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Abstract

We obtain a sufficient condition on the degree sequence of a graph which
is an improvement to the condition of E. Flandrin, H.A. Jung and H. Li
(Discrete Math. 90 (1991), 41-52) for traceability. As a generalization of
this condition, a sufficient condition for the existence of a spanning tree
with bounded maximum degree in a graph is presented.

1 Introduction

We represent a graph G by an ordered pair (V(G), E(G)), where V(G), its vertex set,
is nonempty, and E(G), its edge set, consists of unordered pairs of distinct vertices.
We write |G| for |V(G)|. To show that H is a subgraph of G, we write H C G. For
any v € V(G), we denote by dg(v) the degree of v in G; A(G) is maximum degree of
vertices of G. A vertex of degree one is called an end vertez. For a nonnegative integer
i, we put Vi(G) := {v € V(G) : dg(v) = i}. For any nonempty subset U of V(G),
we put Ng(U) := {v € V(G) : wv € E(G) for some u € U}, dg(U) := > dg(u),
uelU

GU] :== (U,{w € E(G) : w,v € U}), and G — U := G[V(G) — U]. If U = {u} then
we write G —u for G — U and Ng(u) for Ng(U). For a nonnegative integer i and any
nonempty subset U of V(G), we put N;(U) :={v e V(G) : [INc(V)NU| =i}. It H
is a proper subgraph of G, we write G — H for G — V(H). If H and K are subgraphs
of G, then HUK = (V(H)UV(K),E(H)UE(K)). If V(K) C V(H) then we write
H+ E(K) for HU K; if E(K) = {uv} then we write H 4+ uv for H + E(K). If
S C E(H) then H—- S := (V(H),E(H) - S); if S = {uv} then H —uv := H - S.
A k-tree of a connected graph is a spanning tree with maximum degree at most k.
If T is a tree and u, v vertices of T', then the path in T' connecting u and v is unique
and denoted by Pr[u,v]. We assume Pr[u,v] to be oriented from u towards v. A
branch of T at a vertex r is a component of T' — r.
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We call a nonempty set S of independent vertices of G a frame of G, if G — S’ is
connected for any S’ C S. Obviously, any nonempty subset of a frame is also a
frame. If |S| = k then S is called a k-frame.

For further explanation of terminology and notation, we refer to Bondy and Murty [2].
In this paper, G denotes a connected graph and k(> 2) is an integer. We put
n = |G].

In [3], E. Flandrin, H.A. Jung and H. Li gave the following theorem for a graph to
have a hamiltonian path.

Theorem A If dg({u,v,w}) — [Ns({u,v,w})| > n =1 for every independent set
{u,v,w}, then G has a hamiltonian path.

In this paper, we improve the previous result in the following way.

Theorem B Let V(G) = {v1,vq,...,0,} and dg(v;) = d; for 1 < i < n. Suppose,
for any 3-frame S = {vi,,vi,, v} C V(G) , i1 < iy < i3 such that d;; <ij— 7+ 1,
1< j <3, it holds that dg(S) — |N3(S)| >n — 1. Then G has a hamiltonian path.

Generalizing Theorem B, we obtain the following result.

Theorem C Let V(G) = {v1,vs,...,0,} and dg(v;) = d; for 1 < i < n. Suppose,

for any k + 1-frame S = {vi, 04, ..., 03y, } C V(G), iy < iy < ... < iy such that,
k+1

di; <ij—j+1,1 < j < k41, it holds that da(S)+ > (k — i) |Ni(S)| > n—1. Then
i=2

G has a k-tree.

In the following section, we prove auxiliary results. We prove Theorems B and C in
the last section.

2 Auxiliary Results

We call a tree T in (a connected graph) G a k*-tree of G if there exists a vertex r
in T such that dp(r) = k4 1 and dy(z) < k for every z € V(T') — {r}. Note that
2%_tree is a tree with only three end vertices.

We call a tree kT-tree T in G a k*-mawzimal tree of G if there does not exist a k-
tree T in G such that V(T') C V(T"), and |T| < |T".

Lemma 2.1 Suppose G does not have a k-tree. Let T be a k™-maximal tree of G.
Then, there does not exist a tree T' in G such that A(T") < k and V(T) = V(T").

Proof. Suppose G does not have a k-tree. Let T' be a k'-maximal tree of G, T" a
tree of G such that A(T") < k and V(T') = V(T"). Since G does not have a k-tree,
there exists a vertex v € V(T") such that Ng(v) N V(G = T") # 0. Pick a vertex w
of Ng(v) NV(G — T'), then the tree T" + uv contradicts the maximality of T. O
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Lemma 2.2 Suppose G does not have a k-tree. If T is a kT -mazimal tree of G, then
the following hold:

i Na(W(T)) C V(T).
ii. G — S is connected for any S C Vi(T).

iii. If x,y,r are three distinct vertices of T such that dr(r) = k+1, r € V(Pr[z,y]),
and zy € E(G), then dr(z) =k or dr(y) = k.

Proof. (i) The result holds by the maximality of T'.

(i1) The result is direct consequence of (7).

(#77) Let x,y,r be vertices of T satisfying the conditions in (4i¢), and, suppose that
max{dr(z),dr(y)} < k. Let r~ be the vertex that precedes r on Pr[z,r]. Then,
G has the tree T" = (T + xy) — rr~ such that A(T') < k and V(T') = V(T), a
contradiction by Lemma 2.1. Hence (i77) holds. O
Before presenting the next result, we introduce some additional terminology.

Let T be a kT-maximal tree of G, r the vertex of T with dy(r) = k+1. A subset U of
VA(T') containing one and only one vertex from each branch of T" at r and no others
is called a representative set of T with respect to r. After fixing a representative set
U of T with respect to r, we will always use the following notation:

By, By, ..., Bpy1 are vertex sets of branches of T at r. For 1 < ¢ < k+ 1, the only

vertex of U U B; is denoted by u; and the only vertex of Ny(r) N B; by v;. For each

x € B; — {u;}, the vertex that precedes x on Pr[u;, z] is denoted by ™, and we set

Nj(z) == Np(z) — {&~}. If [Nj(z)| = 1, then the only vertex of Nj(z) is denoted
k+1

+
by zt . We label |J N;(U) — {r} = {y1,v2, ..., ym} if it is nonempty.
=2

To prove Theorem B (Theorem C for k = 2), we need the following result.

Lemma 2.3 Suppose G does not have a hamiltonian path. Let T be a 2% -maximal
tree of G, r the vertex of T with dy(r) = 3, and U a representative set of T with
respect to r. Then, the following hold:

1. U s independent.

i For 1 <4<3,1<j<3,4i#j,if v €B;NNg(yj), then x # v; and
a* ¢ No(U = {u;}).

3
. For1<1<3,1<j<3,|B;j|>1+4 3 [Ng(uj) N Bs| — |N3(U) N Byl.
j=1

iv. |T| 2 2+ do(U) - |N(U)].
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Proof. (i) The result follows directly from Lemma 2.2(ii7).

(27) Let = be a vertex in B;, and suppose, zu; € E(G) for some j # i. If z = v,
then G has the tree 7" = (T + v;u;) — rv; such that A(T') < 2 and V(T") = V(T), a
contradiction by Lemma 2.1. Suppose, « # v;. Then the tree T = (T + zu;) — zat
is also a 27-maximal tree with Vi(T") = (V(T1) — {y;}) U {z*}, dp(r) = 3, and
V(T") = V(T) so that zt ¢ Ng(U — {u;}) by Lemma 2.2(4i¢). Hence (i7) holds.
(i17) For 1 <4 < 3, from () and (44), {u;}, Ne(w;) N B;, (Ng(U — {w;}))" N B;, and
(No(U) — Ng(u;)) N B; are pair-wise disjoint subsets of B; where

(Ne(U — {u;}))" = {a™ s x € No(U — {u;})}.
So

| Bi]

\Y

1+ |Ng(u;) N Bi| + |(Na(U = {u:}))" N Byl
+ [(N2(U) = Ne(ui)) N Byl

= 1+ |Ng(uw;) N B;| + [(Na(U — {w;})) N By
+ [(N2(U) = Ne(ui)) N Byl

= 14+ INa(uy) N B = [(Na(U — {u}) N By
+ |(N2(U) = Ng(u;)) N Byl
= 143 INo(u) N Bi| = [(Na(U) 0 B,

(tv) Since 2 > ]é |Na(uj) N {r}| —|N3(U) N {r}|, and from (4ii),

3 3 3

SIBI+2 > 3+ > [Na(u) N Bi| =Y |N3(U)N Byl

i=1 i=1 j=1 i=1

+ Z [N (u;) 0 {r}] = [Ns(U) N {r}]

w

w

w

Since Ne(Vi(T)) C V(T)(= U B; U {r}) by Lemma 2.2(7),

(3

T > 2+ [Na(u;)| - INs(U)].

j=1

To prove Theorem C for k£ > 3, we need the following result.
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Lemma 2.4 Suppose k > 3 and G does not have a k-tree. Let T be a k*-mazimal
tree of G, r the vertex of T with dr(r) = k+1, and U a representative set of T with
respect to r. Then the following hold:

1. U s independent.

ii. Forl <i<k+1, ife € BiNNg(Vi(T)—B;) then x # v; and Nj(x)NNg(u;) =
0 = Nr(z) N Ne(VA(T) — B;).

iti. For any two distinct vertices x,y of V(T) — U, if Nj(z) N Ni(y) # 0 then
m k+1
{z,y} C Ng(r). In particular, Nj(z) N (U Nj(z)) =0 if 2 ¢ U N(U).
i=2

i1

~

iv. U, Ng(U), N3(y1), N3 (y2), - - -, Np(ym) are pair-wise disjoint subsets of V(T').

v. |T| > 2+ da(U) + %1 (k — i)|N,(U)].

=2

Proof. (i) The result follows directly from Lemma 2.2(ii7).

(#7) Let x be a vertex in B;, and suppose, zz € E(G) for z € (Vi(T) — B;. Put
T = (T + xz) —vr. If @ = v; then A(T') < k and V(T") = V(T), a contradiction
by Lemma 2.1, which shows x # v;. Let 2’ be a vertex in Ny(zx). If 2/’ € E(G) for
some z' € Vi(T') — B;, then G has the tree T" = (T"+2'2') — zz’ such that A(T") < k
and V(T") = V(T), a contradiction by Lemma 2.1. If 2’ # 2~ and 2'v; € E(G),
then G has the tree T" = (T" 4 z'u;) — xa' such that A(T") < k and V(T") = V(T),
a contradiction by Lemma 2.1. Hence (i¢) holds.

(7i¢) The result is a direct consequence of the definition of N7.(z) and Nj(y).

(iv) Using (i), (i7), (i17), and the definition of Nj(y;), one can easily check that (iv)
holds.

(v) For 1 < ¢ < m, it holds by Lemma 2.2(#i7) that dr(y;) = k, and hence |Ni(y;)| =
kE — 1. Then, by (iv),

|T|

v

|U|+|NG(U)I+ZIN%(%)I

k+1
L+k+ > IN(U)| + (k= D)m

i=1

v
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k1
By the definition of m = | |J N;(U) — {r}|,
i=2

k+1 k+1
IT| > 1+k+ > IN(U)| + (k= 1)( Z|N -1)
=1
k+1 k+1
= 24 ) iN(O) + ) (k= )|N(D)]
=1 =2
k+1

= 2+4de(U Z : — )Ny (U)].

3 Proof of Theorems B and C

Suppose G does not have a k-tree but satisfies the hypothesis of the Theorem C.
Let T be a k*-maximal tree of G. Assume that T has the least possible number of
end vertices among all kT-maximal trees with vertex set V(T'). Let r be the vertex
of T with dy(r) = k+ 1, and U a representative set of T' with respect to r. Let
b+l
U = {viy,Vip, -+, Vipy, }» Where 4y < iy < ... < dg4;. Assume that b = iij is
j=1
maximum among all possible choices of T', r, and U (with fixed vertex set V(T')).
Now we show that d;; <ij—j+1lfor1 <5 <k+1
For each v;, € U and each v, € Ng(v;;) — Ny (v, ), consider the graph T'+wv;;v,. Recall
Lemmas 2.3(7) and 2.4(i) to see that v, ¢ U. Let v v,, where s # i;, be the edge in
the unique cycle of T+ v,. Set T := (T + v;v4) — vev,. Clearly, [Vi(T")] < [VA(T)|.
But, |[Vi(T)| < [VA(T")| by the choice of T. Hence, [Vi(T')| = [VA(T")| and dr(vs) = 1.
Then, by the choice of b, we have s < ¢;. Therefore, for each j, 1 < j <k + 1, there
are at least d;; — 1 vertices in T' — U whose indices are less than i;. In U, there are
J — 1 vertices which indices less than i;. Therefore, i; > d;; —1+j —1 or equivalently,
dij S ij - j + 1.
Moreover, by Lemmas 2.2(i7), 2.3(7) and 2.4(¢), U is a k + 1-frame, and by Lemmas
2.3(iv) and 2.4(v),
b+l
] > 2+ do(U) + 3 (k= )| Nu(U),

n—2>de(U) + Z (k= D)|N:(U)],

we obtain a contradiction. The proof of Theorem C is complete.
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As a simple corollary of the above theorem we get the following condition:

Corollary 1 Suppose that for any set of k + 1 vertices S = {vyy, Vi, ..., Vs, } Of
G, i1 < iy < -+ <idgp+1suchthat d; <i;—3j+1,1< 35 < k+1, it holds that

k1
da(S)+ Y (k—=9)|N;(S)| > n—1. Then G has a k-tree.
i=2

From Theorem C, we also have the following results of Aung Kyaw [4] and Min Aung
and Aung Kyaw [1].

Corollary 2 Let G be a connected graph and k(> 2) an integer. If

k+1

+Z c— )| Ni(S)| >n—1

for every k + 1-frame S in G, then G has a k-tree.

Corollary 3 Let V(G) = {v1,v2,...,0,} and dg(v;) = d; for 1 < i < n. Suppose,
for any k-frame S = {vi,,vs,,...,vi,} CV(G), iy < iy < --- < iy, such that d;; <

k=1
i;j—j+1,1<j <k, it holds that dg(S) + > (k —)|N;(S)| > n—1. Then G has
i=2

a k-tree.

Example 1. The degree sequence of a graph drawn in Figure 2.11is 1,1,3,3,4,4,4.

The corresponding values of (d; —i— 1) are 1,2,1,2,2,3,4. Then the minimum value
3

of dg(S) + > (2 —9)|N;(S)| subject to the conditions of Corollary 1 is 6, hence G
i=2

i=
has a hamiltonian path. But dg({vy,v2,vs}) — |Ns({v1,va,v3}| = 5; one cannot say
by Theorem A that G has a hamiltonian path.

Figure 2.1
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Example 2. The degree sequence of a graph drawn in Figure 2.21is1,1,1,2,3,4,4,4.
The corresponding values of (d; —i — 1) are 1,2,3,3,3,3,4,5. Then the minimum

4
value of dg(S)+ > (3 — )| N;(S)| subject to the conditions of Corollary 1 is 9, hence
=2

i
G has a 3-tree. But dg({v1,va,vs,v4})+|No({v1,v2,v3,v4}| — | Na({v1, 02, V3,04 }| = 6;
one cannot say by Corollary 2 that G has a 3-tree.

®3

Figure 2.2
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