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Abstract

Let G be a graph of size n with vertex set V(G) and edge set E(G). A
p-labeling of G is a one-to-one function f : V(G) — {0,1,...,2n} such
that {|f(u) — f(v)| : {u,v} € E(G)} = {@1,22,...,2,}, where for each
i €{1,2,...,n} either z; =i or z; = 2n + 1 — 4. Such a labeling of G
yields a cyclic G-decomposition of Ky,,1. It is conjectured that every
2-regular graph G has a p-labeling. We show that this conjecture holds
when G has at most three components.

1 Introduction

If a and b are integers we denote {a,a + 1,...,b} by [a,b] (if a > b, [a,b] = 0).
Let N denote the set of nonnegative integers and Z,, the group of integers modulo
n. For a graph G, let V(G) and E(G) denote the vertex set of G and the edge set
of G, respectively. The order and the size of a graph G are |V(G)| and |E(G)],
respectively.

Let V(Ky) = Zy and let G be a subgraph of K. By clicking G, we mean applying
the isomorphism ¢ — i4+1to V(G). Let H and G be graphs such that G is a subgraph
of H. A G-decomposition of H is a set I' = {G1, G, ..., G} of pairwise disjoint
subgraphs of H each of which is isomorphic to G and such that E(H) = |J._, E(G)).
If H is K}, a G-decomposition I" of H is cyclic if clicking is a permutation of I". If
G is a graph and r is a positive integer, rG denotes the vertex disjoint union of r
copies of G.

For any graph G, a one-to-one function f : V(G) — N is called a labeling (or a
valuation) of G. In [19], Rosa introduced a hierarchy of labelings. We add a few items
to this hierarchy. Let G be a graph with n edges and no isolated vertices and let f be a
labeling of G. Let f(V(G)) = {f(u) : u € V(G)}. Define a function f : E(G) — Z*
by f(e) = |f(u) — f(v)|, where e = {u,v} € E(G). Let E(G) = {f(e) : e € E(G)}.
Consider the following conditions:
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) = {z1,22,...,2,}, where for each i € [1,n] either z; = i or z; =
2n+1—1,

(t4) E(G) = [1,n].
If in addition G is bipartite with bipartition {4, B} of V(G) (with every edge in G
having one endvertex in A and the other in B) such that

(¢5) for each {a,b} € E(G) with a € A and b € B, we have f(a) < f(b),

(¢6) there exists an integer A (called the boundary value of f) such that f(a) < A
for all a € A and f(b) > X for all b € B.

Then a labeling satisfying the conditions:
(€1), (¢3) is called a p-labeling;

(€1), (¢4) is called a o-labeling;
(€2), (¢4) is called a S-labeling.

A [-labeling is necessarily a o-labeling which in turn is a p-labeling. If G is bipartite
and a p, o or B-labeling of G also satisfies (¢5), then the labeling is ordered and is
denoted by p*, o or 87, respectively. If in addition (¢6) is satisfied, the labeling is
uniformly-ordered and is denoted by p™*, o™t or S+, respectively.

A [-labeling is better known as a graceful labeling and a uniformly-ordered (-
labeling is an «-labeling as introduced in [19].

Labelings are critical to the study of cyclic graph decompositions as seen in the
following two results from [19] and [11], respectively.

Theorem 1. Let G be a graph with n edges. There exists a cyclic G-decomposition
of Kapy1 if and only if G has a p-labeling.

Theorem 2. Let G be a graph with n edges that has a p*-labeling. Then there exists
a cyclic G-decomposition of Kopn.i1 for all positive integers x.

A non-bipartite graph G is almost-bipartite if G contains an edge e whose removal
renders the remaining graph bipartite (for example, odd cycles are almost-bipartite).
In [5], Blinco et al. introduced a variation of a p-labeling of an almost-bipartite
graph G of size n that yields cyclic G-decompositions of Ky, 1. They called this
labeling a v-labeling. Rather than restate the (lengthy) definition of a 7-labeling
here, we direct the interested reader to [5]. We do note however that a y-labeling is
necessarily a p-labeling.

Let G be a graph with n edges and Eulerian components and let h be a o-labeling
of G. It is well-known (see [3]) that we must have n =0 or 3 (mod 4). Moreover, if
such a G is bipartite, then n = 0 (mod 4). We shall refer to this restriction as the
parity condition. There are no such restrictions on |E(G)| if & is a p-labeling.

Theorem 3. (Parity Condition) If a graph G with Eulerian components and n
edges has a o-labeling, then n =0 or 3 (mod 4). If such a G is bipartite, then n =0
(mod 4).



p-LABELING THE UNION OF THREE CYCLES 157

In [19], Rosa presented a- and S-labelings of Cyy,, and of Capys, respectively. It
is also known that both Cypy1 and Ciyype admit p-labelings. It was shown in [11]
that there exists a pT-labeling of Cypyo, for all positive integers m. It can be easily
checked that this labeling is actually a p**-labeling.

In this manuscript, we will focus on labelings of 2-regular graphs (i.e., the vertex-
disjoint union of cycles). If a 2-regular graph G is bipartite, then it is known that G
admits a ot-labeling if the parity condition is satisfied (see [11]) and a p**-labeling
otherwise (see [4]). A 2-regular graph G need not admit a [-labeling even if the
parity condition is satisfied. For example, it is shown in [16] that C3 does not admit
a B-labeling for all » > 1 and rCs never admits a §-labeling. Moreover, it is known
that C3 U C3 U C5 is the smallest 2-regular graph that satisfies the parity condition,
vet fails to have a -labeling (see [2]). It is thus reasonable to focus on labelings that
are less restrictive than §-labelings when studying 2-regular graphs.

Here, we shall show that every 2-regular graph G consisting of at most three
components has a p-labeling. In a companion article [3], it is shown that if the
parity condition is satisfied, then such a G necessarily admits a o-labeling. These
results are already known if G has at most two components (see [10]). Our results
provide further evidence in support of a conjecture of El-Zanati and Vanden Eynden
that every 2-regular graph admits a o-labeling if the parity condition is satisfied and
a p-labeling otherwise.

Let 7, s and t be positive integers > 3 and let G = C, U Cs U Cy. If we consider
the congruences of r, s and ¢t modulo 4, then G belongs to one of 20 types of graphs
(see Table 1). In each of the ten cases where the parity condition is not satisfied, we
will show that G has a p-labeling.

2  Summary of Some of the Known Results

As stated in the previous section, the following is known for cycles (see [18], [19] and
[11]).

Theorem 4. Let m > 3 be an integer. Then, C,, admits an a-labeling if m = 0
(mod 4), a p-labeling if m = 1 (mod 4), a p™*-labeling if m = 2 (mod 4), and a
B-labeling if m = 3 (mod 4).

For 2-regular graphs with two components, we have the following important result

from Abrham and Kotzig [2].

Theorem 5. Let m > 3 and n > 3 be integers. Then the graph C,, U C,, has a (-
labeling if and only if m+n =0 or 3 (mod 4). Moreover, Cp, UCy, has an a-labeling
if and only if both m and n are even and m +n =0 (mod 4).

If the parity condition is not satisfied, then we have the following from [4] and [10].

Theorem 6. Let m > 3 and n > 3 be integers such that m+n =1 or 2 (mod 4).
Then C,, UC,, has a p™*-labeling if both m and n are even and a p-labeling otherwise.
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Table 1. Labelings of C, UCs U Cy, rys,t > 3

For 2-regular graphs with more than two components, the following is known. In
[15], Kotzig shows that if » > 1, then rC3 does not admit a S-labeling. Similarly,
he shows that 7Cs does not admit a S-labeling for any r. In [16], Kotzig shows that
3C4x+1 admits a S-labeling for all & > 2. From results in [8], it can be shown that rCj
admits a p-labeling for all » > 1. The p-labeling in [8] can be modified to produce a
o-labeling of rC3 when the parity condition is satisfied. In [12], Eshghi shows that
Com U Cay U Cyy, has an a-labeling for all m,n, and £ > 2 with m+n+k =0
(mod 2) except when m =n = k = 2. In [1], Abrham and Kotzig show that rCjy has
an a-labeling for all positive integers r # 3. In [9], it is shown that 3C,, and 4C,,
admit o-labelings if the parity condition is satisfied and p-labelings otherwise. An

additional result follows by combining results from [11] and from [4].
Theorem 7. Let G be a 2-regular bipartite graph of order n. Then G has a o*-

labeling if n =0 (mod 4) and a pt*-labeling if n = 2 (mod 4).
A result of Hevia and Ruiz [14] proves very useful.

Theorem 8. The disjoint union of a graph with a B-labeling, together with a collec-
tion of graphs with «-labelings, has a o-labeling.
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When applied to 2-regular graphs and combined with the results of Abrham and
Kotzig [2], Theorem 8 yields the following.

Corollary 9. Let z > 0 and y > 1 be integers and let G; € {Cizrrs, Cazts U
Cuyt1,Cuagy1 U Cayia}. If Gy is a 2-regular bipartite graph of order 0 (mod 4), then
G, U Gy admits a o-labeling.

In [5], it is shown that if G admits an a-labeling and j > 1, then GUCy;4; admits
a 7-labeling. Thus for example, both Cy; U Cyy U Cyzqq and Cygqr U Cayro U Cozpn
admit y-labelings. These results are generalized in [7], where it is shown that every
2-regular almost-bipartite graph G # C3 U (kC4), k € {0, 1}, has a -labeling.

3 Main results

Let r, s and t be positive integers > 3 and let G = C, U Cy U C;. We shall show that
G admits a p-labeling. If r + s+t =0 or 3 (mod 4), then G admits a o-labeling
(see [3]). Thus it suffices to show that G admits a p-labeling when 7 + s+t =1 or
2 (mod 4). Table 1 summarizes the results for labeling C, U Cs U C..

Before proceeding, some additional definitions and notational conventions are nec-
essary. We denote the path with consecutive vertices as, as, ..., a; by (a1, as, ..., a).
By (a1, az,...,a;) + (b1, b, ..., b;), where a, = b1, we mean the path (ai,. .., ax, b,

sy b]).

To simplify our consideration of various labelings, we will sometimes consider
graphs whose vertices are named by distinct nonnegative integers, which are also
their labels.

Let a, b, and k be integers with 0 < a < b and k > 0. Set d = b — a. We define
the path

P(a,k,b) = (a,a+k+2d—1,a+1l,a+k+2d—2,a+2,...,b—1,b+k,b).

1211 10 9 8

0 1 2 3 4

Ut

Figure 1. The path P(0,3,5).

We note that the labeling of P(a, k,b) is a translation of a k-graceful labeling of the
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path Pygy1 (as introduced in 1982 by Slater [20] and by Maheo and Thuillier [17]).
It is easily checked that P(a, k,b) is simple and

V(P(a, kb)) = [a,bJU[b + k, b+ k +d — 1].

Furthermore, the edge labels of P(a, k,b) are distinct and

E(P(a, k,b)) = [k, k + 2d —1].

These formulas will be used extensively in the proofs that follow.

As can be seen from Table 1, G = C, U C, U C, satisfies the parity condition in 10
of the 20 possible cases. We shall present the new results in four theorems, followed
by our main theorem.

Theorem 10. Let z,y, 2z be positive integers with x > y and let G = Capq1 UCyy1 U
Cy.. Then G has a p-labeling.

Proof. The three cycles G; = Cypt1, Gy = Cyyy1, and Gy = Cy, are defined as

follows:

Gy =
+
+

G2

Gs

P4z + 4y + 4z + 1,22 + 4y + 42 + 4,5z + 4y + 4z2)

P(5z + 4y + 42,4y + 42 + 3,6z + 4y + 4z2)

(6 +4y + 42,60 +4y + 42+ 1,82+ 8y + 8z + 4,4z + dy + 42 + 1),

P(0,2y +4z+ 2,y) + P(y,42 + 3,2y — 1) + (2y — 1,2y + 1,4y + 42 + 2,0),

P(6z+4y +42+2,22 4+ 4,6z +4y+ 52+ 1)+ P(6x + 4y + 52+ 1,3,60 + 4y + 62 + 1)
(6z +4y + 62 + 1,62 + 4y + 82 + 4,6z + 4y + 42 + 2).

0 1 26 27 28 29

1 3 36 35 33 32

Figure 2. A p-labeling of Cg U C5 U Cy

Now we compute

V(G1) = [dz+4y+42+1,60+4y+42]U [Tz + 8y + 82 +4,8z + 8y + 82+ 2]

U [6z+8y+82+3,7¢ + 8y + 82 + 2] U {6z + 4y + 42 + 1,8z + 8y + 8z + 4},
V(G2) = [0,2y —1]U By + 4z + 2,4y + 42 + 1] U [2y + 42 + 2, 3y + 42]

U {2y+ 1,4y + 4242},
V(G3) = [6z+4y+42+2,60+4y+62+1)U[6z +4y+ 72+ 5,60 + 4y + 8z + 3]

U [6x+4y + 62 +4,62 +4y + 72+ 3] U {6z + 4y + 8z + 4}.

We can order these as follows.
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Cycle Vertex Labels Cycle Vertex Labels
Go 0,2y — 1] G3 [6x + 4y + 4z + 2,62 + 4y + 62 + 1]
Gy 2y +1 Gs  [63+ 4y + 62+ 4,62 + dy + Tz + 3]
Gs [2y + 42+ 2,3y + 42] Gs3  [6x+4y+T7z+5,62 + 4y + 82 + 3]
Gs By +4z +2,4y + 4z + 1] Gs 6x +4y+82+4
Gs dy +4z +2 Gy [62 + 8y +8z+3,7x + 8y + 8z + 2]
G1  [Az+4y+4z+ 1,6z + 4y + 42] G1 [Tz +8y+8z+4,8z + 8y + 82+ 2]
G 6z +4y +4z+1 G 8+ 8y +8z+4

The vertices of the three cycles are distinct and contained in [0,8z + 8y + 8z + 4].
Note that if x = 1, the set [Tz 4+ 8y + 8z + 4,8z + 8y + 8z + 2] will be empty. If in
addition y = 1, the set [2y + 42z + 2, 3y + 4z] is empty. Finally, if in addition z = 1,
then the set [62 + 4y + 7z + 5,62 + 4y + 8z + 3] is also be empty. This however does
not change the proof.

Likewise we compute

E(G1) = [20+4y+4z+4,40+4y+4z +1]U [dy +42 + 3,2z + 4y + 42 + 2

U {1,2¢ +4y + 42 + 3,4z + 4y + 4z + 3},
E(Gy) = [2y+4z+2,4y+4z+1)U[4dz+3,2y +42] U {2,2y + 4z + 1,4y + 4z + 2},
E(G3) = [224+4,42+1]U[3,22 4+ 2] U {22 + 3,4z + 2}.

We can order these as follows

Cycle Edge Labels Cycle Edge Labels

Gl 1 G2 2y + 4Z + 1

G 2 G 2y + 4z + 2,4y + 42 + 1]

Gs 3,22+ 2] Gs dy+4z +2

G3 2243 G [Ay + 4z + 3,2z + 4y + 42 + 2]
Gj3 2z 44,42 +1] Gy 2c +4y + 42+ 3

G3 4z 42 Gy 20+ 4y + 42 + 4,4z + 4y + 42 + 1]
Gs [4z + 3,2y + 42] Gy dr+4y+42+3

Thus E(G) = [1,4z + 4y + 4z + 1] U {4z + 4y + 42 + 3}. Since 2(4z + 4y + 4z +
2)+1— (4o + 4y + 42+ 3) = 4o + 4y + 42 + 2, we have a p-labeling. If z = 1 the
set [2x + 4y + 4z 4+ 4,4z + 4y + 4z + 1] is empty. If in addition y = 1, then the set
[4z 4 3,2y + 4z] is empty. Finally, if in addition z = 1, then [2z + 4,4z + 1] is also
empty. This however does not change the proof. a

Theorem 11. Let x,y,z be nonnegative integers with x > y and z > 1 and let
G = Cuzq3 U Cay3 U Cy,. Then G has a p-labeling.

Proof. The three cycles G; = Cypts, Gy = Cyyys, and Gy = C4, are defined as
follows:

Gy = PAr+4y+4z+5,2x+4y+42+6,52 +4y +42 +5)
+ P(r+4y+4z+5,4y +42 + 5,6z + 4y + 42+ 5)
+ (bz+4y+4z+5,6c+4y+42+ 7,8z + 8y + 8z + 12,4z + 4y + 4z + 5),
Gy = P(0,2y+4z+4,y)+ P(y,42+ 3,2y) + (2y,2y + 1,4y + 42 + 4,0),
Gy = P(6z+4y+42+8,22+4,6c+4y+52+7) + P(6z +4y+52+7,3,6z +4y +62+7)

+ (6x+4y+6z+ 7,6z + 4y + 8z + 10,62 + 4y + 4z + 8).
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52 31 16 3 42 41 39 38

Figure 3. A p-labeling of C1; U C7 U Cs

Now we compute

V(G1)

[dz +4y +42 45,6z + 4y + 42+ 5] U [Tz + 8y + 82 + 11,8z + 8y + 8z + 10]

62 + 8y + 82 + 10,7z + 8y + 82 + 9| U {6z + 4y + 42 + 7,8z + 8y + 8z + 12},
V(Gs) = [0,2y]UBy+4z+4,4y+42+3)U[2y +42+ 3,3y + 42 + 2] U {2y + 1,4y + 4z + 4},

[

[

C

62 +4y +42 + 8,6z + 4y + 62+ 7] U [6x + 4y + Tz + 11,62 + 4y + 82 + 9]
62 + 4y + 62 + 10,62 + 4y + 7z + 9] U {6z + 4y + 8z + 10}.

We can order these as follows.

Cycle Vertex Labels Cycle Vertex Labels

Go [0,2y] G3 [6x + 4y + 42 + 8,62 + 4y + 62 + 7]
Go 2y +1 G3 [6x + 4y + 62 + 10,60 + 4y + 7z + 9]
G [2y + 42 + 3,3y + 42 + 2| Gy [62+4y+ 7z 411,62 + 4y + 82 + 9]
Gs By+4z+4,4y + 4z + 3] Gs 6x + 4y + 82 + 10

Go dy+4z+4 Gy [62 + 8y + 82+ 10,7z + 8y + 82 + 9]
Gi1  [Azx+4y+4z+5,6c+4y+42+5] G1 [Tz +8y+8z+ 11,8z + 8y + 8z + 10]
Gh 6 +4y+42+7 Gy 8z + 8y + 82 + 12

The vertices of the three cycles are distinct and contained in [0, 8z + 8y + 8z + 12].
Note that if x = 0, the sets [6z + 8y + 8z + 10, 7z + 8y + 82+ 9] and [Tz + 8y + 8z +
11,8z + 8y +8z+ 10] are empty. If in addition y = 0, the sets [2y +42+ 3,3y +4z+2]
and [3y + 4z + 4,4y + 4z + 3] are empty. Finally, if in addition z = 1, then the set
[6x 44y + 7z + 11,62 + 4y + 82 + 9] is also be empty. This however does not change
the proof.

Likewise we compute

E(G) = [Ra+4y+4z+6,40+4y+42+5]U [dy + 42 + 5,2z + 4y + 42 + 4]

U {2,244y +42+ 5,4z + 4y + 42 + 7},
E(Gy) = [2y+4z+4,4y+42+3]U [z +3,2y + 42 +2]U {1,2y + 4z + 3,4y + 4z + 4},
E(Gs) = [22+4,4z+1]U[3,22 + 2] U {22 + 3,4z + 2}.

We can order these as follows.
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Cycle Edge Labels Cycle Edge Labels

Go 1 Go 2y +4z+3

G 2 G [2y + 4z + 4,4y + 42 + 3]

Gs 3,22+ 2] Gs dy +4z+4

Gs 2z +3 Gy [dy +42 45,2z + 4y + 42 + 4]
Gs 22+ 4,42 + 1] Gy 20 +4y+42+5

G3 4z +2 G 2z + 4y + 42 + 6,42 + 4y + 42 + 5]
Gy [4z + 3,2y + 42 + 2] Gy dx + 4y + 42+ 7

Thus E(G) = [1,4z + 4y + 42 + 5] U {4z + 4y + 42 + 7}. Since 2(4z +4y + 42 +6) +
1— (4o +4y + 42+ 7) = 4o + 4y + 42 + 6 we have a p-labeling. If & = 0 the sets

[y

+42 45,204 4y + 4z + 4] and [2z + 4y + 4z + 6,4x + 4y + 4z + 5] are empty. If

in addition y = 0, then the sets [4z + 3,2y + 42z + 2] and [2y + 4z + 4,4y + 42 + 3] are
empty. Finally, if in addition z = 1, then [2z 44,4z + 1] is also empty. This however
does not change the proof. a

Theorem 12. Let x,y,z be nonnegative integers with x > y > 1 and let G =
Cags1 U Cayi1 U Cypqs. Then G has a p-labeling.

Proof. The three cycles G; = Cazy1, G2 = Cyyq1, and Gs = Cy,43 are defined as
follows:

Gy

G-
Gs

= P(dor+4y+42+4,2c+4y+42+5,5c+4y +42+4)

P(bz+4y + 4z + 4,4y + 42 4 6,60 + 4y + 42 + 3)

(62 +4y + 4z + 3,6z + 4y + 42 + 6,8z + 8y + 82 + 10,4z + 4y + 4z + 4),

= P(0,2y+4z+5,y) + P(y,42+ 6,2y — 1) + (2y — 1,2y + 1,4y + 42 + 5,0),

= P(6r+4y+42+7,224+5,60+4y+5247)+ P(6x +4y+52+7,4,62 +4y + 62 +7)
+ (bz+4y+ 62+ 7,60+ 4y+ 62+ 8,60 + 4y + 82+ 12,62 + 4y + 4z + 7).

+
+

20 21 22 23

42 26 36 30

Figure 4. A p-labeling of Cy U Cs U Cr

Now we compute

V(G1) = [dz+4y+4z+4,60+4y+42+3|U [Tz + 8y + 82+ 9,8z + 8y + 8z + §]

[62+8y+82+9,7x + 8y + 82+ 7| U {6x + 4y + 4z + 6,8z + 8y + 8z + 10},

0,2y — 1] U [3y + 4z + 5,4y + 42 + 4] U [2y + 42 + 5,3y + 4z + 3]

{2y + 1,4y + 4z + 5},

V(G3) = [6x+4y+4z2+7,6z+4y+ 62+ 7] U[6z + 4y + Tz + 12,6z + 4y + 82 + 11]
U [6z +4y + 62+ 11,6z + 4y + 72+ 10] U {6z + 4y + 62 + 8, 6z + 4y + 8z + 12}.

C

V(G2)

C
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We can order these as follows.

Cycle Vertex Labels Cycle Vertex Labels

Go 0,2y —1] G3 6x + 4y + 62 + 8

Go 2y +1 G3 (62 + 4y + 62 + 11,62 + 4y + Tz + 10]
Go 2y + 42+ 5,3y + 42 + 3] Gs 62 + 4y + Tz + 12,62 + 4y + 82 + 11]
Go By + 4z + 5,4y + 4z + 4] G 62 + 4y + 8z + 12

Go dy+4z+5 Gy [6x +8y+82+9,7x + 8y + 8z + 7]
Gy [r+dy+4z+4,6z+4y+42+3] Gy [Tz + 8y + 82 +9,8z + 8y + 8z + 8]
Gy 6r +4y+42+6 Gy 8r + 8y + 8z + 10

G3 [6x +4y + 4z + 7,62 + 4y + 62 + 7]

The vertices of the three cycles are distinct and contained in [0, 8z + 8y + 8z + 10].
Note that if 2 = 1, the set [62+8y+82z+9, 7z + 8y + 8z + 7] is empty. If in addition
y =1, the set [2y + 42 4+ 5,3y + 4z + 3] is empty. Finally, if in addition z = 0, then
the sets [6x+4y+62z+11,60+4y+ 72+ 10] and [6z 44y + 7z 4 12, 6 + 4y + 8z + 11]
are also empty. This however does not change the proof.

Likewise we compute

E(G) = [2o+4y+4z+5,40+4y+42+4]U [dy + 42 + 6,2z + 4y + 42 + 3]

U {3,220+ 4y + 4z + 4,4z + 4y + 4z + 6},
E(Gy) = [2y+4z+5,4y+4z+4]U [z +6,2y + 4z + 3] U {2,2y + 4z + 4,4y + 4z + 5},
E(G3) = [2z2+5,42+4]U[4,22 + 3] U {1,22 + 4,4z + 5}.

We can order these as follows.

Cycle Edge Labels Cycle Edge Labels
G3 1 G2 2y +4z+4
Go 2 Go [2y + 4z + 5,4y + 42z + 4]
Gl 3 G2 4y +4z+4+5
G3 4,2z + 3] G [dy + 42 46,2z + 4y + 42 + 3]
Gs 2z 44 Gy 20 +4y+ 42+ 4
G3 [22 + 5,42 +14] G 2z + 4y + 4z + 5,42 + 4y + 42 + 4]
G 4z+4+5 Gy 4oz +4y+4z2+6

Gy [42+6,2y + 4z + 3]

Thus E(G) = [1,4x + 4y + 4z + 4] U {4z + 4y + 42 + 6}. Since 2(da + 4y + 42 +
5)+1— (4o + 4y + 42 + 6) = 4z + 4y + 42 + 5 we have a p-labeling. If z =1
the set [4y + 4z + 6,2z + 4y + 4z + 3] is empty. If in addition y = 1, then the set
[4z + 6,2y + 4z + 3] is empty. Finally, if in addition z = 0, then the sets [4,2z + 3]
and [2z + 5,4z + 4] are also empty. This however does not change the proof. O

Theorem 13. Let z,y, z be nonnegative integers with x,z > 1 and let G = Cyzyo U
Cay+3 U Cyzr1. Then G has a p-labeling.

Proof. The three cycles G1 = Capte, Go = Cyyts, and G = Cy,qy are defined as
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follows:

Gy P(0,2z +4y + 4z + 8,2 — 1) + P(z — 1,4y + 42 + 5,2z) + (22,42 + 4y + 42 + 7,0),
Gy = P(dz+4y+42+8,2y +4z+ 4,4z + 5y + 42+ 8)

P(4z + 5y + 4z + 8,42 + 3,4z + 6y + 42+ 8)

(4 + 6y + 4z + 8,42 + 6y + 42+ 9,4 + 8y + 82 + 12,4z + 4y + 42 + 8),

P2 +1,2:+2,20+ 2+ 1)+ P2z + 2 + 1, 3,23 + 22)

(2z + 22,20 + 22+ 2,2¢ + 42+ 3,2z + 1).

+ +

Gs

+

19 16 15 32 23 9 6

Figure 5. A p-labeling of Cg U C7 U Cj

Now we compute

V(G1) = [0,2z]U Bz +4y +4z+ 7,4z + 4y + 42+ 5] U [2z + 4y + 42 + 5,3z + 4y + 42 + 5]
U {do+4y+42+ 7},
V(G2) = [do+4y+42+ 84z +6y+4z+ 8| U4z + Ty + 82 + 12,4z + 8y + 8z + 11]
U [4z + 6y + 8z + 11,4z + Ty + 8z + 10] U {4z + 6y + 4z + 9,4x + 8y + 8z + 12},
V(Gs) = [2z+1,20+22)U[2z+32+3,2z + 4z + 2]
U [2z+22+3,2z +32+1]U{2z+ 22+ 2,22 + 42 + 3}.

We can order these as follows.

Cycle Vertex Labels Cycle Vertex Labels

Gy [0,2z] G Bz +4y +4z + 7,4z + dy + 42 + 5]
Gs 22 + 1,2z + 22] Gy Az + 4y + 42 +7

G3 20 +22+2 Go [z + 4y + 42 + 8,4x + 6y + 42 + §]
Gs 2z + 22+ 3,22 + 32+ 1] e 4z 4+ 6y +42+9

Gs [22 + 32+ 3,2z + 42 + 2] Gs [dz + 6y + 8z + 11,4z + Ty + 8z + 10]
Gs 2r+4z+3 Gs [dz + Ty + 82 + 12,4z + 8y + 8z + 11]
Gy 2z +4y+42+5,3z +4y+42+5] G» 4z +8y +82+12

The vertices of the three cycles are distinct and contained in [0, 8z + 8y + 8z +12].
Note that if x = 1, the set [3z+4y+42+47, 4o +4y+4z+5] is empty. If in addition y =
0, then the sets [4z+6y+8z+11, 4z+7y+82+10] and [4z+7y+82+12, 42+8y+82+11]
are empty. Finally, if z = 1, the set [22 4+ 2z + 3,2z + 3z + 1] is also empty. This
however does not change the proof.
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Likewise we compute

E(G1) = [2z+4y+4z+8,4z+4y+42+5|U[dy + 42 + 5,2z + 4y + 42 + 6]

U {2z+4y+4z+ 7,4z + 4y + 42 + 7},
E(Gy) = [2y+4z+4,4y+4z+3]U 4z +3,2y + 42 +2]U {1,2y + 4z + 3,4y + 4z + 4},
E(G3) = [22+2,42+1]U[3,22] U {2,22 + 1,42 +2}.

We can order these as follows.

Cycle Edge Labels Cycle Edge Labels

Go 1 Go 2y +4z+3

Gs 2 Go 2y + 42+ 4,4y + 42 + 3]

Gs [3,22] Gs dy+4z+4

Gs 2z +1 Gy [dy +42 45,2z + 4y + 42 + 6]
Gs [22 4+ 2,42 + 1] Gy 20 +4y+ 4247

Gs 4242 Gy 2z + 4y + 4z + 8,42 + 4y + 42 + 5]
Gy [4z+3,2y+42+2] G dz+4y+42+7

Hence E(G) = [1,4z + 4y + 42 + 5] U {42 + 4y + 4z + 7}. Since 2(4x + 4y + 4z +
6)+1— (4o +4y +42 +7) = 4z + 4y + 4z + 6 we have a p-labeling.

As with the vertex labels, note that if x = 1, then the set [2z + 4y + 4z + 8,4z +
4y + 4z + 5] is empty. If in addition y = 0, then the sets [4z + 3,2y + 4z + 2] and
[2y+4z+4,4y+ 42+ 3] are empty. Finally, if z = 1, the set [3,2z] is empty. Neither
condition would however change the proof. a

Theorem 14. Let z,y,z be nonnegative integers with v < y < z and let G =
Cagr3 U Cayi3U Cypqs. Then G has a p-labeling.

Proof. We will distinguish two cases according to whether 2 =0 or 2 > 1.

Case 1: 2 =0

If 2 =0, then £ = y = 0 as well, thus all we need is a p-labeling of the graph
C3 U C3 U (3, which is given in Figure 6.

8 10 7 3 17 12

Figure 6. A p-labeling of C3 U (5 U Cs

Case 2: z >1
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The three cycles G1 = Cazy3, G2 = Cuayqs, and Gz = Cy,43 are defined as follows:

Gy = Pldr+4y+4z2+82x+4y+42+9,52z+4y+42+38)

+ P(x+4y+4z+8,4y +42+ 8,6z +4y + 42+ 8)

+ (6z+4y + 42+ 8,6z + 4y + 42 + 10,8z + 8y + 8z + 18,4z + 4y + 4z + 8),
Gy = P(0,2y+42+7,y) + P(y,42 +6,2y) + (2y,2y + 1,4y + 42 + 7,0),
Gy = P(br+4y+4z+11,22+ 3,60 + 4y + 52+ 12)

+ P(6z+4y+ 52 +12,4,63 + 4y + 62 + 11)

+ (6z+4y+ 62+ 11,62 + 4y + 62 + 14,6z + 4y + 8z + 16,62 + 4y + 42 + 11).

24 0 1 2 27 28 29 30 31 32 33
3 4 36

50 26 23 4

Figure 7. A p-labeling of C3 U C7; U Cy5

Now we compute

V(G1) = [Mez+4y+42+8,6x+4y+42+8|U [Tz + 8y + 82+ 17,8z + 8y + 8z + 16]

U [6z + 8y + 8z + 16,7z + 8y + 8z + 15] U {62 + 4y + 4z + 10, 8z + 8y + 8z + 18},
V(G2) = [0,2y]U By + 42+ 7,4y + 42+ 6] U [2y + 42 + 6,3y + 42 + 5]

U {2y+1,4y+42+47},
V(G3) = [6z+4y+ 424 11,62 +4y+ 62 + 11| U [6z 4+ 4y + Tz + 15,62 + 4y + 8z + 15]

U [6z +4y+ 62+ 15,6z +4y + 72+ 13] U {6z + 4y + 62 + 14, 6z + 4y + 8z + 16}.

We can order these as follows.

Cycle Vertex Labels Cycle Vertex Labels

Go [0,2y] G3 6x +4y + 62+ 14

Go 2y +1 G3 (6 + 4y + 62 + 15,60 + 4y + Tz + 13]
Go 2y + 42 + 6,3y + 42 + 5] Gs (62 + 4y + Tz + 15,62 + 4y + 8z + 15]
Go By+4z+ 7,4y + 4z + 6] Gs 6x + 4y + 82 + 16

Go dy+4z+7 Gy [6x + 8y + 82 + 16,7z + 8y + 8z + 15]
Gy 4z +4y + 42+ 8,62 +4y+42+8] Gy [Tz + 8y + 82 + 17,8z + 8y + 8z + 16]
G 6z +4y + 42+ 10 G1 8z + 8y + 82 + 18

G3 |6z + 4y + 4z + 11,6z + 4y + 62 + 11]

The vertices of the three cycles are distinct and contained in [0, 8z + 8y + 8z + 18].
Note that if z = 0, the sets [62 + 8y + 8z + 16, 7Tz + 8y + 8z + 15] and [Tz + 8y + 82+
17,8z + 8y + 8z + 16] are empty. If in addition y = 0, the sets [2y +42+6, 3y +4z+ 5]
and [3y 4+ 4z + 7,4y + 4z + 6] are empty. Finally, if in addition z = 1, then the set
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[6x + 4y + 6z + 15,62 + 4y + 7z + 13] is also empty. This however does not change
the proof.
Likewise we compute

E(G1) = [2e+4y+42+94e+4y+42+8Udy +42+48,2z +4y +42+7]

U {2,2¢+44y + 42 + 8,4z + 4y + 42 + 10},
E(Gy) = [2y+4z+ 7,4y + 4z +6][42+ 6,2y +42+5]U{1,2y + 42 + 6,4y + 42 + 7},
E(G3) = [22+3,4z+4]U[4,22 +1] U {3,22 + 2,42 + 5}.

We can order these as follows.

Cycle Edge Labels Cycle Edge Labels
G2 1 G2 2y + 4Z + 6
G1 2 Go 2y + 42+ 7,4y + 42z + 6]
G3 3 Gy 4y +4z2+7
G3 4,2z +1] G [dy +42 48,2z + 4y + 42+ 7]
(€ 2242 Gy 20 + 4y + 42+ 8
Gs [22 + 3,42z + 4] Gy 2z +4y + 42+ 9,42 + 4y + 4z + 8]
(€ 4z+5 Gy 4z + 4y + 42410

Gy [42+6,2y + 4z + 5]

Thus E(G) = [1,4z + 4y + 42 + 8] U {4z + 4y + 42 + 10}. Since 2(4z +4y + 4z +9) +
1— (4o +4y + 42 4+ 10) = 4z + 4y + 42 + 9 we have a p-labeling. If & = 0 the sets
[dy +4z+ 8,2z +4y + 42+ 7] and [2x +4y + 42 + 9,4z + 4y + 42 + 8] are empty. If
in addition y = 0, then the sets [4z + 6,2y + 4z + 5] and [2y + 42z + 7,4y + 4z + 6]
are empty. Finally, if in addition z = 1, then the set [4,2z + 1] is also empty. This
however does not change the proof. O

We conclude this section with our main result and a corollary.

Theorem 15. Let G be a 2-reqular graph with at most three components. Then G
admits a p-labeling.

Proof. Let G have size n. If G has one or two components, then by Theorems 4, 5
and 6, G has a p-labeling (or a more restricted labeling). Now let G = C, U C; U C}
(see Table 1). If the parity condition is satisfied, then G has a o-labeling [3]. Now
suppose n = 1 or 2 (mod 4). If G is bipartite, then it has a p™*-labeling [4]. If G
is almost-bipartite (i.e., if exactly one of r, s or ¢ is odd), then it has a 7-labeling
[5, 7]. The remaining five cases are covered by the previous five theorems. a

Using Theorems 1 and 15, we get the following.

Corollary 16. Let G be a 2-regular graph of size n and at most three components.
Then there exists a cyclic G-decomposition of Kopy.
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4 Concluding Remarks

The study of graph decompositions is a popular branch of modern combinatorial
design theory (see [6] for an overview). In particular, the study of G-decompositions
of Kopt1 (and of Koypt1) when G is a graph with n edges (and z is a positive integer)
has attracted considerable attention. The study of graph labelings is also quite
popular (see Gallian [13] for a dynamic survey). Theorems 1 and 2 provide powerful
links between the two areas. Much of the attention on labelings has been on graceful
labelings (i.e., B-labelings). Unfortunately, the parity condition “disqualifies” large
classes of graphs from admitting graceful labelings.

In conclusion, we note that our results here, along with results from [3], [8] and
[14] among others, provide further evidence in support of the following conjecture of
El-Zanati and Vanden Eynden.

Conjecture 17. Every 2-reqular G graph of size n has a p-labeling. Moreover, if
n=0 or3 (mod 4) then G has a o-labeling.

As a final comment, we note that this work was done while the first, third, fourth
and fifth authors were enrolled in an undergraduate research program at Illinois State
University.
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