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Abstract

In 1977, A. J. W. Hilton proposed the following conjecture (see D.J. Kleit-
man, Math. Review 53#146, 1977): if A;, As, -+, A are collections of
distinct subsets from an n-element set such that these collections are in-
comparable and uncomplemented, then Zle |A;| < 27! In this paper
we try to verify this conjecture for some cases. In particular, we provide
a new bound:

k
Al < (4—2v2)2n
i=1

which improves several results in [7]. Also, under some fairly general
conditions, we show that

k
Sl < (14 )2

i=1

1 Introduction and Main Results

Let A;,---, Ay be k collections of distinct subsets of set [n] = {1,2,...,n}. These k
collections of distinct subsets are called incomparable if, when A; € A; and A; € Aj,
(i # j), then A; ¢ A;. A collection of subsets C is called uncomplemented if, when
A €C, then A ¢ C, where A = [n]\A.

It is well known that if C is a collection of distinct subsets of set [n] which are
uncomplemented, then |C| < 2"~!. Hilton extended this result to two incomparable,
uncomplemented collections.

Theorem 1 [3] If Ay and As are collections of distinct subsets of set [n] such that
these collections are incomparable and uncomplemented, then

| AL+ |Ag| < 2771
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D. J. Kleitman [6] also proved the above result using a correlation inequality from
[5]. In [6], he also pointed the following conjecture proposed by Hilton.

Conjecture 1 [6] If Ay, As, ..., Ay are collections of distinct subsets of set [n]
such that these collections are incomparable and uncomplemented, then

k
Z |A1| < on-1,

i=1
In this paper, we will prove the following results in Section 2.

Theorem 2 Let Ay, Az, ..., Ag be incomparable and uncomplemented collections
of distinct subsets of set [n]. Then

k
Z |A1| < (4 — 2\/5)2"_1.
=1

Remark. We note that 4 — 24/2 ~ 1.17. Also note that this bound improves
several results in [7].

Theorem 3 Conjecture 1 holds when n < 6.

For incomparable collections of subsets of set [n], using probabilistic approach,
we prove the following bound in Section 3.

Theorem 4 Let Ay, Az, ..., A be incomparable collections of distinct subsets of
set [n]. For every c € (0, g2, if mazy<i<p{]Ai|} < 2", then
l 2
STA < min{(1+ k)2 7 ( 2"t
i=1 1+ 1—(%4—81:%20)2
Remark. If we take ¢ = % in Theorem 4, then
b 1
DA< (14 )2
i=1 k
If we take ¢ = 1715 in Theorem 4, then

We note that (9_2‘/5)2"’1 ~1.14 x 2n7L,
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2 Proof of Theorem 2 and Theorem 3

Theorem 2 follows directly from the following lemmas.

Lemma 5 Let Ay, Ay, ..., Ay be incomparable collections of distinct subsets of set
on=l 41 42" nt1
[n] with |Ay| > |Ag| > -+ > | Akl If |AL] < — and |Az| <272, then
k
Z |Al| < on-1,
i=1
Lemma 6 Let A;, A, ..., Ag be incomparable collections of distinct subsets of set
[n] with |Ai| > |As] > -+ > | Agl.
on=l 142" . ‘
(i) If |A:] < % and |As| > 2%, then S5 |Ai| < (4 — 2v/2)20 1,
o=l 414 2% . .
(it) If% < A < 2v7t 23] —2l51 4 9 (notice that this situation

happens only when n > 7), then Y | |A;| < (4 — 2y/2)27 1.

Lemma 7 [7] Let Ay, A,, ..., Ay be incomparable and uncomplemented collections
of distinct subsets of set [n] with |Ay| > |Aa| > -+ > |Ag|. If | AL > 277t —2l5) —
2031 4+ 2, then Y8 | A < 2771

Proof of Lemmas 5 and 6 will be given in Sections 2.1 and 2.2 respectively. Lemma
7 was proved in [7]. In Section 2.3, we prove Theorem 3.

The following results related to incomparable collections of subsets will be used
in our proof. The first result is given by Seymour in [8].

Lemma 8 [8] If A, B are incomparable collections of distinct subsets of [n], then
|A|1/2 + |B|1/2 < 2n/2'

In [7], the above lemma was generalized as follows.

Proposition 1 [7] Let Ay, As, ..., Ay be incomparable collections of distinct sub-
sets of set [n]. Let I and J be any partition of set [k] where [k] = {1,...,k}. Then

S A+ 20 A A < 2"

il
Proof. It follows from Lemma 8 and the fact that U;c;A; and UjesA; are incompa-

rable. i

The following lemma is an implication of Proposition 1 and will be applied in
proving Lemmas 5, 6 and Theorem 3.
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Lemma 9 Let A;, A, ..., Ag be incomparable collections of distinct subsets of set
[n]. If there exists I C [k] such that

on=1 41— on=1 414 9%
— <Y <,
2 1€l 2
then
k
Z|Al| < on-t,

i=1
Proof. Suppose that there exists I C [k] such that

on-141 - on-l 414 9%
f <2 Mil < T

i€l

It Zi‘C:1 |A;| > 27! + 1, then

S A+ 20 Sl AD (S epu 1442
> 2" 14 2T AD (2" + 1= i A2

Since f(z) = (2" ' +1—21) increases as v < £+
we have

n—1
and decreases as © > %,

S A+ 2[(Sier A (Siep )2

n+1 n+1
— n-141-2"2 n—1 2 11
> on 1+1+2[2 +122 .2 +12+2 }2:2n

which contradicts to Proposition 1. B

2.1 Proof of Lemma 5

Proof. We divide our proof into two cases:
n+1

Case 1. Suppose that |Ay| < 272 . If
k n—1 ntl
241 -2

B ntl
then Lemma 5 is proved. Also note that we can assume that |A,| < 2 —+1=22

since otherwise 2% | |4;] < 2"~ holds by combining Lemma 9 and the assumption
for | 4;|. So we can assume that there exists an integer 1 <[ < k such that

2nl 41— 2%

Al (1)

and
+1

+1 on— 1+1 ot

Sial> TSR 2
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Due to |Aj1| < |As] < 2" and (1), we have

n+t1

I+1 2n—1+1+27
Slaj< TR 0

i=1

Combining (2), (3) and Lemma 9, we conclude that > | [ A;] < 271

Case 2. Suppose that |A,]| > 2" and |As| < o

g2 % whene i — 1 on 2. then by Lemma
9, o8 |A;| <27 holds. 1

Now we assume that 2°7 < |4} < w where ¢ = 1,2 and |A;] <
9l

2.
_ g1
If Y, A < 27422 then it is easy to see that

k
Z |Az| S 2n—17

i=1

and Lemma 5 is proved. Otherwise, we could find [, where 2 < [ < k, such that

l on-1_4 9 _ 2“7“
Z;IAil <
and
S s 22T
i=2 2
Since | A | < |As| < 277,
I+1 2n—1+1+2"7+1
;|Ai| R

Then by Lemma 9, 5 |A4;| < 2"~ holds. B

2.2 Proof of Lemma 6

n n— L-H . .
Proof. (i) By Lemma 9, we can assume that 23" < [A;| < 274122 Simjlar to
the proof of Lemma 5, we can also assume that there exists an integer [ < k such
that

l —1 ntl
ol 41 -2
STAl < —y (4)
i=1
and }
41 on-l 41— 2%

DAl > (5)
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on=l 41— 2"
Since |Ap] < A < %, by (4), we obtain
+1 i1
DAl <2 41 -2, (6)

i=1
Let s = Y8 | |A4;| and a = Y!F1 | A;]. Inequalities (5) and (6) imply that

n+1

on-l 41— 2%
2

Now we are going to apply Proposition 1 to estimate s. Proposition 1 implies
that

<a<2 412" (7)

[N

s+ 2[a(s —a)]z < 2™
This is equivalent to

s? — (2" + da)s + 2°" + 4a” > 0.
Solving this quadratic equation for s, we have

< 2"t 4 4o — V27

s< . - f(a) )
or
2"t 4 4a + V27
s > ) . (9)
Due to the fact that Aj;, As, ..., A are incomparable, s < 2™, hence (9) will not

happen, consequently (8) always holds.
Since f(a) increases as a > 2" % and decreases as a < 2772, by the range of a
from (7), we have

on-1 412" .
f),f@"’l +1-27%)}

s< fla) < maz{f(
< maz{f(2"7? = 2°7), (2" 1)}
Now we estimate f(2°~2 — 2°7") and f(2"!). By direct calculation,

f(2n71) — (4 _ 2\/5)2n—17

and
—n—1 —nt7

FEE-2T) = (3427 — 4 27F) oL, (10)

Whenn >9,3—4.-277 —/4—275" <3-,/7/2<4-2V2. When n ="7,8, by
direct calculation, 3 — 4 -2 — /4 — 275" < 4 — 2V/2.

(ii). The proof is similar to the proof of part (i). Let s = X | |A;| and a = |A;].
In this case, the range of a (i.e. inequality (7)) becomes

n+1

-l 14272

5 <a<omtooldl o3l o
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As in part (i), we have

2" 4 da — V27

s < f(a) 5

Since f(a) increases as a > 2"7%

s< fla) < ft -2l 20T 4 9)
< fTH=@d-2v2)2"h 1

2.3 Proof of Theorem 3

We apply Lemmas 5, 7 and 9 to prove Theorem 3.
Proof. Assume that >F  |A;] > 2771 + 1 and |A;| > |4y > -+ > |A. By
Lemma 7,

|A;| < 277t —2l3) — o514 o, (11)

When n <5,
n+1

ont _ol3l o3l L9 < 9%,

k
Therefore by Lemma 5 Case 1, Y [A4;] < 2"
i=1

When n = 6, by (11), |A,| < 18. If |A;| < 11 < 2772 by Lemma 5 Case 1,

k
STA < 2vt =32
i=1 i
holds. If 12 < |A;| < 18, by Lemma 9, » |4 < 271 =32 holds as well. This

i=1

completes the proof of Theorem 3. il

3 Proof of Theorem 4

Theorem 4 follows directly from Theorems 10 and 11.

Theorem 10 Let Ay, As, ..., Ai be incomparable collections of distinct subsets of
set [n]. For every c € (0,1], if mam<i<i{|Ail} < 2%, then

k
STAl < (14 k)2

i=1
Theorem 11 Let Ay, As, ..., Ai be incomparable collections of distinct subsets of

set [n]. For every c € (0, 5oy ], of mam<i<i{|Ail} < c2", then

k 2
2 Al <A s
i=1 L+ 4/1— (5 +%5%¢)?

Proof of Theorems 10 and 11 are given in Sections 3.1 and 3.2 respectively. Both
proofs are based on a probabilistic approach.

)2’",71'
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3.1 Proof of Theorem 10
Proof. Define a random subset I C [k] by setting

1
Probli € I] = 3 i€ [k],

these choices are mutually independent. Set X = Y ;c;|A4;| and let k independent
random variables X, Xs, ..., X} be defined as

Prob(X; = | A4;|) = Prob(X; =0) = %

Then X = Y% | X,. Let s = X5 | | Ay
Since for every i € [k], Prob(i € I) = 1, then the expectation of X is

_ : ) 7E§:1|Ai|:f
2 2

0! = B(X*) - [B(X)P
= B(y X142 Y XX)-(3)

i€[k] 1<i<j<k
_ Sier Mil? + Xi<icj<r Ml Al (Zze x| Ai |)
2 2

IA *

Applying the Chebyshev inequality, we have

2

Prob(|X — E(X)| > 0) < = = 1.
g

Then it follows that
Prob(|X — E(X)| < o) > 0.
Therefore there exists an Iy C [k] such that

| 2° il - E(X)] < o

i€lg

this is equivalent to
E(X)-0 <> |A| <EX)+o. (12)

i€lp
Let a = Y, |Ai| and recall s = 3% | | A4;] and E(X) = £; then

%—o—gagngo—. (13)
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Using Proposition 1, we have
54 2[a(s — a)]? < 2",

Since f(a) = s+ 2[a(s — a)]*/? increases as a < £ and decreases as a > £, by (13),

2" > fa) 2 min{f(5+0).f(5-0)}
= s+ 2[(% + J)(% — o]V,
Therefore,
s< 214 ;Lj).

Since max;<i<p{|Ai|} < €27, 402 = T8 |Ai* < k2%, thus

k
s=> A4 <1+k)2" " B

i=1

3.2 Proof of Theorem 11

The following lemma will be the main tool in proving Theorem 11.

Lemma 12 Let A, As, ..., Ay be incomparable collections of distinct subsets of
set [n]. For every d € (3,1], if maz<;<i{|Ail} < 3(12(;1;21)2", then there exists Iy C [k]

such that

1—¢ k 1+ c k
5 DA< Y AL DO 1AlL
i=1 icly i=1
Remark. ¢ in Lemma 12 and c in Theorem 11 are related as ¢ = 3(12661’;21) and

¢ =14 82,
=3 3
We delay the proof of Lemma 12 until we finish the proof of Theorem 11.

Proof of Theorem 11. For ¢ € (0, 525, let ¢ = 1 + #22¢, then ¢ € (3,1]. Let
s = Y8, |4 and a = Yy, |A;| where Iy C [k] is the set from Lemma 12. Then

1-¢ 1+c : Tr:
=55 < a < =5s. Using Proposition 1,

fla)=s+2[a-(s—a)2 < 2™

Since f(a) increases as a < 5 and decreases as a > 3,

) 1-¢ 1+¢
fla) = min{f(5 %0, f(EESe)
1-¢ 1+¢
= s+2| s +Csﬁ.
2
So, v 1au
s+ 2] — s, +cs}%§2”;

2 2
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solving for s,

2 2
s< |2 = P |
(i) <1+\/1— <;+81;2c>2)

What remains is to prove Lemma 12.
Proof of Lemma 12. As in the proof of Theorem 10, define a random subset
I C [k] by setting

Prob[i € I] i€ [k];

= 57
these choices are mutually independent. Set X = Y ;c;|A4;| and let k independent
random variables X, X, ..., X} be defined as

Prob(X; = | A4;|) = Prob(X; =0) = %

Then X = Y% | X;. Let s = X5 | | Ay
Since for every i € [k], Prob(i € I) = 1, then the expectation of X is

< L X Al
=

Let u > 0; applying Markov’s inequality to E(e“X) (see [4] Page 26 or [1] Page
266), then

Prob(X > E(X)+t) = Prob(e"® > ¢u(BX)+))
< e—u(E(X)+t)E(euX)
k
= BT T] B
i=1
(B(X)+) ﬁ 1 A
= e —(1 4 "4
i=1 2
k
— emuE0) S Al T Ly L
e e 1 Zzl_Il 2( + eu\Ai\)
ko
— e“(E(X)—t) H 5(]_ + e—ulAi\).

-
Il
—

Now for ¢ € (3,1], take (2217"2 <u< We note that the choice
>

3
c'—1)E(X) = 2maz;e){lAil}°
of u is reasonable since In 2 > 2in2

3
2maziepilAil} = (2¢-1)2"=% = (2/-1)E(X)"
we may assume that E(X) > 272, otherwise E(X) < 22 and it implies that
>¥  JA;| < 2"~ and the conclusion of Theorem 11 holds. Now we have u|A4;| < 3

for every i € [k]. Notice that e < 1 — ¢ when 0 < 2z < % This is because

This is because
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f(x) =e*—(1—2)is concave upward and f(0), f(3) < 0. Thus

ul Ay

k1

Prob(X > E(X) +t) < e"®O-0T] SAH1==2)
i=1
k )

-
Il
-

Since the geometric mean is no more than the arithmetic mean, we have

u Zf=1 Al k

Prob(X > E(X) +t) < e“F=0(1 - )
_ E(X).,
= euBOO)=t) (] _ BEAA) Nk
€ ( ok )"

_ uB(X
2

))k} is increasing and limy_q (1 — %(kx))k =2

Since the sequence {(1
Prob(X > E(X) +1t) < eu(E(X)_t)e_uE;z
es(B(X)=2t)

Let t = ¢E(X); then

u(2e' —1) B(X)
2

1
Prob(X > E(X) +dE(X)) < e < 5

since u > (26&%
Similarly, we will prove that Prob(X < E(X) — ¢E(X)) < 1. Let u > 0; notice
that

Prob(X < E(X)—t) = Prob(—uX > —u(E(X) —1t))

= Prob(e™"* > ¢7u(EX)=1),
Applying Markov’s inequality to E(e™*¥), we have
Probh(X < B(X) —t) < eUFE)-0p(euX)
k
— eu(E(X)—t) H E(equ)
i=1
i
= euEX)=1) I+ e—u|Ai|).
i1 2
Again, since u|A;| < 3 for every i € [k] and e * <1 —% when 0 <z < 3, we get
k
1 .
Prob(X < E(X)—t) < e"EE-0T] S1+1- %)
i=1
k .
= B0 T[(1 - U|:L41|)

«
Il
—



168 YUEJIAN PENG AND CHENG ZHAO

Now we have a similar situation as inequality (14) and Prob(X < E(X) —t) < %
follows exactly the same lines after inequality (14) as in proving Prob(X > E(X) +
t) < i. Thus

Prob((1-E(X)< X < (1+)E(X)) >0,

and this implies that there exists an Iy C [k] such that 155 Y8, |A;] < Yy Al <
eV AL
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