On incomparable and uncomplemented families of sets

Yuejian Peng Cheng Zhao

Department of Mathematics and Computer Sciences Indiana State University Terre Haute, IN 47809 U.S.A.

Abstract

In 1977, A. J. W. Hilton proposed the following conjecture (see D.J. Kleitman, Math. Review 53#146, 1977): if $\mathcal{A}_1, \mathcal{A}_2, \cdots, \mathcal{A}_k$ are collections of distinct subsets from an n-element set such these collections are incomparable and uncomplemented, then $\sum_{i=1}^{k} |\mathcal{A}_i| \leq 2^{n-1}$. In this paper we try to verify this conjecture for some cases. In particular, we provide a new bound:

$$\sum_{i=1}^{k} |\mathcal{A}_i| < (4 - 2\sqrt{2})2^{n-1},$$

which improves several results in [7]. Also, under some fairly general conditions, we show that

$$\sum_{i=1}^{k} |\mathcal{A}_i| \le (1 + \frac{1}{k}) 2^{n-1}.$$

1 Introduction and Main Results

Let A_1, \dots, A_k be k collections of distinct subsets of set $[n] = \{1, 2, \dots, n\}$. These k collections of distinct subsets are called incomparable if, when $A_i \in \mathcal{A}_i$ and $A_j \in \mathcal{A}_j$, $(i \neq j)$, then $A_i \not\subset A_j$. A collection of subsets \mathcal{C} is called uncomplemented if, when $A \in \mathcal{C}$, then $\bar{A} \notin \mathcal{C}$, where $\bar{A} = [n] \setminus A$.

It is well known that if C is a collection of distinct subsets of set [n] which are uncomplemented, then $|C| \leq 2^{n-1}$. Hilton extended this result to two incomparable, uncomplemented collections.

Theorem 1 [3] If A_1 and A_2 are collections of distinct subsets of set [n] such that these collections are incomparable and uncomplemented, then

$$|\mathcal{A}_1| + |\mathcal{A}_2| \le 2^{n-1}.$$

D. J. Kleitman [6] also proved the above result using a correlation inequality from [5]. In [6], he also pointed the following conjecture proposed by Hilton.

Conjecture 1 [6] If A_1, A_2, \ldots, A_k are collections of distinct subsets of set [n] such that these collections are incomparable and uncomplemented, then

$$\sum_{i=1}^k |\mathcal{A}_i| \le 2^{n-1}.$$

In this paper, we will prove the following results in Section 2.

Theorem 2 Let A_1, A_2, \ldots, A_k be incomparable and uncomplemented collections of distinct subsets of set [n]. Then

$$\sum_{i=1}^{k} |\mathcal{A}_i| < (4 - 2\sqrt{2})2^{n-1}.$$

Remark. We note that $4-2\sqrt{2}\approx 1.17$. Also note that this bound improves several results in [7].

Theorem 3 Conjecture 1 holds when $n \leq 6$.

For incomparable collections of subsets of set [n], using probabilistic approach, we prove the following bound in Section 3.

Theorem 4 Let A_1, A_2, \ldots, A_k be incomparable collections of distinct subsets of set [n]. For every $c \in (0, \frac{3}{16\ln 2}]$, if $\max_{1 \le i \le k} \{|A_i|\} \le c2^n$, then

$$\sum_{i=1}^{k} |\mathcal{A}_i| \le \min\{(1+c^2k)2^{n-1}, (\frac{2}{1+\sqrt{1-(\frac{1}{2}+\frac{8\ln 2}{3}c)^2}})2^{n-1}\}.$$

Remark. If we take $c = \frac{1}{k}$ in Theorem 4, then

$$\sum_{i=1}^{k} |\mathcal{A}_i| \le (1 + \frac{1}{k}) 2^{n-1}.$$

If we take $c = \frac{1}{16 \ln 2}$ in Theorem 4, then

$$\sum_{i=1}^{k} |\mathcal{A}_i| \le (\frac{9 - 3\sqrt{5}}{2}) 2^{n-1},$$

We note that $(\frac{9-3\sqrt{5}}{2})2^{n-1} \approx 1.14 \times 2^{n-1}$.

2 Proof of Theorem 2 and Theorem 3

Theorem 2 follows directly from the following lemmas.

Lemma 5 Let A_1, A_2, \ldots, A_k be incomparable collections of distinct subsets of set [n] with $|\mathcal{A}_1| \ge |\mathcal{A}_2| \ge \cdots \ge |\mathcal{A}_k|$. If $|\mathcal{A}_1| < \frac{2^{n-1} + 1 + 2^{\frac{n+1}{2}}}{2}$ and $|\mathcal{A}_3| < 2^{\frac{n+1}{2}}$, then

$$\sum_{i=1}^k |\mathcal{A}_i| \le 2^{n-1}.$$

Lemma 6 Let A_1, A_2, \ldots, A_k be incomparable collections of distinct subsets of set [n] with $|\mathcal{A}_1| \geq |\mathcal{A}_2| \geq \cdots \geq |\mathcal{A}_k|$.

(i) If
$$|\mathcal{A}_1| < \frac{2^{n-1} + 1 + 2^{\frac{n-1}{2}}}{2}$$
 and $|\mathcal{A}_3| \ge 2^{\frac{n+1}{2}}$, then $\sum_{i=1}^k |\mathcal{A}_i| < (4 - 2\sqrt{2})2^{n-1}$.

(i) If
$$|\mathcal{A}_1| \leq |\mathcal{A}_2| \geq 2 \geq |\mathcal{A}_k|$$
.
(ii) If $|\mathcal{A}_1| < \frac{2^{n-1} + 1 + 2^{\frac{n+1}{2}}}{2}$ and $|\mathcal{A}_3| \geq 2^{\frac{n+1}{2}}$, then $\sum_{i=1}^k |\mathcal{A}_i| < (4 - 2\sqrt{2})2^{n-1}$.
(ii) If $\frac{2^{n-1} + 1 + 2^{\frac{n+1}{2}}}{2} \leq |\mathcal{A}_1| \leq 2^{n-1} - 2^{\lfloor \frac{n}{2} \rfloor} - 2^{\lceil \frac{n}{2} \rceil} + 2$ (notice that this situation happens only when $n \geq 7$), then $\sum_{i=1}^k |\mathcal{A}_i| < (4 - 2\sqrt{2})2^{n-1}$.

Lemma 7 [7] Let A_1, A_2, \ldots, A_k be incomparable and uncomplemented collections of distinct subsets of set [n] with $|\mathcal{A}_1| \geq |\mathcal{A}_2| \geq \cdots \geq |\mathcal{A}_k|$. If $|\mathcal{A}_1| > 2^{n-1} - 2^{\lfloor \frac{n}{2} \rfloor} 2^{\lceil \frac{n}{2} \rceil} + 2$, then $\sum_{i=1}^{k} |\mathcal{A}_i| \leq 2^{n-1}$.

Proof of Lemmas 5 and 6 will be given in Sections 2.1 and 2.2 respectively. Lemma 7 was proved in [7]. In Section 2.3, we prove Theorem 3.

The following results related to incomparable collections of subsets will be used in our proof. The first result is given by Seymour in [8].

Lemma 8 [8] If A, B are incomparable collections of distinct subsets of [n], then $|\mathcal{A}|^{1/2} + |\mathcal{B}|^{1/2} < 2^{n/2}$

In [7], the above lemma was generalized as follows.

Proposition 1 [7] Let A_1, A_2, \ldots, A_k be incomparable collections of distinct subsets of set [n]. Let I and J be any partition of set [k] where $[k] = \{1, \ldots, k\}$. Then

$$\sum_{i=1}^{k} |\mathcal{A}_i| + 2[(\sum_{j \in J} |\mathcal{A}_j|)(\sum_{i \in I} |\mathcal{A}_i|)]^{\frac{1}{2}} \le 2^n.$$

Proof. It follows from Lemma 8 and the fact that $\bigcup_{i \in I} A_i$ and $\bigcup_{j \in J} A_j$ are incomparable.

The following lemma is an implication of Proposition 1 and will be applied in proving Lemmas 5, 6 and Theorem 3.

Lemma 9 Let A_1, A_2, \ldots, A_k be incomparable collections of distinct subsets of set [n]. If there exists $I \subseteq [k]$ such that

$$\frac{2^{n-1}+1-2^{\frac{n+1}{2}}}{2} < \sum_{i \in I} |\mathcal{A}_i| < \frac{2^{n-1}+1+2^{\frac{n+1}{2}}}{2},$$

then

$$\sum_{i=1}^k |\mathcal{A}_i| \le 2^{n-1}.$$

Proof. Suppose that there exists $I \subset [k]$ such that

$$\frac{2^{n-1}+1-2^{\frac{n+1}{2}}}{2} < \sum_{i \in I} |\mathcal{A}_i| < \frac{2^{n-1}+1+2^{\frac{n+1}{2}}}{2}.$$

If $\sum_{i=1}^{k} |A_i| \ge 2^{n-1} + 1$, then

$$\sum_{i=1}^{k} |\mathcal{A}_i| + 2[(\sum_{i \in I} |\mathcal{A}_i|)(\sum_{j \in [k] \setminus I} |\mathcal{A}_j|)]^{\frac{1}{2}}$$

$$\geq 2^{n-1} + 1 + 2[(\sum_{i \in I} |\mathcal{A}_i|)(2^{n-1} + 1 - \sum_{i \in I} |\mathcal{A}_i|)]^{\frac{1}{2}}.$$

Since $f(x) = x(2^{n-1}+1-x)$ increases as $x \le \frac{2^{n-1}+1}{2}$ and decreases as $x \ge \frac{2^{n-1}+1}{2}$, we have

$$\sum_{i=1}^{k} |\mathcal{A}_i| + 2[(\sum_{i \in I} |\mathcal{A}_i|)(\sum_{i \in [k] \setminus I} |\mathcal{A}_i|)]^{\frac{1}{2}}$$

$$> 2^{n-1} + 1 + 2[\frac{2^{n-1} + 1 - 2^{\frac{n+1}{2}}}{2} \cdot \frac{2^{n-1} + 1 + 2^{\frac{n+1}{2}}}{2}]^{\frac{1}{2}} = 2^n$$

which contradicts to Proposition 1.

2.1 Proof of Lemma 5

Proof. We divide our proof into two cases:

Case 1. Suppose that $|\mathcal{A}_2| < 2^{\frac{n+1}{2}}$. If

$$\sum_{i=1}^{k} |\mathcal{A}_i| \le \frac{2^{n-1} + 1 - 2^{\frac{n+1}{2}}}{2},$$

then Lemma 5 is proved. Also note that we can assume that $|\mathcal{A}_1| \leq \frac{2^{n-1}+1-2^{\frac{n+1}{2}}}{2}$ since otherwise $\sum_{i=1}^{k} |\mathcal{A}_i| \leq 2^{n-1}$ holds by combining Lemma 9 and the assumption for $|\mathcal{A}_1|$. So we can assume that there exists an integer $1 \leq l < k$ such that

$$\sum_{i=1}^{l} |\mathcal{A}_i| \le \frac{2^{n-1} + 1 - 2^{\frac{n+1}{2}}}{2} \tag{1}$$

and

$$\sum_{i=1}^{l+1} |\mathcal{A}_i| > \frac{2^{n-1} + 1 - 2^{\frac{n+1}{2}}}{2}.$$
 (2)

Due to $|\mathcal{A}_{l+1}| \leq |\mathcal{A}_2| < 2^{\frac{n+1}{2}}$ and (1), we have

$$\sum_{i=1}^{l+1} |\mathcal{A}_i| < \frac{2^{n-1} + 1 + 2^{\frac{n+1}{2}}}{2}.$$
 (3)

Combining (2), (3) and Lemma 9, we conclude that $\sum_{i=1}^{k} |\mathcal{A}_i| \leq 2^{n-1}$.

Case 2. Suppose that
$$|\mathcal{A}_2| \geq 2^{\frac{n+1}{2}}$$
 and $|\mathcal{A}_3| < 2^{\frac{n+1}{2}}$.
If $\frac{2^{n-1} + 1 - 2^{\frac{n+1}{2}}}{2} < |\mathcal{A}_i| < \frac{2^{n-1} + 1 + 2^{\frac{n+1}{2}}}{2}$ where $i = 1$ or 2, then by Lemma 9, $\sum_{i=1}^k |\mathcal{A}_i| \leq 2^{n-1}$ holds.

Now we assume that $2^{\frac{n+1}{2}} \le |\mathcal{A}_i| \le \frac{2^{n-1} + 1 - 2^{\frac{n+1}{2}}}{2}$ where i = 1, 2 and $|\mathcal{A}_3| < 1$ $2^{\frac{n+1}{2}}$

. If $\sum_{i=2}^k |\mathcal{A}_i| \leq \frac{2^{n-1}+1-2^{\frac{n+1}{2}}}{2}$, then it is easy to see that

$$\sum_{i=1}^k |\mathcal{A}_i| \le 2^{n-1},$$

and Lemma 5 is proved. Otherwise, we could find l, where $2 \le l < k$, such that

$$\sum_{i=2}^{l} |\mathcal{A}_i| \le \frac{2^{n-1} + 1 - 2^{\frac{n+1}{2}}}{2}$$

and

$$\sum_{i=2}^{l+1} |\mathcal{A}_i| > \frac{2^{n-1} + 1 - 2^{\frac{n+1}{2}}}{2}.$$

Since $|A_{l+1}| \le |A_3| < 2^{\frac{n+1}{2}}$.

$$\sum_{i=2}^{l+1} |\mathcal{A}_i| < \frac{2^{n-1} + 1 + 2^{\frac{n+1}{2}}}{2}.$$

Then by Lemma 9, $\sum_{i=1}^{k} |\mathcal{A}_i| \leq 2^{n-1}$ holds.

Proof of Lemma 6 2.2

Proof. (i) By Lemma 9, we can assume that $2^{\frac{n+1}{2}} \le |\mathcal{A}_1| \le \frac{2^{n-1}+1-2^{\frac{n+1}{2}}}{2}$. Similar to the proof of Lemma 5, we can also assume that there exists an integer l < k such that

$$\sum_{i=1}^{l} |\mathcal{A}_i| \le \frac{2^{n-1} + 1 - 2^{\frac{n+1}{2}}}{2} \tag{4}$$

and

$$\sum_{i=1}^{l+1} |\mathcal{A}_i| > \frac{2^{n-1} + 1 - 2^{\frac{n+1}{2}}}{2}.$$
 (5)

Since $|\mathcal{A}_{l+1}| \le |\mathcal{A}_1| \le \frac{2^{n-1} + 1 - 2^{\frac{n+1}{2}}}{2}$, by (4), we obtain

$$\sum_{i=1}^{l+1} |\mathcal{A}_i| \le 2^{n-1} + 1 - 2^{\frac{n+1}{2}}.$$
 (6)

Let $s = \sum_{i=1}^{k} |\mathcal{A}_i|$ and $a = \sum_{i=1}^{l+1} |\mathcal{A}_i|$. Inequalities (5) and (6) imply that

$$\frac{2^{n-1} + 1 - 2^{\frac{n+1}{2}}}{2} < a \le 2^{n-1} + 1 - 2^{\frac{n+1}{2}}. (7)$$

Now we are going to apply Proposition 1 to estimate s. Proposition 1 implies that

$$s + 2[a(s-a)]^{\frac{1}{2}} \le 2^n$$
.

This is equivalent to

$$s^{2} - (2^{n+1} + 4a)s + 2^{2n} + 4a^{2} > 0.$$

Solving this quadratic equation for s, we have

$$s \le \frac{2^{n+1} + 4a - \sqrt{2^{n+4}a}}{2} = f(a) \tag{8}$$

or

$$s > \frac{2^{n+1} + 4a + \sqrt{2^{n+4}a}}{2}. (9)$$

Due to the fact that A_1, A_2, \ldots, A_k are incomparable, $s \leq 2^n$, hence (9) will not happen, consequently (8) always holds.

Since f(a) increases as $a \ge 2^{n-2}$ and decreases as $a \le 2^{n-2}$, by the range of a from (7), we have

$$s \le f(a) \le \max\{f(\frac{2^{n-1} + 1 - 2^{\frac{n+1}{2}}}{2}), f(2^{n-1} + 1 - 2^{\frac{n+1}{2}})\}$$

$$< \max\{f(2^{n-2} - 2^{\frac{n-1}{2}}), f(2^{n-1})\}.$$

Now we estimate $f(2^{n-2}-2^{\frac{n-1}{2}})$ and $f(2^{n-1})$. By direct calculation,

$$f(2^{n-1}) = (4 - 2\sqrt{2})2^{n-1},$$

and

$$f(2^{n-2} - 2^{\frac{n-1}{2}}) = (3 - 4 \cdot 2^{\frac{-n-1}{2}} - \sqrt{4 - 2^{\frac{-n+7}{2}}}) \cdot 2^{n-1}.$$
 (10)

When $n \ge 9$, $3 - 4 \cdot 2^{\frac{-n-1}{2}} - \sqrt{4 - 2^{\frac{-n+7}{2}}} < 3 - \sqrt{7/2} < 4 - 2\sqrt{2}$. When n = 7, 8, by direct calculation, $3 - 4 \cdot 2^{\frac{-n-1}{2}} - \sqrt{4 - 2^{\frac{-n+7}{2}}} < 4 - 2\sqrt{2}$.

(ii). The proof is similar to the proof of part (i). Let $s = \sum_{i=1}^{k} |\mathcal{A}_i|$ and $a = |\mathcal{A}_1|$. In this case, the range of a (i.e. inequality (7)) becomes

$$\frac{2^{n-1} + 1 + 2^{\frac{n+1}{2}}}{2} \le a \le 2^{n-1} - 2^{\lfloor \frac{n}{2} \rfloor} - 2^{\lceil \frac{n}{2} \rceil} + 2.$$

As in part (i), we have

$$s \le f(a) = \frac{2^{n+1} + 4a - \sqrt{2^{n+4}a}}{2}.$$

Since f(a) increases as $a \ge 2^{n-2}$,

$$\begin{array}{lll} s \leq f(a) & \leq & f(2^{n-1} - 2^{\left\lfloor \frac{n}{2} \right\rfloor} - 2^{\left\lceil \frac{n}{2} \right\rceil} + 2) \\ & < & f(2^{n-1}) = (4 - 2\sqrt{2})2^{n-1}. \end{array} \blacksquare$$

2.3 Proof of Theorem 3

We apply Lemmas 5, 7 and 9 to prove Theorem 3.

Proof. Assume that $\sum_{i=1}^{k} |\mathcal{A}_i| \geq 2^{n-1} + 1$ and $|\mathcal{A}_1| \geq |\mathcal{A}_2| \geq \cdots \geq |\mathcal{A}_k|$. By Lemma 7,

$$|\mathcal{A}_1| \le 2^{n-1} - 2^{\lfloor \frac{n}{2} \rfloor} - 2^{\lceil \frac{n}{2} \rceil} + 2. \tag{11}$$

When $n \leq 5$,

$$2^{n-1} - 2^{\lfloor \frac{n}{2} \rfloor} - 2^{\lceil \frac{n}{2} \rceil} + 2 < 2^{\frac{n+1}{2}}.$$

Therefore by Lemma 5 Case 1, $\sum_{i=1}^{k} |\mathcal{A}_i| \leq 2^{n-1}$.

When n = 6, by (11), $|\mathcal{A}_1| \le 18$. If $|\mathcal{A}_1| \le 11 < 2^{7/2}$, by Lemma 5 Case 1,

$$\sum_{i=1}^{k} |\mathcal{A}_i| \le 2^{n-1} = 32$$

holds. If $12 \le |\mathcal{A}_1| \le 18$, by Lemma 9, $\sum_{i=1}^{\kappa} |\mathcal{A}_i| \le 2^{n-1} = 32$ holds as well. This completes the proof of Theorem 3.

3 Proof of Theorem 4

Theorem 4 follows directly from Theorems 10 and 11.

Theorem 10 Let A_1, A_2, \ldots, A_k be incomparable collections of distinct subsets of set [n]. For every $c \in (0,1]$, if $\max_{1 \le i \le k} \{|A_i|\} \le c2^n$, then

$$\sum_{i=1}^{k} |\mathcal{A}_i| \le (1 + c^2 k) 2^{n-1}.$$

Theorem 11 Let A_1, A_2, \ldots, A_k be incomparable collections of distinct subsets of set [n]. For every $c \in (0, \frac{3}{16 \ln 2}]$, if $\max_{1 \le i \le k} \{|A_i|\} \le c2^n$, then

$$\sum_{i=1}^{k} |\mathcal{A}_i| \le \left(\frac{2}{1 + \sqrt{1 - \left(\frac{1}{2} + \frac{8 \ln 2}{3} c\right)^2}}\right) 2^{n-1}.$$

Proof of Theorems 10 and 11 are given in Sections 3.1 and 3.2 respectively. Both proofs are based on a probabilistic approach.

Proof of Theorem 10 3.1

Proof. Define a random subset $I \subset [k]$ by setting

$$Prob[i \in I] = \frac{1}{2}, \quad i \in [k],$$

these choices are mutually independent. Set $X = \sum_{i \in I} |A_i|$ and let k independent random variables X_1, X_2, \ldots, X_k be defined as

$$\operatorname{Prob}(X_i = |\mathcal{A}_i|) = \operatorname{Prob}(X_i = 0) = \frac{1}{2}.$$

Then $X = \sum_{i=1}^k X_i$. Let $s = \sum_{i=1}^k |\mathcal{A}_i|$. Since for every $i \in [k]$, $\text{Prob}(i \in I) = \frac{1}{2}$, then the expectation of X is

$$E(X) = \sum_{i=1}^{k} E(X_i) = \frac{\sum_{i=1}^{k} |\mathcal{A}_i|}{2} = \frac{s}{2}.$$

The variance of X is

$$\begin{split} \sigma^2 &= E(X^2) - [E(X)]^2 \\ &= E(\sum_{i \in [k]} X_i^2 + 2 \sum_{1 \le i < j \le k} X_i X_j) - (\frac{s}{2})^2 \\ &= \frac{\sum_{i \in [k]} |\mathcal{A}_i|^2 + \sum_{1 \le i < j \le k} |\mathcal{A}_i| |\mathcal{A}_j|}{2} - (\frac{\sum_{i \in [k]} |\mathcal{A}_i|}{2})^2 \\ &= \sum_{i = 1}^k \frac{|\mathcal{A}_i|^2}{4}. \end{split}$$

Applying the Chebyshev inequality, we have

$$Prob(|X - E(X)| > \sigma) < \frac{\sigma^2}{\sigma^2} = 1.$$

Then it follows that

$$Prob(|X - E(X)| \le \sigma) > 0.$$

Therefore there exists an $I_0 \subset [k]$ such that

$$\left|\sum_{i\in I_0} |\mathcal{A}_i| - E(X)\right| \le \sigma;$$

this is equivalent to

$$E(X) - \sigma \le \sum_{i \in I_0} |\mathcal{A}_i| \le E(X) + \sigma. \tag{12}$$

Let $a = \sum_{i \in I_0} |\mathcal{A}_i|$ and recall $s = \sum_{i=1}^k |\mathcal{A}_i|$ and $E(X) = \frac{s}{2}$; then

$$\frac{s}{2} - \sigma \le a \le \frac{s}{2} + \sigma. \tag{13}$$

Using Proposition 1, we have

$$s + 2[a(s-a)]^{1/2} \le 2^n$$
.

Since $f(a) = s + 2[a(s-a)]^{1/2}$ increases as $a \leq \frac{s}{2}$ and decreases as $a \geq \frac{s}{2}$, by (13),

$$\begin{split} 2^n & \geq f(a) & \geq & \min\{f(\frac{s}{2}+\sigma), f(\frac{s}{2}-\sigma)\} \\ & = & s + 2[(\frac{s}{2}+\sigma)(\frac{s}{2}-\sigma]^{1/2}. \end{split}$$

Therefore,

$$s \le 2^{n-1} \left(1 + \frac{4\sigma^2}{2^{2n}}\right).$$

Since $\max_{1 \le i \le k} \{|\mathcal{A}_i|\} \le c2^n$, $4\sigma^2 = \sum_{i=1}^k |\mathcal{A}_i|^2 \le c^2k2^{2n}$, thus

$$s = \sum_{i=1}^{k} |\mathcal{A}_i| \le (1 + c^2 k) 2^{n-1}. \quad \blacksquare$$

3.2 Proof of Theorem 11

The following lemma will be the main tool in proving Theorem 11.

Lemma 12 Let A_1 , A_2 , ..., A_k be incomparable collections of distinct subsets of set [n]. For every $c' \in (\frac{1}{2}, 1]$, if $\max_{1 \le i \le k} \{|A_i|\} \le \frac{3(2c'-1)}{16 \ln 2} 2^n$, then there exists $I_0 \subset [k]$ such that

$$\frac{1-c'}{2} \sum_{i=1}^{k} |\mathcal{A}_i| \le \sum_{i \in I_0} |\mathcal{A}_i| \le \frac{1+c'}{2} \sum_{i=1}^{k} |\mathcal{A}_i|.$$

Remark. c' in Lemma 12 and c in Theorem 11 are related as $c=\frac{3(2c'-1)}{16\ln 2}$ and $c'=\frac{1}{2}+\frac{8\ln 2}{3}c$.

We delay the proof of Lemma 12 until we finish the proof of Theorem 11.

Proof of Theorem 11. For $c \in (0, \frac{3}{16 \ln 2}]$, let $c' = \frac{1}{2} + \frac{8 \ln 2}{3}c$, then $c' \in (\frac{1}{2}, 1]$. Let $s = \sum_{i=1}^{k} |\mathcal{A}_i|$ and $a = \sum_{i \in I_0} |\mathcal{A}_i|$ where $I_0 \subset [k]$ is the set from Lemma 12. Then $\frac{1-c'}{2}s \leq a \leq \frac{1+c'}{2}s$. Using Proposition 1,

$$f(a) = s + 2[a \cdot (s - a)]^{\frac{1}{2}} \le 2^n.$$

Since f(a) increases as $a \leq \frac{s}{2}$ and decreases as $a \geq \frac{s}{2}$,

$$f(a) \geq \min\{f(\frac{1-c'}{2}s), f(\frac{1+c'}{2}s)\}\$$

= $s + 2[\frac{1-c'}{2}s \cdot \frac{1+c'}{2}s]^{\frac{1}{2}}.$

So,

$$s + 2\left[\frac{1-c'}{2}s \cdot \frac{1+c'}{2}s\right]^{\frac{1}{2}} \le 2^n;$$

solving for s,

$$s \le \left(\frac{2}{1+\sqrt{1-c'^2}}\right)2^{n-1} = \left(\frac{2}{1+\sqrt{1-\left(\frac{1}{2}+\frac{8\ln 2}{3}c\right)^2}}\right)2^{n-1}. \quad \blacksquare$$

What remains is to prove Lemma 12.

Proof of Lemma 12. As in the proof of Theorem 10, define a random subset $I \subset [k]$ by setting

$$Prob[i \in I] = \frac{1}{2}, \quad i \in [k];$$

these choices are mutually independent. Set $X = \sum_{i \in I} |\mathcal{A}_i|$ and let k independent random variables X_1, X_2, \ldots, X_k be defined as

$$\operatorname{Prob}(X_i = |\mathcal{A}_i|) = \operatorname{Prob}(X_i = 0) = \frac{1}{2}.$$

Then $X = \sum_{i=1}^{k} X_i$. Let $s = \sum_{i=1}^{k} |\mathcal{A}_i|$. Since for every $i \in [k]$, $\text{Prob}(i \in I) = \frac{1}{2}$, then the expectation of X is

$$E(X) = \sum_{i=1}^{k} E(X_i) = \frac{\sum_{i=1}^{k} |A_i|}{2}.$$

Let u > 0; applying Markov's inequality to $E(e^{uX})$ (see [4] Page 26 or [1] Page 266), then

$$\begin{split} \operatorname{Prob}(X > E(X) + t) &= \operatorname{Prob}(e^{uX} > e^{u(E(X) + t)}) \\ &< e^{-u(E(X) + t)} E(e^{uX}) \\ &= e^{-u(E(X) + t)} \prod_{i=1}^k E(e^{uX_i}) \\ &= e^{-u(E(X) + t)} \prod_{i=1}^k \frac{1}{2} (1 + e^{u|A_i|}) \\ &= e^{-u(E(X) + t)} e^{u \sum_{i=1}^k |A_i|} \prod_{i=1}^k \frac{1}{2} (1 + \frac{1}{e^{u|A_i|}}) \\ &= e^{u(E(X) - t)} \prod_{i=1}^k \frac{1}{2} (1 + e^{-u|A_i|}). \end{split}$$

Now for $c' \in (\frac{1}{2},1]$, take $\frac{2ln^2}{(2c'-1)E(X)} \le u \le \frac{3}{2max_{i \in [k]}\{|A_i|\}}$. We note that the choice of u is reasonable since $\frac{3}{2max_{i \in [k]}\{|A_i|\}} \ge \frac{\ln 2}{(2c'-1)2^{n-3}} \ge \frac{2ln^2}{(2c'-1)E(X)}$. This is because we may assume that $E(X) \ge 2^{n-2}$, otherwise $E(X) < 2^{n-2}$ and it implies that $\sum_{i=1}^k |A_i| < 2^{n-1}$ and the conclusion of Theorem 11 holds. Now we have $u|A_i| \le \frac{3}{2}$ for every $i \in [k]$. Notice that $e^{-x} \le 1 - \frac{x}{2}$ when $0 \le x \le \frac{3}{2}$. This is because

 $f(x) = e^{-x} - (1 - \frac{x}{2})$ is concave upward and $f(0), f(\frac{3}{2}) \le 0$. Thus

$$\operatorname{Prob}(X > E(X) + t) < e^{u(E(X) - t)} \prod_{i=1}^{k} \frac{1}{2} (1 + 1 - \frac{u|\mathcal{A}_i|}{2})$$

$$= e^{u(E(X) - t)} \prod_{i=1}^{k} (1 - \frac{u|\mathcal{A}_i|}{4}). \tag{14}$$

Since the geometric mean is no more than the arithmetic mean, we have

$$Prob(X > E(X) + t) < e^{u(E(X)-t)} (1 - \frac{u\sum_{i=1}^{k} |\mathcal{A}_i|}{4k})^k$$
$$= e^{u(E(X)-t)} (1 - \frac{uE(X)}{2k})^k.$$

Since the sequence $\{(1-\frac{uE(X)}{2k})^k\}$ is increasing and $\lim_{k\to\infty}(1-\frac{uE(X)}{2k})^k=e^{-\frac{uE(X)}{2}}$,

$$Prob(X > E(X) + t) < e^{u(E(X)-t)}e^{-\frac{uE(X)}{2}}$$

= $e^{\frac{u}{2}(E(X)-2t)}$.

Let t = c'E(X); then

$$Prob(X > E(X) + c'E(X)) < e^{-\frac{u(2c'-1)E(X)}{2}} \le \frac{1}{2},$$

since $u \ge \frac{2 \ln 2}{(2c'-1)E(X)}$.

Similarly, we will prove that $\operatorname{Prob}(X < E(X) - c'E(X)) < \frac{1}{2}$. Let u > 0; notice that

$$\begin{split} \operatorname{Prob}(X < E(X) - t) &= \operatorname{Prob}(-uX > -u(E(X) - t)) \\ &= \operatorname{Prob}(e^{-uX} > e^{-u(E(X) - t)}). \end{split}$$

Applying Markov's inequality to $E(e^{-uX})$, we have

$$\begin{split} \operatorname{Prob}(X < E(X) - t) &< e^{u(E(X) - t)} E(e^{-uX}) \\ &= e^{u(E(X) - t)} \prod_{i=1}^k E(e^{-uX_i}) \\ &= e^{u(E(X) - t)} \prod_{i=1}^k \frac{1}{2} (1 + e^{-u|\mathcal{A}_i|}). \end{split}$$

Again, since $u|\mathcal{A}_i| \leq \frac{3}{2}$ for every $i \in [k]$ and $e^{-x} \leq 1 - \frac{x}{2}$ when $0 \leq x \leq \frac{3}{2}$, we get

$$\operatorname{Prob}(X < E(X) - t) < e^{u(E(X) - t)} \prod_{i=1}^{k} \frac{1}{2} (1 + 1 - \frac{u|\mathcal{A}_i|}{2})$$
$$= e^{u(E(X) - t)} \prod_{i=1}^{k} (1 - \frac{u|\mathcal{A}_i|}{4}).$$

Now we have a similar situation as inequality (14) and $\operatorname{Prob}(X < E(X) - t) < \frac{1}{2}$ follows exactly the same lines after inequality (14) as in proving $\operatorname{Prob}(X > E(X) + t) < \frac{1}{2}$. Thus

$$Prob((1 - c')E(X) \le X \le (1 + c')E(X)) > 0,$$

and this implies that there exists an $I_0 \subset [k]$ such that $\frac{1-c'}{2} \sum_{i=1}^k |\mathcal{A}_i| \leq \sum_{i \in I_0} |\mathcal{A}_i| \leq \frac{1+c'}{2} \sum_{i=1}^k |\mathcal{A}_i|$.

Acknowledgment. We thank the anonymous referee for helpful comments.

References

- [1] N. Alon and J.H. Spencer, *The Probabilistic Method*, 2nd edition, John Wiley & Sons, Inc., 2000.
- [2] I. Anderson, Combinatorics of finite sets, Oxford University Press, Oxford (1987).
- [3] A. J. W. Hilton, A theorem on finite sets, Quart. J. Math. Oxford (2), 27 (1976), 33–36.
- [4] S. Janson, T. Luczak, and A. Rucński, Random Graphs, John Wiley and Sons, New York, 2000.
- [5] D. J. Kleitman, Families of non-disjoint subsets, J. Combin. Theory, 1(1966), 153– 155.
- [6] D. J. Kleitman, Mathematics Review, 53#146, 1977.
- [7] J. Liu and C. Zhao, On a conjecture of Hilton, Australas. J. Combin. 24 (2001), 265–274.
- [8] D. Seymour, On incomparable collection of sets, Mathematika 20 (1973), 208-209.

(Received 5 Jan 2004; revised 31 Mar 2005)