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Abstract

A new description of the unique minimal 23-blocking set of P?(Fy) is
given.

1 Introduction

A blocking set in a projective plane is a set of points intersecting every line, but
containing no line entirely. A blocking set is said to be minimal if it is minimal with
respect to set—theoretic inclusion. Generally, one is interested in the existence of
blocking sets in finite projective planes and perhaps proving their uniqueness.

In a recent paper Bardt and Innamorati [1] studied the largest minimal blocking
sets of the projective plane P?(Fg). They proved that the Bruen-Thas bound for the
size of a minimal blocking set, that is ¢,/q + 1, is sharp for ¢ = 8. Further, they
exhibited an interesting example and proved its uniqueness from a combinatorial
point of view.

In this paper, we give a construction of a minimal blocking set B of P?(Fy) of
size 23 based on the geometry of the Klein quartic. By construction, the linear
automorphism group of B has order 7 (in the paper [1], the authors claim that the
automorphism group of their blocking set has order 21, but we think this is supposed
to be the automorphism group of B as a subgroup of the group PTI'L(3,Fs).) By the
combinatorial uniqueness of minimal 23-blocking sets of P?(Fg) proved in [1], our
blocking set is isomorphic to the Barat-Innamorati blocking set.

2 Singer cycles and the Klein quartic

Let Fg be a cubic extension of F,. Let w be a primitive element of Fy and m(z) =
2® + ay2® + ay + ao its minimal polynomial over [F,. The companion matrix C(m)
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of m(z) given by

0 1 0
0 0 1
Qg ap as

induces a linear collineation ¢ of P?(FF,) of order ¢* + ¢ +1 = 7 called a Singer cycle
of PGL(3,F,).

All Singer cycles of PGL(3,F,) form a single conjugacy class and the matrix C'(m)
is conjugate in GL(3,Fy) to the diagonal matrix

w 0 0
D=0 w* 0
0 0 w
by the matrix
1 1 1
E=| w w? !
w? Wt w

Let o denote the linear collineation of P?(Fg) induced by D. It fixes the points
Ey=(1,0,0), E; =(0,1,0), E; = (0,0,1).
The linear collineation T' of P?(FFy) given by

(Xo, X1, X5) — (Xy, Xo, X1)

has order three and acts on the points Ey, E1, By as the cycle (EygE1E,). The group
(T) normalizes S = (o) and N = (T,0) is the normalizer of S in a PGL(3,F,)
embedded in PGL(3, Fy).

The orbit of the point U = (1,1, 1) under the action of S is given by
I, = {oc'(U) : i =0,...,6} = {(1,w,w*)}.

II, may be viewed as a subgeometry of P?(Fg) which turns out to be a projective
plane of order 2. More precisely, I, is a projective subplane of P*(Fg) (lying in a
non-canonical position) isomorphic to P%([F, ).

Let X denote a projective, non—singular, algebraic plane curve of degree d over
GF(2) which is invariant under the Singer cycle ¢ of PGL(IF).

The main result in [2] states that either deg(X') = 4 or deg(X’) > 7. In the former
case X is projectively equivalent to the famous Klein curve X with equation

XY+ X3Z4Y2Z3=0.

The curve X, has genus three and Aut(AXs) is the linear group PSL(2,F;) ~
PSL(3,F,) which has 168 elements.

From [4], the Klein quartic over Fg has 24 rational points (Weierstrass points of
weight 1) on which PSL(3, F, ) acts transitively. In P?(FFg)\{X,} the group PSL(3,F;)
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has two orbits, namely, the Baer subplane II, and one orbit of size 42 covering the
remaining points of P%(Fy).

A line of P%(Fg) meets I, in either 0, or 1 or 3 points. The 73 lines of P?(Fs) are
partitioned as follows. There are 7 lines meeting I, in 3 points (yielding all lines of
I1,), 42 lines meet I, in exactly one point and 24 lines are external to II,. Simple
calculations show that the 7 lines are external to X5, the 42 lines are 4—secants of X5
and the remaining 24 lines are 2—secants of X,. In particular, it turns out that A% is
a 24-arc of type (0,2,4).

The line-sets described above are all complete orbits under PSL(3,TF,).

In particular, each 2—-secant of X5 is obtained by joining pairs of fixed points of
the 7-Sylow subgroups of PSL(3,F,); each 4-secant of X is stabilized by a subgroup
CZ X CZ-

The group (o) is conjugate in PSL(3,F,;) to a 7-Sylow of PSL(3,F,) and its
normalizer N has order 21. The group N has five orbits on the pointset of P?(IFg),
namely, the sets {Ey, E1, Ea} and Xs \ {Eo, E1, E2}, one orbit of size 21 consisting
of the non—vertex points of the triangle EyE;E, and one orbit, say O, of size 21,
covering the remaining points of P?(Fy).

Our purpose is to prove that the set B = O U {E;} U {E;}, for any two distinct
indices 4,7 € {0,1,2}, is a minimal blocking set of size 23.

3 The proof

First of all note that the lines E;E}, 1,7 = 0,1,2, are 2-secants of X}.

If {3 is a 3-secant of II, (arising from a line of II,) then it is disjoint from As.
Since {3 meets each line E;E;, i,j = 0,1, 2 in one point, it follows that |B N {¢3| = 3.

If /1 is a 1-secant of Iy, then ¢; is a 4—secant of X5. It may happen that at most
one point E;, ¢ = 0,1,2, lies on ¢;. If E; lies on ¢; and E; ¢ B then ¢; meets E;Ey,
J,k # i and we have |[BN ¢y = 3. If E; lies on ¢, and F; € B, then |BN{;| =4. If
E; does not lie on ¢; then ¢; meets each line E,E; and so |[BN{;| = 1.

A simple calculation shows that any line of the pencil with centre E;, apart from
E;E; and E;E}, meets I, in one point. This means that there exist exactly 21 lines
of P?(IFg) that are 1-secant to II, and that do contain no point E;. These lines meet
O in only one point.

If ¢y is an external line to II,, then £y is a 2-secant of X,. If o is not the line E; £,
then (o meets each line E;E;, i < j, 4,7 = 0,1,2 and so |BN | = 4. If {y = E;E;,
then |B N {y| = 2.

Of course, the lines E,Ej; and E;E; meet B in exactly one point (the points E;
and Ej, respectively).

We have proved that B is a blocking set of P?(Fs) of size 23. Since O is a full
orbit of N, for each point of O there exists exactly one 1-secant. Then B admits
exactly 23 1-secants and thus it is minimal. Of course, B contains the union of three
Fano subplanes.
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The proof is now complete.

Remark 1 An alternative description of the minimal 23-blocking set given above is
the following. Consider the three Klein quartics Cy, Ca,C3 of P?(Fg) with equations:

wXY? +WiX3Z iy 23 =0,

VXY 4wt X3Z +wYZ3 =0,

WIXY? 4+ wX3Z + WY 23 =0,
respectively.

It is easy to show that these three curves share the points Ey, F; and E, and
the subplane IT,. Now, it is possible to select a subplane, say 7, of order two on one
of the three curves, say Ci, then apply the Frobenius automorphism of order three
of Fg, and obtain three disjoint subplanes lying on C;,Cs,C3, respectively. Adding

to the union of these three subplanes any two of the points Ey, E1, Es, the minimal
23-blocking set is obtained.

Remark 2 In [3] we proved that the automorphism group of the Pellikaan’s curve
XX+ Xo X3+ X§1X1 = ( defined over the field Fy; is the normalizer N of a Singer
cycle S of P%(FF3 ) of order 13. Looking at the orbits of N on the pointset of P%(Fy7 ) we
found a minimal blocking set B of size 80 with arrow (80;,2875,1953,914,655, 39s).
The blocking set B is obtained by gluing two orbits of N of size 39 and any two
of the points Ey = (1,0,0), E; = (0,1,0), By = (0,0,1). Again, B contains the
union of six subplanes of order three. Its automorphism group is S. Notice that
we also found other two minimal 80-blocking sets B’ and B" of P?(Fy;) with arrow
(801, 3262, 1563, 524, 655, 39, 397) and (801, 2875, 1823, 1304, 265, 136, 39s) having the
same automorphism group of B.

With the same technique, in P?(Fys) we found a minimal blocking set of size
254 with arrow (2544, 6315,0973, 10084, 5045, 5046, 63s, 1479, 6319) admitting a cyclic
group of order 21.
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