edges in P. We will prove
this claim by induction on z(P). We note that z(P) must be even because only
S,-edges can join vertices of blocks with even superscripts to vertices of blocks with
odd superscripts.

If 2(P) = 0 then P can be represented by P = vJv? v*? .. v(\=D¥y9. So ch(P) =
E(14a® +a?¥ + - 4 a®=V%). Since u is odd, we have ged(2f,m) = 2. It follows
that 0,2¢,2.2Y,...,(u — 1)2" are all even integers modulo m. Therefore ch(P) =
E1+a® +a* +- -+t 0 = k(1+ a2 +at+--+a™ ) = k(l+a+a’+-- -+
a1 —a+a?—---+a#V) (mod n). By definition of metacirculant graphs,
we have oS, = =S5, i.e., a*{s,r} = —{s,r}. This means a*s = —s (mod n) or
ats = —r (mod n).
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If a#s = —s (mod n) then (a* 4+ 1)s = 0 (mod n). So we can write 0 = s(a” +
D14+ (1+a®) ... 1+ ) = s(1+a+a?+--+a@ V) (1-at+a?—---+alt~D)
(mod n).

From the above formulas, ch(P) = —s(1+a+a® +--- +a® D)1 —a +a? -

.._}_a(ﬂfl)) +k(1+a+a2+...+a(#*1))(1 —a4+a?— -~-+Oz(“71)) =(1-a+
a?— ... +a(’"1))[k(1+a+a2 I —}—Oz(“*l)) —s(l+a+a’+--- +a(2t*1))] =
(1-a+a®—---+a"V)p (mod n). So ch(P) € (£p, £u).

If a#s = —r (mod n) then a#s +s —s+r = s(a* + 1)+ (r —s) =0 (mod n).
Therefore, we also have 0 = [s(a” + 1) + (r — s)] (1 + a?)(1 +a¥)... (1 +a*7) =
s(af +1)(1+a?)(1+a2) ... (1+a2 )+ (r—s)(1+a?)(1+a?) ... (1+a>™") (mod
n). Soch(P) = k(1+a+a’*+ - +at " N1-a+a?—---+atV)—s(a’ +1)(1+
) (1+a®) ... (14 )= (r—s)(1+a®)(14+a”)...(1+a* ) = (1-a+a’—- -+
at=N[E(1+a+a?+ - +altV) —s(l1+a+a?+-- +a® D) +(s—r)(1+a?)(1+
o) (1+a ) =(l-—a+ta? - +atVpt [(1+a?)(1+a) ... (1+a* )]u
(mod n). So ch(P) is also in (£p, +u). Thus if z(P) = 0, we have ch(P) € (£p, tu).

If a walk P contains only two S,-edges, i.e. z(P) = 2, then we construct the
subwalks P, P», Py and P, of P as follows. P, starts at the beginning vertex v of P
and terminates with the first S,-edge v} 115,2 t# contained in P, P, starts at v’”2 tu
and terminates at v” e Wthh is the last vertex of P with superscript z2f -+ -

The subwalk Pj starts at v?* ** and terminates with the second S,-edge vy2 e 03,2

contained in P. Finally, start Py at vd,t and terminate it with the last vertex vf
of P. Thus P = P, * P, x P3 x P;. Moreover, P, is a walk joining two vertices of
the same block V*2*# and having no S,-edges. By the same arguments used for
the case z(P) = 0, we have ch(P;) € (£p, tu). So ch(P) € (£p,tu) if and only if
ch(Py) + ch(Ps) + ch(Py) € (£p, £u).

By the constructions, P, is an Sa:-walk, all edges but the last one of P, and Ps
are also Syt-edges. The orientations of Sy:-portions of P, and Ps and the orientation
of Py may be positive or negative. But we can verify that in all cases ch(P;) +
ch(Ps) 4 ch(Py) reduced modulo n is always in (£p, £u). Here we will demonstrate
calculations only for the case when the Sy:-portions of Pp, P; and P, have positive
orientations.

Let
t 2t
P o= %P
_ 228, (24+1)284 y2! +u y2!
Py = ot mg@DZn i, v
2t t _ t
P = vy D2y (e=1)2 U?c.

Since S, = {s,r}, S,-edges may be either s-edges or r-edges. Therefore, there are
four possibilities for ch(Py) + ch(Ps) + ch(Py) to consider.

(a) ch(Py) +ch(Ps) +ch(Py) = [k(14+a* +---+ a(’”’mt) +a's] + [atk(a®? +
aletD2t ooy a(y—l)?) + a#a?ﬂts] + [k(a?ﬂt L2 a(#—l)Zt)] = [k(l +
o .+ a(#*l)Zt)] 4 [Oﬁ?ts + a#k(aﬂt 4 alEtD2 4 g2 ) + atav? 3] —
QW=D — q=22f ... —a®¥k (mod n). By the calculations in the case z(P) = 0,
the first term is in (+p, tu). Consider the remainder. If a#s = —s then we can see
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that [a®2's + a#k(a® + otV 4. 4 WD) 4 qlad?'s] — D2 L — =22 —

o= (1-a)l+a® 4+ +av T V) [s(1+a+a?+ -+ a®D) -
k(l+a+a’+--+a® )] (mod n), i.e., the remainder is in (+p, Fu). Similarly, it
is not difficult to verify that if a*s = —r then ch(P;) + ch(Ps) + ch(Py) € (tp, tu).

(b) ch(Py) + ch(Ps) +ch(Py) = [k(1+a* +-- +a(%1)2t)+a“t ]+ [ k(e +
T2 o4 @12 pamab?' ] [k oWtV 4 4o (r=1D2] | By exchanging
the role of s-edges and r-edges, with the calculation similar to (a), we can show that
the remainder is equivalent to a®*(1 — a)(1 + a® + -+ + W= D) [r(1 + o +
a? 4o+ a® V)~ k(1+a+a?+ -+ a® V)], On the other hand, we have
r(l+a+a’4---+a® ) —k(1+a+a+---F+a) = [(r—5)+5}(1+a+a +

o) k(14 at a4+t =(r—s) 1 +at+ad+ -+ a® V) 4
[s(1+a+a?+--+a® V)~ k(1+a+a+--+a#V)]. From this, we see that
ch(Py) + ch(P3) + ch(Py) € (£p, £u).

(¢) ch(Pl) + ch(P3) +ch(Py) = [k(14+a® 4+ +al=b2) 4 a2 5] 4 [l k(™ +
o@Dt o -2 )+ arav? r,«] + [A(O/ﬂ + a(y+1) 44 alem 1)2t)] = [k(l +
a? 4ot a(p 1)2¢ )] [aac2 s+ Oz"k(amt + olE+1)2? S a(yfl)Zt) + Oz”Ozﬂtr] _

QWD — o202 — ... — 0*'k (mod n).

We have [a®?'s + ak(a®® + a@+D2 ..o 4 q=D2) 4 arad?'y] — q=D2E —
QW% — 0 =~ k(14 0¥ -4 a Y (1 — o) + (0P s+ atabr)
(mod n). By definition of metacirculant graphs, ar = —s (mod n) or a¥r = —r
(mod n).

If a#r = —s (mod n) then a**s + a*a?*r = a*¥'s —a¥*'s = a*¥s(1 —alv=22") =
Ozﬂts(l _ Oz2t)(1 +ao¥ 4+ a(y*ac—l)T’) (mod n). So [aﬂts + a”k(a”t + o@Dt |

c a4 a/‘aﬂtr] — W2 D2 P =0 (1o

at=r= D [5(1— o) = k(1-a*)] = o™ (1+a? +- - +a=*= D)1 - a)[s(1 +a+
a4+ o V) —k(1+a+a+- - -+alt~V)]. Therefore ch(Py)+ch(Ps)+ch(Py) €
(£p, £u).

If a*r = —r (mod n) then o*%'s + afa¥*r = a**'s — a¥*r = o*%'s — a¥*'s +
a¥?s — a¥?'r = (a**s — a¥'s) + a¥* (s — r) (mod n). Using the calculations in (c),
we obtain ch(Py) + ch(Ps) + ch(Py) € (£p, £u).

(d) ch( 1) +ch(Ps) +ch(Py) = [k(1+a® 4+ @) 4+ a®27] 4 [alk(a®? +
a(z+1)2t 4ot Oz(y 1)2¢ ) + Oz”OzyZ S] + I:k(ayQt + a(y+1)2t 4oy a(#fl)gt)]'

By calculations similar to those in (¢) with the exchanging the role of s-edges
and r-edges, we can see that ch(Py) + ch(Ps) + ch(Py) is in (£p, £u) in this case.

Thus ch(P) € (xp, £u) if z(P) = 2.

Suppose now that the claim is true for any walk joining two vertices of V° and
having less than or equal to 2k S,-edges. Let P be a walk joining two vertices of
V? and having 2(h + 1) S,-edges. We represent P as the concatenation P; x Py of
two subwalks P, and P such that P, contains 2h S,-edges and P, contains only two
Sy-edges. Let vy be the terminal vertex of ;. Then z must be even. Let () be a walk
joining vy to a vertex of V0 and having no S,-edges. Such a walk @ can be always
found. Then ch(P) = ch(Py* P;) = ch(PixQ*Q 1 x Py) = ch(P Q)+ ch(Q™* Py).
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It is clear that P; x Q joins two vertices of V° and has 2h S,-edges and Q™' * P
also joins two vertices of V° and has only two S u-edges. By the induction hypothesis
both ch(P; * Q) and ch(Q™! x P,) are in (£p,+u). Therefore ch(P) € (Ep, Lu).
Thus the claim is also true for a walk joining two vertices of V° and having 2(h + 1)
S,-edges. Claim 2 is proved.

By Claim 1, Claim 2 and Lemmas 2.2, 2.3, 2.4 we conclude that if 7 is even, u is
odd and ged(i,m) = 2, then G is connected if and only if gcd(§,u,n) = 1. Lemma
3.2 has been proved completely. Ol

The next Lemma 3.3 deals with a necessary and sufficient condition for a tetrava-
lent metacirculant graph in Case 9 of Lemma 2.5 to be connected.

Lemma 3.3. Let G = MC(m,n,«, Sy, ..., S,) be a tetravalent metacirculant graph
with m > 2, S; = {s}, S; = {r} for somei # j € {1,...,u — 1} if m is even
ori # j € {l,...,u} if mis odd and Sy, = O for any k € {1,...,u} \ {i,5}.
Then G is connected if and only if ged(i,j,m) = 1 and ged(p,q,t,u,n) = 1, where
p=s(l+a' +-+ali=V) g=r(l+al + -+ a~V9) with t;,t; the smallest
positive integers satisfying it; = 0 (mod m), jt; = 0 (mod m), respectively, v =
s(I+ai+--+a% V) —r(l+ad +---+ % V) with d; = M dj = M

and t = 5(1 — ad) +r(a? = 1).

Proof. 1t is clear that G = C(m,S) with S = {=i,£j}. We will show that G° =
C(n, 8% with S° = (R), where R = {+p, £q, £t, tu}.

Let P be a walk in G starting at a vertex v9 and terminating at a vertex vg with
y # x. Without loss of generality, we may assume that the walk P has no subwalks
of the type @ * @' and the only vertices of P in V° are its endvertices. Then in
order to show that S° = (R), we will prove that ch(P) € (R) by induction on the
sum z of the number of S;-intervals and the number of S;-intervals in P.

If z =1 then P is either an S;-interval or an Sj-interval. Suppose that P is an
S;-interval. Then P is an S+ walk or S; -walk. So P can be represented in the form

0 21
P = Uz”z+s”z+s+a1s . Uﬁp,or
_ 0,1 —2i —tii
P= VeVsa=isVs—a-is—a-2is " Vp_a—is—a-2ig—ca-tiis’

Therefore ch(P) = p or ch(P) = —p. By similar arguments we can show that
ch(P) = q or ch(P) = —q if P is an S;-interval. Thus ch(P) € (R) if z = 1.

If z = 2 then P has one S;-interval and one S;-interval. Without loss of generality,
we may assume that P = P; x Py, where Pj is an S;r—interval and P is an Sj-interval.
Let vy be the common vertex of P; and P,. Then a must be a common multiple of i
and j. Let d zlcm(z’, J). Then a = kd for a suitable integer k. Rewriting the vertex v

d 2d kd _

kd ; — o0
by vi* and v by v , we can represent P in the form Py = v ...vf ... 020, v}

Wi Wyx--- % Wk, where W; = vzll })d.. vld is an S+ walk for [ =1,2,... k.

Let @ be the S;-walk joining vertices v ¢ and U;l ll)d of V=14 for a suitable
fiii € Z,,1=1,2,... k. These walks exist because dis a multlple of i and j. Then
we construct the walk P from P, as follows: P, = Wy % Qq * Q7' * Wy % Qy % Q3 *
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. *Wk*Qk*Qkfl. So we have

k k
ch(Py) = ch(P, Z (W% QuxQih) Z (W, * QI+ZCth

We have ch(W, x Q;) is equal to
Qg (- Ddbig 4 (- DdH i gy ol
Q0.

= oV s(1+a' + -+ al V) —p(afT 4@t H 4 1 1)]
(

[s(
= « l—l)d[s(l tat 4+ a(di—l)i) —r(l+ad 4+ a(dj—l)j)]
O((l_l)du.

Therefore S5, ch(W; * Q;) = 21, "Dy, On the other hand,

o

k
S eh(Q) = 3 (a4l g gDy
=1

=1
= a% +adr - BV g (DG D,
= a0r+ajr+---+akd ~Uiyg.

r(l4+al +---+ a(kdj—l)j).

So ch(P) = SO, @Dy 4 p(1 4+ o + - - - 4 akdi=17).
Consider the walk P,. Since |S;| = 1 and P has no subwalks of the type Q *Q™!,
we can see that P, is either S;“—interval or Sj_ -interval. Therefore,

h(Py) = o o e ar I SRS C sV oS if P, is an S} -interval,
? —akdi=Dip _ qkd;=2)jp _ ... _ % if P, is an S; -interval.

Then

ch(P) = ch(Py) + ch(Py) = Ziﬂ o™ Mutq, i Pisan Sfinterval,
Sy Dy, if P, is an S -interval.
Therefore ch(P) € (R).

For the remaining possibilities of this case we can use similar proofs to get the
assertion that ch(P) € (R). Thus ch(P) € (R) for any walk P with the sum z of the
number of S;-intervals and the number of Sj-intervals equal to 2.

Now let P be a walk belonging to one of the four following types:

1. P, consists of k S -edges, P, consists of [ Sj—edges, P; consists of k S; -edges
and Py consists of [ S} -edges.

2. P, consists of k S;-edges, P, consists of [ S; -edges, Py consists of k 5; -edges
and Py consists of [ S} -edges.
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3. Py consists of k S5; -edges, P, consists of [ S -edges, P consists of k St-edges
and Py consists of [ S} -edges.

4. P, consists of k& S; -edges, P» consists of S;“—edges, P; consists of k S -edges
and P, consists of [ 5, -edges.

We show that ch(P) €< R >. We do calculations in detail only for types (1) and
(2). The remaining types (3) and (4) can be considered similarly and we omit their
proof here.

(1) It is easy to see that

ch(Py) =s(1+ a4+ Oé(k—l)i),
ch(Py) = r(a® + okt 4. 4 obiH(E0IY
ch(Ps) = s(— Q=D _ o (k=i by,
Ch(P4) ’r‘( a (l 2)j _ _ 1)

Then ch(P) = s(1—a)(1+a’+a? +---+a* V) 4 r(ab —1)(1+a’ +a¥ +---+

a(t=1d) :3(1_aj)(1+a]+a2]+ 4ol 1)1)(1—1—@ +a22+‘”+a(k—l)i)+,r(ai_
Dl +ad+a¥ +- a1+ al+a? + -+ 4+ a® V) = [s(1 — a’) +r(al —
)](1+af+a2ﬂ+ a1+ o+ at otV = (1ol + o 4+
a=V)(1+ o' 4+ a? 4 --- + al*=V). So ch(P) € (R).

(2) We have
ch(P) =s(l+a'+a* +---+ a(l‘_l)z)
Ch(Pz) — T(_ak'L*] _ aki*Zj aszl])’
Ch(Pg) — S(—Oz(k 1)i—1j (k—2)i—1j _ Ozil]),
ch(Py) = r(a™9 + =i a™).

Then ch(P) = s(1—a ) (1+a +a? + - +a* V) 4 r(1 —a*) (a7 +a % +
cta V) =s(l—a ) (1+a 4 +a V) (1+al+a? - otV pair(l -
a')(14+al+a+- 4ot V) (1+a T+ +a ) = [s(1—a ) +aIr(1—a)] (1+
at a4 ot (1 a 4o (ED9) But [s(1—a ) +air(l—al)] =
(—a’j)[% +r(at — 1)] = (—ofj)[s(l —ad) +r(a - 1)] = (—a)t. So
ch(P) € (R).

Assume now that h > 3 and ch(X) €< R > for any walk X having the beginning
and terminating vertices in V° and the number of intervals less than h. Let P be
a walk having the beginning and terminating vertices in V° and the number z of
intervals equal to h. Let P = P, x Py x --- % P,_; * P,. Without loss of generality
we may assume that P, is an S;-interval and P, is an Sj-interval. Let vj be the
common vertex of P and P3;. We can choose an Si-interval ; and an Sj-interval
(2 such that Py x Py % Q1 * Q2 is a walk belonging to one of the special types just
considered above. Then the endvertices of Q1 * Qg are v¢ and v?. Now we insert the
subwalk Q; * Qy * Q5! * Q7' into P at the vertex vf. Let P' = P, % Py x Q1 * Qo
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and P" = Q" * Q' % Py % Py % --- % P,. Then as we have already shown above,
ch(P') €< R >. Further, the endvertices of P” are in V° and the number of
intervals of P” is less than h. So by the induction hypothesis, ch(P") € (R). Since
ch(P) = ch(P') + ch(P", it follows that ch(P) €< R >.

Thus, for any walk P starting at 2 € V? and terminating at vg € VO with z #£ v,
we always have ch(P) € (R). So we conclude that G® = C(n, S°) where S° =< R >
with R = { & p, £q, £t,+u}.

By Lemmas 2.2, 2.3 and 2.4, we can assert that the graph G is connected if and
only if ged(i, j,m) = 1 and ged(p, ¢,t,u,n) = 1, where p = s(1 4+ a’ + - - - + at=1)7),
g=r(l+al + -+ +alti~V7) with ¢;,¢; are the smallest positive integers satisfying
it; = 0 (mod m), jt; = 0 (mod m), respectively, u = s(1 +a'+ -+ a4~ —p(1+

l L, g l iy J , )
o+ 4l with d; = cm<z,])7 dj = cm(-z,]) and t = s(1—ad)+r(a'—1). O
L4 J

Now we consider tetravalent metacirculant graphs in Case 10 of Lemma 2.5. The
following lemma provides a necessary and sufficient condition for these graphs to be
connected.

Lemma 3.4. Let G = MC(m,n,«, Sy, ..., S,) be a tetravalent metacirculant graph
with m > 2, S; = {s,r} for somei € {1,...,pp— 1} if m is even ori € {1,...,u} if
m is odd and S; = 0 for all j € {0,1,...,u}\{i}. Then G is connected if and only if
ged(i,m) = 1 and ged(g,u,n) =1, wherew = s—1 and g = s(1+a*+...+al™ 1)),

Proof. Tt is clear that G = C(m, S) with S = {£i}. Let d be the smallest positive
integer such that di =0 (mod m), p = s(1 +a' +--- +al® V) and u = s —r. We
will prove that G° = C(n, S°), where S° = (R) with R = {£p, £u}.

Let P be a walk starting at a vertex v and terminating at a vertex vy of the
block V° where & # y. We show that ch(P) € (R). Without loss of generality, we
may assume that P does not contain subwalks of the type @ * Q‘ , and the only
vertices of P in V? are its endvertices. We also set ¢ = 7(1 +a’ + -+ + al47D?). We
will prove that ch(P) € (R) by induction on z, where z is the sum of the number of
s-intervals and the number of r-intervals in P.

If z = 1, then P must be either an s-interval or an r-interval. It is clear that
ch(P) € {xp} or ch(P) € {£q}. In the latter case, we can write ¢ = [s — (s —7)](1 +
al e+ alVN = p—y(l4 o + -+ al V). So ch(P) € (R) in both cases.

If z = 2, then P must be a walk belonglng to one of the following types:

1) P = A; x Ay, where A; is an st-interval and A, is an 7~ -interval ,

2) P = By % By, where By is an s™-interval and Bs is an r*-interval ,

3) P = () x Cy, where (] is an s -interval and C, is an r*-interval ,

4) P = Dy % Dy, where D, is an s™-interval and Ds is an r~-interval .
and four other types, which are similar to the above ones and the first and the second
intervals of which are r-intervals and s-intervals, respectively.

We consider these cases in turn.

1) P = A, x Ay, where A, is an s*-interval and A, is an 7~ -interval .
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Suppose that A; contains k sT-edges. Since s, € S;, Ay must contain k r—-edges.
Therefore A; and A, can be represented as follows:

— 0,1 21 ki
A = VaeVstsVztstais * * * Vggstaisttalk-Dig
ki (k—1)i
4, = Vpgsgotat-1igVsp 4oty qh=1)ig_gq(k=1)ip  **
UO .
v YapstetaltkDig—qlk=1ip .. _p-

Then

ch(P) ch(Ay) + ch(As) _ _ _
s(1+a +---+ a(k—l)l) —r(l+a’ 4+ a(k—l)l)

= (s—r) 1+ +---+a* V) =yl +a' +--- +ak~V7),

So ch(P) € (R).

2) P = By % B, where By is an s™-interval and B, is an r*-interval.

Denote the common vertex of B; and By by vf. We construct the walk P’ from
P by inserting the subwalk Q *x Q7! into P at the vertex v¢, where Q is an 7 -
interval joining vf to a vertex v} of V0. Tt is clear that such a walk @ exists. Then
P'= B xQ*Q 1 % By. So ch(P) = ch(P') = ch(By* Q)+ ch(Q ™1 % By). Since By *Q
is a walk connecting v to v$ and containing one s*-interval and one r~-interval and
Q™" * By is an r*-interval from v} to vJ, by the induction basis and Case (1), both
ch(B; * Q) and ch(Q ™' x By) are in (R). Therefore ch(P) € (R).

3) P = () x Cy, where (] is an s -interval and C, is an r*-interval.

Let k be the number of s~-edges in Cy, then Cy must contain k r*-edges because
s and r are in the same symbol S;. Therefore C; and Cs can be represented as
follows:

_ 0,,—1 —2i —ki
G = VeVs—a-isVs—a—is—a—2is "+ " Vp_q-is—aq-2ig—.—q-kig
_ —ki —ki+i 0
Cy = U a—is—a—2ig——q—kigUp_q—is—q—2ig—n—q—kigpa—kip ' =+ Vy>
where y =z —a s —a %s —--- —a Fs+ a4+ o ¢ Vip 4 ... 4 a7, Then

ch(P) = ch(Cy) + ch(Cy)

—als—a s — o —a st a M o BV a7
ai(r—s)+a ¥ r—s)+--+atr—s)

= (r— 5)(a—i+a—2i+”_+a—ki)

_ u(_a—z‘ _ a—2i . Oz_ki).

Thus ch(P) € (R).

4) P = Dy % Dy, where Dy is an s~ -interval and D, is an r~-interval.

Denote the common vertex of D; and Dy by vf. We construct the walk P’ from
P by inserting the subwalk Q * Q7! into P at the vertex v¢, where Q is an 7*-
interval joining vf to a vertex v} of V0. Tt is clear that such a walk @ exists. Then
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P'=D;xQ=*Q % Dy. So ch(P) = ch(P') = ch(Dy * Q)+ ch(Q ™' % Dy). It is clear
that Dy * Q is a walk from v) to v} containing one s™-interval and one r*-interval
and Q7' # Dj is an 7~ -interval from v} to vj. By the induction basis and by Case
(3), both ch(D; * Q) and ch(Q~! x D,) are in (R). Therefore ch(P) € (R).

For the four remaining cases, where P is a walk containing two interval with
the first one an r-interval and the second one an s-interval , we consider the inverse
walk P7! of P. Then ch(P™') € (R) by the considered above cases. So ch(P) =
—ch(P7') € (R). Thus, for any walk P in G, which has two intervals and the only
vertices of which in V? are its endvertices, we have proved that ch(P) € (R).

Assume now that the assertion is true for any walk in G, the only vertices of
which in VO are its endvertices and the sum of the number of s-intervals and the
number of r-intervals in which is less than or equal to z. Let P be a walk, the only
vertices of which in V? are its endvertices and the sum of the number of s-intervals
and the number of r-intervals in which is z + 1. Then we represent the walk P in
the form P = S; % S, where Sy is a walk containing the first z intervals of P and
Sy is the last interval of P. Without loss of generality, we may assume that S, is an
r-interval. Denote the common vertex of S; and Sy by vy. We construct the walk
P’ from P by inserting the subwalk @ * Q=1 into P at the common vertex v, where
@ in an s-interval from vy to v} of V°. Tt is clear that such a walk @ exists. Then
P'=5;%Qx Q7! % S,. Therefore ch(P) = ch(P') = ch(S1 * Q) + ch(Q™! % S,).

We can see that S;*Q is a walk, the only vertices of which in V' are its endvertices
and the sum of the number of s-intervals and the number of r-intervals is z. By the
induction hypothesis, ch(S; * Q) € (R). Further, @' % S, is a walk, which starts
and terminates at vertices of V' and has only two intervals. So ch(Q * Sy) is also
in (R). It follows that ch(P) € (R).

Thus, for any walk P starting and terminating at vertices of the same block V°,
we have proved that ch(P) € (R). Therefore, G° = C(n, S°), where S° = (R) with
R = {%p, +u}.

By Lemma 2.2, G is connected if and only if both G and G° are connected. The
graph G = C(m,S) has S = {%i}. So by Lemma 2.3, G is connected if and only if
ged(i,m) = 1. Therefore, the smallest positive integer d for which di = 0 (mod m) is
equal to m. It follows that p = s(1+a’+---+a(™ Y% = g. The graph G° = C(n, S°)
has S° = (£p, +u) = (g, £u). By Lemmas 2.3 and 2.4 G° is connected if and only
if ged(g,u,n) = 1.

So the graph G is connected if and only if ged(i,m) = 1 and ged(g,u,n) = 1,
where g = s(1+a’ + -+ a™ V) and u = s — r. The Lemma 3.4 is proved
completely. a

From Lemmas 3.1, 3.2, 3.3 and 3.4 we immediately obtain the following theorem
in which Condition 1 is for graphs in Case 7, Conditions 2 and 3 are for graphs in
Case 8, Condition 4 is for graphs in Case 9 and Condition 5 is for graphs in Case 10
of Lemma 2.5.

Theorem 3.5. Let G = MC(m,n,a, S, ..., S,) be a tetravalent metacirculant graph
with Sy = 0. Then G is connected if and only if one of the following conditions holds:
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1. m=2, 51 ={s1, 82, 83,84} and ged(s; — 2,82 — S3,83 — S4,n) = 1;

2.m>2iseven, Sy = -+ =851 =0, 5 = {k} with i odd and ged(i,m) = 1,
Sipr =+ =5,1= 0, S, = {s,r} and gcd(p,u,n) = 1, where u = s — r and
p:k(1+a1+...+a(#*1)l) —s.

3. m>2is even, u=m/2 is odd, Sy =--+=S;_1 =0, S; = {k} withi even and
ged(i,m) = 2, Sipp =+ =S,21 =0, S, = {s,r} and ged(§,u,n) =1, where

u=s—rand & = [s(1+a’ +a? +- -+ V") —f(1+a” +a* +- - -+ar=D)]
with i = 24", t > 1 and i’ odd.

4. m>2, 8 ={s}, S;={r} for somei,je{l,...,u—1}, 9 # j if m is even
ori,j€{Ll,...,u}, i #j if mis odd such that ged(i,j,m) =1, Sy =0 for any
Ee{l,...,u}\{i,j} and gcd(p, q,t,u,n) = 1, where p = s(14+ai+- - -+ali=1?),
q=r(l+ai4-- .+a(tj*1)1')’ u=s(l+a’+-- -—}—Oz(dl*l)i)—r(l—i—oﬂ—}—- . .+a(dj*1)1)’
t = s(1—a?)+r(a’=1) witht;, t; the smallest positive integers satisfying it; = 0
(mod m), jt; =0 (mod m), respectively, and d; = Zcmgz,j)’ dj = Zcméz,j) )

5. m>2,8 ={s,r} for someie€{l,...,u—1} if m is even ori € {1,...,u}
if m is odd such that ged(i,m) =1, S; =0 for all j € {0,1,...,u}\ {1} and
ged(g,u,n) =1, wherew =s — 7 and g = s(1 + o' + ... + o™~ D7),

Based on the results obtained, we get the following algorithm for determining
whether a given metacirculant graph is a connected tetravalent metacirculant graph.

Algorithm 3.6. Let G = MC(m,n,a,Sy,...,S,) be a metacirculant graph where
m,n,a, Sy, ..., S, are input data to the algorithm.

1. Check if G is tetravalent by using Lemma 2.5. If ‘Yes’ then go to Step 2 else
answer: G is not tetravalent’.

2. If Sy # 0 then we check the connectedness of G by Theorem 2.6 else we check
the connectedness of G by Theorem 3.5.
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