A sufficient condition for spanning trees with bounded maximum degree in a graph

AUNG KYAW

Department of Mathematics University of East Yangon Thanlyin Township, Yangon 11292 Myanmar uaungkyaw70@gmail.com

Abstract

We obtain a sufficient condition on the degree sequence of a graph which is an improvement to the condition of E. Flandrin, H.A. Jung and H. Li (*Discrete Math.* 90 (1991), 41–52) for traceability. As a generalization of this condition, a sufficient condition for the existence of a spanning tree with bounded maximum degree in a graph is presented.

1 Introduction

We represent a graph G by an ordered pair (V(G), E(G)), where V(G), its vertex set, is nonempty, and E(G), its edge set, consists of unordered pairs of distinct vertices. We write |G| for |V(G)|. To show that H is a subgraph of G, we write $H \subset G$. For any $v \in V(G)$, we denote by $d_G(v)$ the degree of v in G; $\Delta(G)$ is maximum degree of vertices of G. A vertex of degree one is called an *end vertex*. For a nonnegative integer i, we put $V_i(G) := \{v \in V(G) : d_G(v) = i\}$. For any nonempty subset U of V(G), we put $N_G(U):=\{v\in V(G): uv\in E(G) \text{ for some } u\in U\},\ d_G(U):=\sum_{u\in U}d_G(u),$ $G[U] := (U, \{uv \in E(G) : u, v \in U\}), \text{ and } G - U := G[V(G) - U]. \text{ If } U = \{u\} \text{ then } U := \{u\} \text{ the$ we write G-u for G-U and $N_G(u)$ for $N_G(U)$. For a nonnegative integer i and any nonempty subset U of V(G), we put $N_i(U) := \{v \in V(G) : |N_G(V) \cap U| = i\}$. If H is a proper subgraph of G, we write G-H for G-V(H). If H and K are subgraphs of G, then $H \cup K := (V(H) \cup V(K), E(H) \cup E(K))$. If $V(K) \subset V(H)$ then we write H + E(K) for $H \cup K$; if $E(K) = \{uv\}$ then we write H + uv for H + E(K). If $S \subset E(H)$ then H - S := (V(H), E(H) - S); if $S = \{uv\}$ then H - uv := H - S. A k-tree of a connected graph is a spanning tree with maximum degree at most k. If T is a tree and u, v vertices of T, then the path in T connecting u and v is unique and denoted by $P_T[u, v]$. We assume $P_T[u, v]$ to be oriented from u towards v. A

branch of T at a vertex r is a component of T-r.

We call a nonempty set S of independent vertices of G a frame of G, if G - S' is connected for any $S' \subset S$. Obviously, any nonempty subset of a frame is also a frame. If |S| = k then S is called a k-frame.

For further explanation of terminology and notation, we refer to Bondy and Murty [2]. In this paper, G denotes a connected graph and $k(\geq 2)$ is an integer. We put n := |G|.

In [3], E. Flandrin, H.A. Jung and H. Li gave the following theorem for a graph to have a hamiltonian path.

Theorem A If $d_G(\{u, v, w\}) - |N_3(\{u, v, w\})| \ge n - 1$ for every independent set $\{u, v, w\}$, then G has a hamiltonian path.

In this paper, we improve the previous result in the following way.

Theorem B Let $V(G) = \{v_1, v_2, ..., v_n\}$ and $d_G(v_i) = d_i$ for $1 \le i \le n$. Suppose, for any 3-frame $S = \{v_{i_1}, v_{i_2}, v_{i_3}\} \subset V(G)$, $i_1 < i_2 < i_3$ such that $d_{i_j} \le i_j - j + 1$, $1 \le j \le 3$, it holds that $d_G(S) - |N_3(S)| \ge n - 1$. Then G has a hamiltonian path.

Generalizing Theorem B, we obtain the following result.

Theorem C Let $V(G) = \{v_1, v_2, ..., v_n\}$ and $d_G(v_i) = d_i$ for $1 \le i \le n$. Suppose, for any k+1-frame $S = \{v_{i_1}, v_{i_2}, ..., v_{i_{k+1}}\} \subset V(G)$, $i_1 < i_2 < ... < i_{k+1}$ such that, $d_{i_j} \le i_j - j + 1, 1 \le j \le k + 1$, it holds that $d_G(S) + \sum_{i=2}^{k+1} (k-i) |N_i(S)| \ge n - 1$. Then G has a k-tree.

In the following section, we prove auxiliary results. We prove Theorems B and C in the last section.

2 Auxiliary Results

We call a tree T in (a connected graph) G a k^+ -tree of G if there exists a vertex r in T such that $d_T(r) = k + 1$ and $d_T(x) \le k$ for every $x \in V(T) - \{r\}$. Note that 2^+ -tree is a tree with only three end vertices.

We call a tree k^+ -tree T in G a k^+ -maximal tree of G if there does not exist a k^+ -tree T' in G such that $V(T) \subset V(T')$, and |T| < |T'|.

Lemma 2.1 Suppose G does not have a k-tree. Let T be a k⁺-maximal tree of G. Then, there does not exist a tree T' in G such that $\Delta(T') \leq k$ and V(T) = V(T').

Proof. Suppose G does not have a k-tree. Let T be a k+-maximal tree of G, T' a tree of G such that $\Delta(T') \leq k$ and V(T) = V(T'). Since G does not have a k-tree, there exists a vertex $v \in V(T')$ such that $N_G(v) \cap V(G - T') \neq \emptyset$. Pick a vertex w of $N_G(v) \cap V(G - T')$, then the tree T' + uv contradicts the maximality of T. \square

Lemma 2.2 Suppose G does not have a k-tree. If T is a k^+ -maximal tree of G, then the following hold:

- i. $N_G(V_1(T)) \subset V(T)$.
- ii. G-S is connected for any $S \subset V_1(T)$.
- iii. If x, y, r are three distinct vertices of T such that $d_T(r) = k+1, r \in V(P_T[x, y])$, and $xy \in E(G)$, then $d_T(x) = k$ or $d_T(y) = k$.

Proof. (i) The result holds by the maximality of T.

- (ii) The result is direct consequence of (i).
- (iii) Let x, y, r be vertices of T satisfying the conditions in (iii), and, suppose that $\max\{d_T(x), d_T(y)\} < k$. Let r^- be the vertex that precedes r on $P_T[x, r]$. Then, G has the tree $T' = (T + xy) rr^-$ such that $\Delta(T') \leq k$ and V(T') = V(T), a contradiction by Lemma 2.1. Hence (iii) holds.

Before presenting the next result, we introduce some additional terminology.

Let T be a k^+ -maximal tree of G, r the vertex of T with $d_T(r) = k+1$. A subset U of $V_1(T)$ containing one and only one vertex from each branch of T at r and no others is called a *representative set* of T with respect to r. After fixing a representative set U of T with respect to r, we will always use the following notation:

 $B_1, B_2, ..., B_{k+1}$ are vertex sets of branches of T at r. For $1 \le i \le k+1$, the only vertex of $U \cup B_i$ is denoted by u_i and the only vertex of $N_T(r) \cap B_i$ by v_i . For each $x \in B_i - \{u_i\}$, the vertex that precedes x on $P_T[u_i, x]$ is denoted by x^- , and we set $N_T^*(x) := N_T(x) - \{x^-\}$. If $|N_T^*(x)| = 1$, then the only vertex of $N_T^*(x)$ is denoted

by x^+ . We label $\bigcup_{i=2}^{k+1} N_i(U) - \{r\} = \{y_1, y_2, \dots, y_m\}$ if it is nonempty.

To prove Theorem B (Theorem C for k=2), we need the following result.

Lemma 2.3 Suppose G does not have a hamiltonian path. Let T be a 2^+ -maximal tree of G, r the vertex of T with $d_T(r) = 3$, and U a representative set of T with respect to r. Then, the following hold:

- i. U is independent.
- ii. For $1 \le i \le 3$, $1 \le j \le 3$, $i \ne j$, if $x \in B_i \cap N_G(u_j)$, then $x \ne v_i$ and $x^+ \notin N_G(U \{u_j\})$.
- iii. For $1 \le i \le 3$, $1 \le j \le 3$, $|B_i| \ge 1 + \sum_{i=1}^{3} |N_G(u_j) \cap B_i| |N_3(U) \cap B_i|$.
- iv. $|T| \ge 2 + d_G(U) |N_3(U)|$.

Proof. (i) The result follows directly from Lemma 2.2(iii).

(ii) Let x be a vertex in B_i , and suppose, $xu_j \in E(G)$ for some $j \neq i$. If $x = v_i$, then G has the tree $T' = (T + v_i u_j) - r v_i$ such that $\Delta(T') \leq 2$ and V(T') = V(T), a contradiction by Lemma 2.1. Suppose, $x \neq v_i$. Then the tree $T' = (T + xu_j) - xx^+$ is also a 2^+ -maximal tree with $V_1(T') = (V(T_1) - \{u_j\}) \cup \{x^+\}$, $d_{T'}(r) = 3$, and V(T') = V(T) so that $x^+ \notin N_G(U - \{u_j\})$ by Lemma 2.2(iii). Hence (ii) holds.

(iii) For $1 \leq i \leq 3$, from (i) and (ii), $\{u_i\}$, $N_G(u_i) \cap B_i$, $(N_G(U - \{u_i\}))^+ \cap B_i$, and $(N_2(U) - N_G(u_i)) \cap B_i$ are pair-wise disjoint subsets of B_i where

$$(N_G(U - \{u_i\}))^+ = \{x^+ : x \in N_G(U - \{u_i\})\}.$$

So

$$\begin{split} |B_i| & \geq 1 + |N_G(u_i) \cap B_i| + |(N_G(U - \{u_i\}))^+ \cap B_i| \\ & + |(N_2(U) - N_G(u_i)) \cap B_i| \\ & = 1 + |N_G(u_i) \cap B_i| + |(N_G(U - \{u_i\})) \cap B_i| \\ & + |(N_2(U) - N_G(u_i)) \cap B_i| \\ & = 1 + \sum_{j=1}^3 |N_G(u_j) \cap B_i| - |(N_2(U - \{u_i\}) \cap B_i| \\ & + |(N_2(U) - N_G(u_i)) \cap B_i| \\ & = 1 + \sum_{j=1}^3 |N_G(u_j) \cap B_i| - |(N_3(U) \cap B_i)|. \end{split}$$

(iv) Since $2 \ge \sum_{j=1}^{3} |N_G(u_j) \cap \{r\}| - |N_3(U) \cap \{r\}|$, and from (iii),

$$\sum_{i=1}^{3} |B_i| + 2 \ge 3 + \sum_{i=1}^{3} \sum_{j=1}^{3} |N_G(u_j) \cap B_i| - \sum_{i=1}^{3} |N_3(U) \cap B_i|$$

$$+ \sum_{j=1}^{3} |N_G(u_j) \cap \{r\}| - |N_3(U) \cap \{r\}|$$

Since $N_G(V_1(T)) \subset V(T) (= \bigcup_{i=1}^3 B_i \cup \{r\})$ by Lemma 2.2(i),

$$|T| \ge 2 + \sum_{j=1}^{3} |N_G(u_j)| - |N_3(U)|.$$

To prove Theorem C for $k \geq 3$, we need the following result.

Lemma 2.4 Suppose $k \geq 3$ and G does not have a k-tree. Let T be a k^+ -maximal tree of G, r the vertex of T with $d_T(r) = k + 1$, and U a representative set of T with respect to r. Then the following hold:

- i. U is independent.
- ii. For $1 \le i \le k+1$, if $x \in B_i \cap N_G(V_1(T) B_i)$ then $x \ne v_i$ and $N_T^*(x) \cap N_G(u_i) = \emptyset = N_T(x) \cap N_G(V_1(T) B_i)$.
- iii. For any two distinct vertices x, y of V(T) U, if $N_T^*(x) \cap N_T^*(y) \neq \emptyset$ then $\{x, y\} \subset N_T(r)$. In particular, $N_T^*(x) \cap (\bigcup_{i=1}^m N_T^*(x)) = \emptyset$ if $x \notin \bigcup_{i=2}^{k+1} N_i(U)$.
- iv. $U, N_G(U), N_T^*(y_1), N_T^*(y_2), \ldots, N_T^*(y_m)$ are pair-wise disjoint subsets of V(T).

$$v. |T| \ge 2 + d_G(U) + \sum_{i=2}^{k+1} (k-i)|N_i(U)|.$$

Proof. (i) The result follows directly from Lemma 2.2(iii).

- (ii) Let x be a vertex in B_i , and suppose, $xz \in E(G)$ for $z \in (V_1(T) B_i)$. Put $T' := (T + xz) v_i r$. If $x = v_i$ then $\Delta(T') \leq k$ and V(T') = V(T), a contradiction by Lemma 2.1, which shows $x \neq v_i$. Let x' be a vertex in $N_T(x)$. If $x'z' \in E(G)$ for some $z' \in V_1(T) B_i$, then G has the tree T'' = (T' + x'z') xx' such that $\Delta(T'') \leq k$ and V(T'') = V(T), a contradiction by Lemma 2.1. If $x' \neq x^-$ and $x'u_i \in E(G)$, then G has the tree $T'' = (T' + x'u_i) xx'$ such that $\Delta(T'') \leq k$ and $\Delta(T'') = V(T)$, a contradiction by Lemma 2.1. Hence (ii) holds.
- (iii) The result is a direct consequence of the definition of $N_T^*(x)$ and $N_T^*(y)$.
- (iv) Using (i), (ii), (iii), and the definition of $N_T^*(y_i)$, one can easily check that (iv) holds.
- (v) For $1 \le i \le m$, it holds by Lemma 2.2(iii) that $d_T(y_i) = k$, and hence $|N_T^*(y_i)| = k 1$. Then, by (iv),

$$|T| \ge |U| + |N_G(U)| + \sum_{i=1}^m |N_T^*(y_i)|$$

 $\ge 1 + k + \sum_{i=1}^{k+1} |N_i(U)| + (k-1)m.$

By the definition of $m = |\bigcup_{i=2}^{k+1} N_i(U) - \{r\}|,$

$$|T| \geq 1 + k + \sum_{i=1}^{k+1} |N_i(U)| + (k-1)((\sum_{i=2}^{k+1} |N_i(U)|) - 1)$$

$$= 2 + \sum_{i=1}^{k+1} i|N_i(U)| + \sum_{i=2}^{k+1} (k-i)|N_i(U)|$$

$$= 2 + d_G(U) + \sum_{i=2}^{k+1} (k-i)|N_i(U)|.$$

3 Proof of Theorems B and C

Suppose G does not have a k-tree but satisfies the hypothesis of the Theorem C. Let T be a k+-maximal tree of G. Assume that T has the least possible number of end vertices among all k+-maximal trees with vertex set V(T). Let r be the vertex of T with $d_T(r) = k + 1$, and U a representative set of T with respect to r. Let

$$U = \{v_{i_1}, v_{i_2}, \dots, v_{i_{k+1}}\}, \text{ where } i_1 < i_2 < \dots < i_{k+1}. \text{ Assume that } b = \sum_{j=1}^{k+1} i_j \text{ is } i_j = i_j$$

maximum among all possible choices of T, r, and U (with fixed vertex set V(T)). Now we show that $d_{ij} \leq i_j - j + 1$ for $1 \leq j \leq k + 1$.

For each $v_{ij} \in U$ and each $v_q \in N_G(v_{ij}) - N_T(v_{ij})$, consider the graph $T + v_{ij}v_q$. Recall Lemmas 2.3(i) and 2.4(i) to see that $v_q \notin U$. Let v_qv_s , where $s \neq i_j$, be the edge in the unique cycle of $T + v_q$. Set $T' := (T + v_{ij}v_q) - v_qv_s$. Clearly, $|V_1(T')| \leq |V_1(T)|$. But, $|V_1(T)| \leq |V_1(T')|$ by the choice of T. Hence, $|V_1(T)| = |V_1(T')|$ and $d_{T'}(v_s) = 1$. Then, by the choice of b, we have $s < i_j$. Therefore, for each j, $1 \leq j \leq k+1$, there are at least $d_{ij} - 1$ vertices in T - U whose indices are less than i_j . In U, there are j-1 vertices which indices less than i_j . Therefore, $i_j > d_{ij} - 1 + j - 1$ or equivalently, $d_{i_j} \leq i_j - j + 1$.

Moreover, by Lemmas 2.2(ii), 2.3(i) and 2.4(i), U is a k+1-frame, and by Lemmas 2.3(iv) and 2.4(v),

$$|T| \ge 2 + d_G(U) + \sum_{i=2}^{k+1} (k-i)|N_i(U)|,$$

$$n-2 \ge d_G(U) + \sum_{i=2}^{k+1} (k-i)|N_i(U)|,$$

we obtain a contradiction. The proof of Theorem C is complete.

As a simple corollary of the above theorem we get the following condition:

Corollary 1 Suppose that for any set of k + 1 vertices $S = \{v_{i_1}, v_{i_2}, \dots, v_{i_{k+1}}\}$ of G, $i_1 < i_2 < \dots < i_k + 1$ such that $d_{i_j} \le i_j - j + 1$, $1 \le j \le k + 1$, it holds that $d_G(S) + \sum_{i=2}^{k+1} (k-i)|N_i(S)| \ge n - 1$. Then G has a k-tree.

From Theorem C, we also have the following results of Aung Kyaw [4] and Min Aung and Aung Kyaw [1].

Corollary 2 Let G be a connected graph and $k(\geq 2)$ an integer. If

$$d_G(S) + \sum_{i=2}^{k+1} (k-i)|N_i(S)| \ge n-1$$

for every k + 1-frame S in G, then G has a k-tree.

Corollary 3 Let $V(G) = \{v_1, v_2, \ldots, v_n\}$ and $d_G(v_i) = d_i$ for $1 \le i \le n$. Suppose, for any k-frame $S = \{v_{i_1}, v_{i_2}, \ldots, v_{i_k}\} \subset V(G)$, $i_1 < i_2 < \cdots < i_k$ such that $d_{i_j} \le i_j - j + 1$, $1 \le j \le k$, it holds that $d_G(S) + \sum_{i=2}^{k-1} (k-i)|N_i(S)| \ge n-1$. Then G has a k-tree.

Example 1. The degree sequence of a graph drawn in Figure 2.1 is 1, 1, 3, 3, 4, 4, 4. The corresponding values of $(d_i - i - 1)$ are 1, 2, 1, 2, 2, 3, 4. Then the minimum value of $d_G(S) + \sum_{i=2}^{3} (2-i)|N_i(S)|$ subject to the conditions of Corollary 1 is 6, hence G has a hamiltonian path. But $d_G(\{v_1, v_2, v_3\}) - |N_3(\{v_1, v_2, v_3\})| = 5$; one cannot say by Theorem A that G has a hamiltonian path.

Figure 2.1

Example 2. The degree sequence of a graph drawn in Figure 2.2 is 1, 1, 1, 2, 3, 4, 4, 4. The corresponding values of (d_i-i-1) are 1, 2, 3, 3, 3, 3, 4, 5. Then the minimum value of $d_G(S) + \sum_{i=2}^4 (3-i)|N_i(S)|$ subject to the conditions of Corollary 1 is 9, hence G has a 3-tree. But $d_G(\{v_1,v_2,v_3,v_4\}) + |N_2(\{v_1,v_2,v_3,v_4\}) - |N_4(\{v_1,v_2,v_3,v_4\})| = 6$; one cannot say by Corollary 2 that G has a 3-tree.

References

- [1] Min Aung and Aung Kyaw, Maximal trees with bounded maximum degree in a graph, *Graphs and Combinatorics* **14** (1998), 209–221.
- [2] J.A. Bondy and U.S.R. Murty, Graph theory with applications, Macmillan, London, 1976.
- [3] E. Flandrin, H.A. Jung and H. Li, Hamiltonism, degree sum and neighborhood intersections, *Discrete Math.* **90** (1991), 41–52.
- [4] Aung Kyaw, A Sufficient condition for a graph to have a k-tree, Graphs and Combinatorics 17 (2001), 113–121.

(Received 20 May 2003; revised 7 Sep 2005, 16 May 2006)