A note on potentially $K_{1,1,t}$ -graphic sequences

GANG CHEN

Department of Mathematics Ningxia University, Yinchuan Ningxia 750021 China chen_g@nxu.edu.cn

Abstract

For a given graph H, let $\sigma(H,n)$ be the smallest even integer such that every n-term non-increasing graphic sequence $\pi = (d_1, d_2, \ldots, d_n)$ with $\sigma(\pi) = d_1 + d_2 + \cdots + d_n \geq \sigma(H,n)$ has a realization G containing H as a subgraph. In this paper, we determine the values of $\sigma(K_{1,1,t},n)$ for $t \geq 3$ and $n \geq 2\left[\frac{(t+5)^2}{4}\right] + 3$, where $K_{r,s,t}$ is the $r \times s \times t$ complete 3-partite graph.

1 Introduction

The set of all sequences $\pi = (d_1, d_2, \dots, d_n)$ of nonnegative integers with $d_i \leq n-1$ for each i is denoted by NS_n . A sequence $\pi \in NS_n$ is said to be graphic if it is the degree sequence of a simple graph G on n vertices, and such a graph G is called a realization of π . The set of all graphic non-increasing sequences in NS_n is denoted by GS_n . For a sequence $\pi = (d_1, d_2, \dots, d_n) \in NS_n$, define $\sigma(\pi) = d_1 + d_2 + \dots + d_n$. For a given graph H, a graphic sequence π is potentially H-graphic if there exists a realization of π containing H as a subgraph. Gould et al. [3] considered the following variation of the classical Turán-type extremal problems: determine the smallest even integer $\sigma(H,n)$ such that every $\pi \in GS_n$ with $\sigma(\pi) \geq \sigma(H,n)$ is potentially Hgraphic. If $H=K_r$, the complete graph on r vertices, this problem was considered by Erdős et al. [1] where they showed that $\sigma(K_3, n) = 2n$ for $n \geq 6$ and conjectured that $\sigma(K_r, n) = (r-2)(2n-r+1)+2$ for sufficiently large n. Gould et al. [3] and Li and Song [6] independently proved that the conjecture holds for r=4 and $n\geq 8$. Li et al. [7,8] showed that the conjecture is true for r=5 and $n\geq 10$ and for $r\geq 6$ and $n \ge \binom{r-1}{2} + 3$. For $H = K_{r,s}$, the $r \times s$ complete bipartite graph, Gould et al. [3] determined $\sigma(K_{2,2},n)$ for $n \geq 4$, Yin and Li [10] determined $\sigma(K_{3,3},n)$ for $n \geq 6$ and $\sigma(K_{4,4},n)$ for $n \geq 8$. Recently, Yin, Li and Chen [9,11,12] determined $\sigma(K_{r,s},n)$ for $s \geq r \geq 1$ and sufficiently large n. We now consider the case of $H = K_{1,1,t}$. Erdős et

al. in [1] determined $\sigma(K_{1,1,1}, n)$ for $n \geq 6$ since $K_{1,1,1} = K_3$, Lai in [5] determined $\sigma(K_{1,1,2}, n)$ for $n \geq 4$ since $K_{1,1,2} = K_4 - e$, a graph obtained from K_4 by deleting one edge. Moreover, Eschen and Niu [2] characterized the potentially $K_{1,1,2}$ -graphic sequences. The purpose of this paper is to determine the values of $\sigma(K_{1,1,t}, n)$ for $t \geq 3$ and $n \geq 2 \left\lfloor \frac{(t+5)^2}{4} \right\rfloor + 3$.

2 Preliminaries

In order to prove our main results, we need the following notations and results.

Let $\pi = (d_1, d_2, \dots, d_n) \in NS_n$ be a non-increasing sequence and $1 \le k \le n$. Let

$$\pi_k'' = \left\{ \begin{array}{ll} (d_1-1,\ldots,d_{k-1}-1,d_{k+1}-1,\ldots,d_{d_k+1}-1,d_{d_k+2},\ldots,d_n), & \text{if } d_k \geq k, \\ (d_1-1,\ldots,d_{d_k}-1,d_{d_k+1},\ldots,d_{k-1},d_{k+1},\ldots,d_n), & \text{if } d_k < k. \end{array} \right.$$

Denote $\pi'_k = (d'_1, d'_2, \dots, d'_{n-1})$, where $d'_1 \geq d'_2 \geq \dots \geq d'_{n-1}$ is the rearrangement of the n-1 terms in π''_k . Then π'_k is called the *residual sequence* obtained by laying off d_k from π .

Theorem 2.1. [4] Let $\pi = (d_1, d_2, ..., d_n) \in NS_n$ be a non-increasing sequence and $1 \le k \le n$. Then π is graphic if and only if π'_k is graphic.

Theorem 2.2. [9,10] Let $\pi=(d_1,d_2,\ldots,d_n)\in NS_n$, $\Delta=\max\{d_1,d_2,\ldots,d_n\}$ and $\sigma(\pi)$ be even. The rearrangement sequence of π is denoted by $\pi^*=(d_1^*,d_2^*,\ldots,d_n^*)$, where $d_1^*\geq d_2^*\geq \cdots \geq d_n^*$ is the rearrangement of d_1,d_2,\ldots,d_n . If there exists an integer $n_1\leq n$ such that $d_{n_1}^*\geq h\geq 1$ and $n_1\geq \frac{1}{h}\left[\frac{(\Delta+h+1)^2}{2}\right]$, then π is graphic.

Theorem 2.3. [9,10] Let $\pi = (d_1, ..., d_r, d_{r+1}, ..., d_{r+s}, d_{r+s+1}, ..., d_n) \in GS_n$, where $d_r \geq r + s - 1$ and $d_n \geq r$. If $n \geq (r+2)(s-1)$, then π is potentially $K_{r,s}$ -graphic.

Theorem 2.4.

- (1) [7] If r = 4, then $\sigma(K_{r+1}, n) = 6n 10 = (r 1)(2n r) + 2$ for $n \ge 10$;
- (2) [8] If $r \ge 5$, then $\sigma(K_{r+1}, n) = (r-1)(2n-r) + 2$ for $n \ge {r \choose 2} + 3$;
- (3) [8] If $r \geq 5$, then $\sigma(K_{r+1}, n) \leq 2n(r-2) + 8$ for $2r + 2 \leq n \leq {r \choose 2} + 3$.

Theorem 2.5. [3] If $\pi = (d_1, d_2, \dots, d_n) \in GS_n$ has a realization G containing H as a subgraph, then there exists a realization G' of π containing H as a subgraph so that the vertices of H have the largest degrees of π .

Lemma 2.1. Let $\pi \in GS_n$. If π is potentially $K_{2,t+2}$ -graphic, then π is potentially $K_{1,1,t}$ -graphic.

Proof. Let G be a realization of π that contains $K_{2,t+2}$ as a subgraph, where $X = \{u_1, u_2\}, Y = \{u_3, u_4, \ldots, u_{t+4}\}$ is the bipartite partition of the vertex set of $K_{2,t+2}$. If $u_1u_2 \in E(G)$, then G contains $K_{1,1,t}$ as a subgraph, i.e., π is potentially $K_{1,1,t}$ -graphic. Assume $u_1u_2 \notin E(G)$. If there exist $u_i, u_j, 3 \le i < j \le t+4$ such

that $u_i u_j \notin E(G)$, then $G' = G + \{u_1 u_2, u_i u_j\} - \{u_1 u_i, u_2 u_j\}$ is a realization of π , and clearly contains $K_{1,1,t}$ as a subgraph. Hence π is potentially $K_{1,1,t}$ -graphic. If $u_i u_j \in E(G)$ for any $u_i, u_j, 3 \leq i < j \leq t+4$, then $G[Y] = K_{t+2}$ contains $K_{1,1,t}$ as a subgraph, and hence π is also potentially $K_{1,1,t}$ -graphic. \square

Let $n \ge t+2$ and $\pi = (d_1, d_2, \dots, d_n) \in GS_n$, where $d_2 \ge t+1$ and $d_{t+2} \ge 2$. Let

$$\rho'_1(\pi) = (d_2 - 1, d_3 - 1, \dots, d_{t+2} - 1, d_{t+3} - 1, \dots, d_{d_{1}+1} - 1, d_{d_{1}+2}, \dots, d_n),$$

and denote $\rho_1(\pi) = (d_2 - 1, d_3 - 1, \dots, d_{t+2} - 1, d_{t+3}^{(1)}, d_{t+4}^{(1)}, \dots, d_n^{(1)})$, where $d_{t+3}^{(1)} \ge d_{t+4}^{(1)} \ge \dots \ge d_n^{(1)}$ is the rearrangement of $d_{t+3} - 1, \dots, d_{d_1+1} - 1, d_{d_1+2}, \dots, d_n$. Let

$$\rho_2'(\pi) = (d_3 - 2, \dots, d_{t+2} - 2, d_{t+3}^{(1)} - 1, \dots, d_{d_2+1}^{(1)} - 1, d_{d_2+2}^{(1)}, \dots, d_n^{(1)}),$$

and denote $\rho_2(\pi) = (d_3 - 2, \dots, d_{t+2} - 2, d_{t+3}^{(2)}, d_{t+4}^{(2)}, \dots, d_n^{(2)})$, where $d_{t+3}^{(2)} \ge d_{t+4}^{(2)} \ge \dots \ge d_n^{(2)}$ is the rearrangement of $d_{t+3}^{(1)} - 1, \dots, d_{d_2+1}^{(1)} - 1, d_{d_2+2}^{(1)}, \dots, d_n^{(1)}$.

Lemma 2.2. Let $n \ge t+2$ and $\pi = (d_1, d_2, \dots, d_n) \in GS_n$, where $d_2 \ge t+1$ and $d_{t+2} \ge 2$. If $\rho_2(\pi)$ is graphic, then π is potentially $K_{1,1,t}$ -graphic.

Proof. It follows easily from the definition of $\rho_2(\pi)$ that π is potentially $K_{1,1,t}$ -graphic. \square

3 Main Result

Theorem 3.1. Let $t \geq 3$ and $n \geq t + 2$. Then

$$\sigma(K_{1,1,t},n) \geq \left\{ \begin{array}{ll} (n-1)(t+1) + 2 & \text{ if n is odd or t is odd,} \\ (n-1)(t+1) + 1 & \text{ if n and t are even.} \end{array} \right.$$

Proof. If n is odd or t is odd, let $\pi=(n-1,t^{n-1})$, where the symbol x^y in a sequence stands for y consecutive terms, each equal to x, then $\pi'_1=(d'_1,\ldots,d'_{n-1})=((t-1)^{n-1})$. It is easy to see that π'_1 is graphic and not potentially $K_{1,t}$ or $K_{1,1,t-1}$ -graphic. Hence π is graphic and not potentially $K_{1,1,t}$ -graphic. Thus $\sigma(K_{1,1,t},n) \geq \sigma(\pi) + 2 = (n-1)(t+1) + 2$.

Now assume that n and t are even. Take $\pi=(n-1,t^{n-2},t-1)$. Also, it is easy to see that $\pi'_1=((t-1)^{n-2},t-2)$ is graphic and not potentially $K_{1,t}$ or $K_{1,1,t-1}$ -graphic, and hence π is graphic and not potentially $K_{1,1,t}$ -graphic. Thus $\sigma(K_{1,1,t},n)\geq \sigma(\pi)+2=(n-1)(t+1)+1$. \square

In order to determine the exact values of $\sigma(K_{1,1,t},n)$ for $t \geq 3$ and $n \geq 2\left[\frac{(t+5)^2}{4}\right] + 3$, we denote $m = \left[\frac{(t+5)^2}{4}\right]$ and also need the following Lemmas.

Lemma 3.1. Let $t \geq 3$ and n = m. Then $\sigma(K_{1,1,t}, n) \leq (n-1)(t+1) + 2 + (t-1)(m+3)$.

Proof. If t = 3, then $n = m = 16 \ge 10$. If $4 \le t \le 9$, then $n = m \ge {t+1 \choose 2} + 3$. By Theorem 2.4(1) and (2),

$$\begin{array}{lll} \sigma(K_{1,1,t},n) & \leq & \sigma(K_{t+2},n) = t(2n-t-1)+2 \\ & = & tn+n-t+1+(t-1)(n-t-1) \\ & = & (n-1)(t+1)+2+(t-1)(m-t-1) \\ & \leq & (n-1)(t+1)+2+(t-1)(m-4) \\ & \leq & (n-1)(t+1)+2+(t-1)(m+3). \end{array}$$

If $t \ge 10$, then $n = m \le {t+1 \choose 2} + 3$. By Theorem 2.4(3),

$$\begin{array}{lcl} \sigma(K_{1,1,t},n) & \leq & \sigma(K_{t+2},n) \leq 2n(t-1)+8 \\ & = & tn+n-t+1+n(t-3)+t+7 \\ & \leq & (n-1)(t+1)+2+m(t-3)+3(t-3) \\ & \leq & (n-1)(t+1)+2+(t-1)(m+3). \end{array}$$

Lemma 3.2. Let $t \geq 3$, $n \geq m$ and $\pi = (d_1, d_2, \ldots, d_n) \in GS_n$, where $d_n \geq 2$. If $\sigma(\pi) \geq (n-1)(t+1) + 2$, then π is potentially $K_{1,1,t}$ -graphic.

Proof. Since $\sigma(\pi) \geq (n-1)(t+1) + 2$, $d_2 \geq t+1$. If $d_2 \geq t+3 = 2+(t+2)-1$, then by $n \geq m \geq 4(t+1)$ and Theorem 2.3, π is potentially $K_{2,t+2}$ -graphic. Hence π is potentially $K_{1,1,t}$ -graphic by Lemma 2.1. Assume $t+1 \leq d_2 \leq t+2$. Since $\pi'_1 = (d'_1, d'_2, \ldots, d'_{n-1})$ satisfies $d'_1 \geq t$, π'_1 is potentially $K_{1,t}$ -graphic. If $d_1 = n-1$ or there exists an integer $k, t+2 \leq k \leq d_1+1$ such that $d_k > d_{k+1}$, then $d'_1 = d_2-1$, $d'_2 = d_3-1, \ldots, d'_{t+1} = d_{t+2}-1$, by Theorem 2.5, π is potentially $K_{1,1,t}$ -graphic. We now further assume that

$$n-2 \ge d_1 \ge \dots \ge d_{t+1} \ge d_{t+2} = \dots = d_{d_1+2} \ge d_{d_1+3} \ge \dots \ge d_n \ge 2.$$

Denote $\ell = \max\{i: d_{t+2} = d_{d_1+2+i}\}$. We consider the following cases:

Case 1. $d_2 = t + 1$. By the definition of $\rho_2(\pi)$, it is easy to see that

$$\rho_2(\pi) = (d_3 - 2, \dots, d_{t+2} - 2, d_{d_{t+2}}, \dots, d_{d_{t+2}+\ell}, d_{t+3} - 1, \dots, d_{d_{t+1}} - 1, d_{d_{t+3}+\ell}, \dots, d_n).$$

If $d_{t+2} \leq t-1$, then by $d_2 = t+1$, $\sigma(\pi) = d_1 + d_2 + \cdots + d_{t+1} + d_{t+2} + \cdots + d_n \leq n-1+t(t+1)+(n-t-1)(t-1) = nt+t$. Obviously, if $nt+t \geq \sigma(\pi) \geq (n-1)(t+1)+2$, then $n \leq 2t-1$. In fact, it is impossible that $n \leq 2t-1$ for $n \geq m$, where $m = \left[\frac{(t+5)^2}{4}\right]$ and $t \geq 3$. So nt+t < (n-1)(t+1)+2 is a contradiction. Hence $d_{t+2} \geq t$. So we have

$$\max\{d_3-2,\ldots,d_{t+2}-2,d_{d_1+2},\ldots,d_{d_1+2+\ell},d_{t+3}-1,\ldots,d_{d_1+1}-1,d_{d_1+3+\ell},\ldots,d_n\}$$

$$\leq t+1,$$

$$\min\{d_3-2,\ldots,d_{t+2}-2,d_{d_1+2},\ldots,d_{d_1+2+\ell},d_{t+3}-1,\ldots,d_{d_1+1}-1,d_{d_1+3+\ell},\ldots,d_n\} \geq 1.$$

It follows from $\sigma(\rho_2(\pi))$ is even, $\left[\frac{(t+1+1+1)^2}{4}\right] \leq \left[\frac{(t+5)^2}{4}\right] - 2 \leq n-2$ and Theorem 2.2 that $\rho_2(\pi)$ is graphic. Hence π is potentially $K_{1,1,t}$ -graphic by Lemma 2.2.

Case 2. $d_2 = t + 2$. By the definition of $\rho_2(\pi)$, $\rho_2(\pi) = (d_3 - 2, \dots, d_{t+2} - 2, d_{t+3} - 1, \dots, d_{d_{1+2}} - 1, d_{d_{1+3}}, \dots, d_n)$ for $\ell = 0$ or $\rho_2(\pi) = (d_3 - 2, \dots, d_{t+2} - 2, d_{d_{1+3}}, \dots, d_{d_{1+2}+\ell}, d_{t+3} - 1, \dots, d_{d_{1+2}} - 1, d_{d_{1+3}+\ell}, \dots, d_n)$ for $\ell \geq 1$. Since the largest term in $\rho_2(\pi)$ is at most t+2 and the smallest term in $\rho_2(\pi)$ is at least 1, by $\left[\frac{(t+2+1+1)^2}{4}\right] \leq \left[\frac{(t+5)^2}{4}\right] - 2 \leq n-2$ and Theorem 2.2, $\rho_2(\pi)$ is graphic. Hence π is also potentially $K_{1,1,t}$ -graphic by Lemma 2.2. \square

Lemma 3.3. Let $t \geq 3$ and n = m + s, where $0 \leq s \leq m + 3$. Then

$$\sigma(K_{1,1,t},n) \le (n-1)(t+1) + 2 + (t-1)(m+3-s).$$

Proof. Use induction on s. By Lemma 3.1, Lemma 3.3 holds for s=0. Now assume that Lemma 3.3 holds for s-1, $0 \le s-1 \le m+2$. Let n=m+s and $\pi=(d_1,d_2,\ldots,d_n)\in GS_n$ with $\sigma(\pi)\ge (n-1)(t+1)+2+(t-1)(m+3-s)$. It is enough to prove that π is potentially $K_{1,1,t}$ -graphic. Clearly, $\sigma(\pi)\ge (n-1)(t+1)+2$. If $d_n\ge 2$, then by Lemma 3.2, π is potentially $K_{1,1,t}$ -graphic. If $d_n\le 1$, then π'_n satisfies $\sigma(\pi'_n)=\sigma(\pi)-2d_n\ge (n-1)(t+1)+2+(t-1)(m+3-s)-2=(n-2)(t+1)+2+(t-1)(m+3-(s-1))$. By the induction hypothesis, π'_n is potentially $K_{1,1,t}$ -graphic, and hence π is also potentially $K_{1,1,t}$ -graphic. Thus, $\sigma(K_{1,1,t},n)\le (n-1)(t+1)+2+(t-1)(m+3-s)$. \square

Lemma 3.4. If $t \geq 3$ and $n \geq 2m + 3$, then $\sigma(K_{1,1,t}, n) \leq (n-1)(t+1) + 2$.

Proof. Use induction on n. It follows from Lemma 3.3 that Lemma 3.4 holds for n=2m+3. Now assume that Lemma 3.4 holds for n-1, $n-1\geq 2m+3$. Let $\pi=(d_1,d_2,\ldots,d_n)\in GS_n$ with $\sigma(\pi)\geq (n-1)(t+1)+2$. We only need to prove that π is potentially $K_{1,1,t}$ -graphic. If $d_n\geq 2$, then by Lemma 3.2, π is potentially $K_{1,1,t}$ -graphic. If $d_n\leq 1$, then π'_n satisfies $\sigma(\pi'_n)=\sigma(\pi)-2d_n\geq (n-1)(t+1)+2-2\geq (n-2)(t+1)+2$. By the induction hypothesis, π'_n is potentially $K_{1,1,t}$ -graphic, and hence π is also potentially $K_{1,1,t}$ -graphic. \square

Theorem 3.2. Let $t \geq 3$ and $n \geq 2m + 3$. Then

$$\sigma(K_{1,1,t},n) = \left\{ \begin{array}{ll} (n-1)(t+1) + 2 & \text{ if n is odd or t is odd,} \\ (n-1)(t+1) + 1 & \text{ if n and t are even.} \end{array} \right.$$

Proof. If n is odd or t is odd, then by Theorem 3.1 and Lemma 3.4, $\sigma(K_{1,1,t},n) = (n-1)(t+1)+2$. If n and t are even, then $(n-1)(t+1)+1 \leq \sigma(K_{1,1,t},n) \leq (n-1)(t+1)+2$ by Theorem 3.1 and Lemma 3.4. Since $\sigma(K_{1,1,t},n)$ is even, we have $\sigma(K_{1,1,t},n) = (n-1)(t+1)+1$. \square

Acknowledgements

The author is grateful to the referee for his valuable comments and suggestions.

References

- [1] P. Erdős, M.S. Jacobson and J. Lehel, Graphs realizing the same degree sequences and their respective clique numbers, in: Y. Alavi et al., (Eds.), Graph Theory, Combinatorics and Applications, John Wiley & Sons, New York, 1991, Vol. 1, 439–449.
- [2] E.M. Eschen and J.B. Niu, On potentially $K_4 e$ -graphic sequences, Australasian J. Combinatorics, 29 (2004), 59–65.
- [3] R.J. Gould, M.S. Jacobson and J. Lehel, Potentially G-graphical degree sequences, in: Y. Alavi et al., (Eds.), Combinatorics, Graph Theory, and Algorithms, New Issues Press, Kalamazoo Michigan, 1999, Vol.1: 451–460.
- [4] D.J. Kleitman and D.L. Wang, Algorithm for constructing graphs and digraphs with given valences and factors, Discrete Math., 6 (1973), 79–88.
- [5] C.H. Lai, A note on potentially $K_4 e$ -graphical sequences, Australasian J. Combinatorics, 24(1) (2001), 123–127.
- [6] J.S. Li and Z.X. Song, An extremal problem on the potentially P_k -graphic sequence, Discrete Math., 212 (2000), 223–231.
- [7] J.S. Li and Z.X. Song, The smallest degree sum that yields potentially P_k -graphic sequences, J. Graph Theory, 29 (1998), 63–72.
- [8] J.S. Li, Z.X. Song and R. Luo, The Erdős-Jacobson-Lehel conjecture on potentially P_k -graphic sequences is true, Science in China, Ser.A, 41(1998), 510–520.
- [9] J.H. Yin and J.S. Li, The smallest degree sum that yields potentially $K_{r,r}$ -graphic sequences, Science in China, Ser.A, 45 (2002), 694–705.
- [10] J.H. Yin and J.S. Li, An extremal problem on potentially $K_{r,s}$ -graphic sequences, Discrete Math., 260 (2003), 295–305.
- [11] J.H. Yin, J.S. Li and G.L. Chen, The smallest degree sum that yields potentially $K_{2,s}$ -graphic sequences, Ars Combinatoria 74(2005), 213–222.
- [12] J.H. Yin, J.S. Li and G.L. Chen, A variation of a classical Turán-type extremal problem, European J. Combinatorics 25 (2004) 989–1002.