
DEFICIENCIES OF r-REGULAR k~EDGE-CONNEGTED GRAPHS 

ABSTRACT: 

L. Gaccetta and Purwanto 
School of Mathematics and Statistics 

Curtin University of Technology 
GPO Box U1987 

Perth VA 6001 
Australia. 

Let G be a simple graph having a maximum matching M. The deficiency 

def(G) of G is the number of M-unsaturated vertices in G. A problem 

that arises is that of determining the set of possible values of 

def(G). In this paper we present a solution for the case of r-regular 

k-edge-connected graphs. 

1. INTRODUCTION 

In this paper the graphs are finite, loopless and have no multiple 

edges. For the most part our notation and terminology follow Bondy and 

Murty [3]. Thus G is a graph with vertex set V(G), edge set E(G), v(G) 

vertices and e(G) edges. However we denote the complement of G by G. 

A matching M in G is a subset of E(G) in which no two edges have a 

vertex in common. M is a maximum matching if IMI ~ IM'I for any other 

matching M' of G. A vertex v is saturated by M if some edge of M is 

incident with v; otherwise v is said to be unsaturated. A matching M 

is perfect if it saturates every vertex of the graph. The deficiency 

def(G) of G is the number of vertices unsaturated by a maximum matching 
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M of G. Observe that def(G) v(G) - IMI Consequently, def(G) has 

the same parity as v(G), and def(G) 

matching. 

o if and only if G has a perfect 

Many problems concerning ma tchings and clef (G) in graphs have been 

investigated in the literature - see, for example, Bollobas and 

Eldridge [2], Katerinis [8], Little, Grant and Holton [9] and Lovasz 

and Plummer [10J. We have studied the function defCG) for the case 

when G is a tree with each vertex having degree 1 or k, k ~ 2 [4] and 

for the case when G is a cubic graph [5]. 

In this paper we obtain the upper bound of def(G) and the set of 

possible values of def (G) when G is r-regular k-edge-connected. We 

find the set of possible values of def(G) by constructing the graphs. 

2. THE UPPER BOUND 

Let G be a connected graph on n vertices having a maximum matching 

M. SInce defCG) == n - 21MI, then clearly def(G) :$ n - 2 for n ~ 2. 

Thus we need to look at restricted classes of graphs to obtain more 

interesting results. In this paper we focus on the class of regular 

graphs. A well known result of Petersen states that every 3-regular 

connected graph with no more than two cut edges has a perfect matching. 

When S c V(G), G-S denotes the graph formed from G by deleting all 

the vertices in S together with their incident edges. For E' ~ ECG), 

G-E'denotes the graph formed from G by deleting the edges of E'. An 

edge-cut set of a connected graph G is a subset E' of E(G) such that 

G-E' is disconnected, but G-E" is connected for every proper subset E" 

of E'. A k-edge cut is an edge-cut set having k elements. 

A component of a graph G is odd or even according as it has an odd 

200 



or even number of vertices. The number of odd components of a graph G 

is denoted by o(G). We can state Berge's formula ([1], p. 159) for a 

graph G as 

def(G) max I I S c V(G) {o(G-S) - S}. (2.1) 

Let G be an r-regular graph and S c V(G). As a i-regular graph is 

a perfect matching, we may suppose that 

Go(G-S) denote the odd components of G-S. The number of edges in G 

joining the vertices of G
i 

to the vertices of S is denoted by t
i

. It 

is clear that 

r V(G.) 
1 

2dG.) + t .. 
1 1 

(2.2) 

A consequence of (2.2) is that ti and r have the same parity. We let 

it denote the number of odd components of G-S that are joined to S by 

exactly t edges. Observe that it = 0 when t and r have different 

parity. 

Lemma 2.1 Let G be an r-regular graph, r ?: 2. 

exists a set S c V(G) such that 

r def(G) 

~(r-2) 
2 
L (r-2t)t t 

t=O 2 

~(r-3) 
2 

if r is even 

t~O (r-2t-l)t2t +
1

, otherwise. 
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Proof : Clearly def(G) 2: o(G) and the resul tis true when 

def(G) o(G) since we can take S = ¢. 

So suppose def(G) > o(G). By (2.1) there exists a set S c V(G) such 

that 

o(G-S) I S I + def (G) . 

Since def(G) > o(G), then S * ¢. The number of odd components joined 

to S by at least r edges is 

r-1 
o(G-S) - \ it . 

t~O 

Now since G is r-regular we have 

and hence 

r-1 
rlSI 2: r (o(G-S) - \ it ) + t It 

t~O 

r-1 r-1 
r ( I S I + def (G) - \ i) + \' t i 

t~o t t~o t 

r-1 r-1 
r def(G) ~ r \ i - \ t i 

t~o t t~o t 

r-l 
\ (r-t) it . 
t~O 

The result follows since it = 0 when rand t have different parity. 0 

For connected graphs with deficiency not equal to one we have the 

following lemma. 
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Lemma 2.2: Let G be an r-regular, connected graph having def(G) ~ 1. 

Suppose that for any ¢ ~ VI c V(G) every odd component of G - V
1 

is 

joined to V
1 

by not less than m edges, 1 m ~ r - 2 (m == r (mod 2)). 

Then there exists a non-empty set S c V(G) such that G-S has 

r 
r-m 

def (G) 

odd components joined to S by at most r-2 edges. 

Proof 

def(G) 

and hence 

The result is trivially true when def(G) ::::; O. 

2. From Lemma 2.1 we have ¢ ~ S c V(G) with 

r-2 
r def(G) ~ r (r-t) It 

t~O 

r-2 
~ r (r-m) It 

t~O 

r-2 
(r-m) r It 

t~O 

r 
r-m 

def(G) 

as required. 

So suppose 

o 

Lemma 2.2 has a number of corollarles when G is k-edge-connected. It 

ls convenient to let ~(n,r,k) denote the class of r-regular, 

k-edge-connected graphs on n vertices. 
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Corollary 1: Let G E ~(n,r,k), 1 s k s r-2, be a graph wi th 

def(G) * 1. Then there exists a non-empty set S c V(G) such that G-S 

has 

r def(G) 
r-k' 

odd components each of which is joined to S by at most r-2 edges, where 

k' is the least integer not less than k having the same parity as r. 0 

When v(G) is even, def(G) is even and thus G has a perfect matching 

if def(G) < 2. We thus have the following corollary to Lemma 2.2. 

Corollary 2: Let G E ~(n,r,k), s k s r-2 and n even, and let k' be 

the least integer not less than k having the same parity as r. If G 

has fewer than 2r/(r-k') disjoint edge-cut sets whose cardinality is of 

the same parity as r and at most r-2, then G has a perfect matching. 0 

When k = r-2, Corollary 2 reduces to the following result mentioned in 

Chartrand and Nebesky [7]. 

Corollary 3: Let G E ~(n,r,r-2), r ~ 3 and n even. If G contains at 

most r-1 (r-2)-edge cuts, then G has a perfect matching. 

o 

When k 

160) . 

r-1, we have the following well known result (see [1], p. 

Corollary 4: Let G E ~ (n, r. r-1). r ~ 2 and n even. 

perfect matching. 
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Corollary is usually regarded general ization of Petersen's 

result. We remark that Corollary is generalization of result 

(Theorem .1) proved [5] 

Bollobas and Eldridge [2] considered the problem of determining the 

minimum possible of maximium matching of a graph G with 

prescribed minimum maximum degrees and prescr ibed edge or vertex 

connectivi ty. A consequence of their results (Theorems 4 and 5) is 

the following upper bound on defCG) for E ~(n,r,k). 

Theorem 2.1 Let 

d 

Then 

(a) 

where 

max{defCG) : (n,r,k), k s r s n-l, r ~ 3 

and n is even r odd}. 

s d s 2 L do + ~ J ' If r is odd and k 

d 
o 

1, 

(b) d s max {1, _n_(_r __ ~ __ ~~ 
r 

and d - n(mod 2), otherwise, 

where k' is the least integer not less than k having the same parity as 

rand r* is the least odd integer greater than r. o 

The above result does not give an exact value of d for every n, r 

and k. We now extend Theorem 2.1 to obtain an exact value of d for k ~ 

2. We need the following simple lemma. 
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Lemma 2.3 Let G be an r-regular graph, S c V(G) and Go be an odd 

component of G-S which is joined to S by fewer than r edges. 

Then v(G ) > r. 
o o 

Theorem 2.2 : Let G E !j(n,r,l). If for any non-empty set 

S c V(G) every odd component of G-S is joined to S by not less than m 

edges, where 1 ~ m ~ r - 2 and m = r (mod 2), then 

Cal def(G) ~ 2 l ~~m l -rr--;~;;-n_+-m JJ, if n is even 

(b) def(G) 
2 

r + r + m r 3r 1 1, if n < -----r----- r-m and n is odd; 

(c) def CG) ~ 1 2 l r-m l + zy:- rn J 1 
-2-,--- -ZJ, 
r + r + m 

otherwise; 

where r* is the least oda integer greater than r. 

Proof: The result is trivially true when def(G) = 0 or 1. So suppose 

def(G) ?: 2. Lemma 2.2 implies that 

set S c V(G) such that G-S has 

there exists a non-empty 

t ?: ~ 
r-m 

def(G) odd 

components, G
1

, G
2

, ... , G
t 

say, joined to S by at most r-2 edges. 

Simple counting of edges between these odd components and S yields 

and hence 

IS I r 

Lemma 2.3 implies that v(G
i

) ?: r* for i 1 , 2, ... ,t. Hence 
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Consequently, 

Now, since 1: <:: 
r 

r-m 

1: 
n <:: lsi + L v(G.) 

i=l 1 

<:: 
1:m + 1:r*. 
r 

1: :::: L 
rn 

m J rr* + 

def(G) we have 

def(G) :::: r-m L rn J 
r rr* + m . 

Now when n is even, def(G) must be even and thus we can write 

def(G) :::: 2 L r-m L rn JJ 
2r rr* + m • 

proving (a). When n is odd, r is even and so r* r + 1. Further, 

def(G) must be odd. Hence 

3 :::: def(G) 

Thereforf-~ 

and thus 

2 

<:: 
r n 

:::: r~m L -r-r-;;-~_n_+-m- J . 

+ r 
r 

rn 
rr* + m J 

+ m r r~: 1 

2 

r r~: 1 so, if n < r + r + m 
is r odd, then def(G) 1. 

2 

n <:: r + r + m r ~ 1 is odd, then def(G) is odd and we can write r r-m 
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def(G) r m I'n 
:S 1 + 2 l - L -2------

I' + I' + m 

This completes the proof of the theorem. o 

For the case when G E §'(n,r,k) we have the following two 

corollaries to Theorem 2.2. 

Corollary I Let G e §'(n,I',k), with 1 :S k :S r-2. Then 

(a) defCG) 2 L 
r-k' 

L 
rn 

J J ' if n is :S ---zr rr* + k' even; 

2 
+ r + k' 3r (b) def(G) is odd and n < I' 

1 1, ifn r-k' I' 

(c) def(G) L 
r-k' 

L 
rn J 1 J ,otherwise; :S 1 + 2 ---zr - 2: 2 

r + I' + k' 

where k' is the least integer not less than k which has the same 

pari as rand r* is as in Theorem 2.2. o 

Corollary II: Let G §'(n,r,k), with 1 :S k :S r-2 and n even. If G 

has no perfect matching, then 

where r* and k' are as defined in Corollary I. [J 

Remark In the next section we will show, by construction, that the 

bounds given in Theorem 2.2 and Corollary I are sharp for m ::I; 1. 

Further, the bounds given in Corollary II are sharp. 

Remark 2 Corollary II is a generalization of a result of Wallis 

[12J. 
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t) 

For 

t) 

Observe that each of these 

) v 

) v 

) J 

o 

from 

)J Hamilton cycles. We 

make use the above graphs i.n the proof of the following result. 

Theorem 3.1 For 2 r-2 let 

D(n,r,k) {def(G) Ge§' (n, r, k) } . 
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Then 

(a) D(n,r,k) ~ , if nand r are odd; 

(b) D(n,r,k) {d : 0 d :S 2 L ~~k' L rn k' JJ ' rr* + 

d is even}, if n is even; 

(e) 
r2 + r + k' 3r 

D(n,r,k) = {1}, if n < r r-k' is odd 

and r is even; 

(d) D(n,r,k) {d 1 :S d :S 1 2 L r-k' rn 
; + 

2 
r + r + k' 

2 J d is odd} , otherwise; 

where k' is the least integer not less than k which has the same 

parity as rand r* is the least odd integer greater than r. 

Proof: As the number of vertices of odd degree is even, part (a) is 

obvious. So suppose that at least one of n or r is even. The upper 

bound on def(G), GE~(n,r,k), is determined in Corollary I of Theorem 

2.2. 

First we consider the case when n is even. We will exhibit for each 

even d, L r;~1 L rn 
J J ' a graph GE~(n,r,k) with 

rr* + k' 

1 l' f r def(G) = d. For d = 0 we take the graph G
n/2

(n'Z(n-r)) is 

and the graph Go(n.~(n-r-l)) if r is odd. Now consider d ~ 2. 

~ rr* + k' r -?~ 1 Define 
r r-k" 
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t rd r r-k' 1 

s r k~ t 1 

p n s - (t-l )r* , 

and 

k" - k' (t-l) 

Making use of the fact that for any non-negative real numbers a, band 

a 
c with b * 0 and b < I, 

we have 

ac 1 r b-a r a be 1 
b r b-a 1 

t-s r r~~1 1 - r ~' t 1 

k'd k' rd r d + r-k' 1 - r r r r-k' 11 

d. 

We claim that p ~ r*. Suppose that p < r*. Then 

n < s + tr* 
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k'l r r + lr* 1 

r ( rr* + k' 
r ) l 1 

r rr* r~ r r~~f 11 

rr* + k' rn 
:$ r r L rr* +F J1 (using the 

bound on d) 

:$ n, a contradiction. 

Thus P 2 r*. Furthermore, since nand d are even, r* is odd and 

p = n s - Cl-1) r* 

n + d + r* - Cr* + l)l, 

p must be odd. Also 

k N rs - k' Cl-l) 

rCl-d) - k' (l-1) 

-rd + l(r-k') + k' 

- rd + r --~ 1 Cr-k') + k' . r-k' 

Hence kH has the same parity as rand 

k' :$ k" < r. 
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required graphs follows empty 

with f.-I copies G
1

, 

(r+l,1) and copy 

Observe that t-1, has k' vertices 

say, of degree r-l and r+l-k' vertices of degree r. Further, Gt has kif 

vertices ••• , V tk" say, of degree r-l and p-k" vert ices of 

degree r. Each , 1 i 
1 t, contains z( r-2) Hamil ton cycles and 

thus is k'-edge-connected. We form graph ~(n.r,k) by adding the 

following edges. For 1 :s i :s s and 1 :s j :s k' , join v .. 
lJ 

u if i + j 1 = z(mod 
Z 

s). Join v .. to u if (i-1)k' + 
lJ Z 

(mod s), where + 1 :s i t and 1 j :s k' if i < l- and 1 :s 

i t. Since k' ~ k our G is k-edge connected. Since each 
1 

j :s 

j 

kif 

i :s t, has a Hamilton cycle it follows that def(G ) :s t - s = d. 
1 

to 

- z 

if 

On 

the other hand, by choosing S = {u
1
,u2, ... ,us } (2.1) implies that 

def(G ) ~ t - s = d. Thus def(G) d. 
1 1 

When r is odd the required graph G2 can be obtained by following the 

above construction taking Gi as the graph : 

G (r + 2, 1) for 1 :s i :s i-1; 
!.(r-k'+2) 
2 

1 and G (p, z(p-r» for i 
!.(p-k") 
2 

t. Note that k' and k" are defined 

relative to r. This proves part (b). 

Now consider the case when n is odd. Then r is, of course, even. 

For def(G) = 1, the graph G (n ~(n-r-1» has the required properties. o '2 
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o 

If 

the sharp. Note that 

and 1. 

4. DEFICIENCY 

In in 

Theorem the case 

m=1. our on n for 

graph (n, ,1) def(G) 

Theorem 1: Suppose Ge§(n,r 1), r is an odd greater 

than 1 n is even integer than r. Let d def(G) , and 

suppose that d ::::: (r-1) + q + 2 where t and q integers, 0 ~ q ~ r 

- 3. 

Then 

(a) ~ (r+2)d + (r+3) r r-1 1 + r + 1, 

(b) 

if r-q-2 ~ t 

d 
n ~ (r+2)d + (r+1) r r~l + 2r, 

if max ), r-q-2} ~ t ~ r-3; 
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(c) 
d d-l 

n ;:: (r+2)d + (r+l) r r-l 1 + 2 r r-2 1 ' 
otherwise. 

Proof: Since n is even, d is even. The result is trivially true 

when d = O. So suppose d ;:: 2. By (2.1) there is a non-empty set S c 

V(G) such that o(G-S) = lSi + d. Following the proof of Lemma 2.2 we 

conclude that G-S has l ;:: r r~~ 1 odd components, G
1

, G
2
,··· ,Gt say, 

joined to S by at most r-2 edges. Lemma 2.3 implies that v(G
i

) ;:: r+2 

for every 

Gi +
2

, •• • ,Gp ' 

We have 

and hence 

Further 

:s i :s t. Denote the remaining components of G-S by Gt+
1

, 

p 
;:: dG) - \' dG.) 

i~l 1 

;:: o(G-S) + lSi - 1 

(since G is connected) 

Cd + lSi) + lSi - 1 

d-l ;:: r r-2 1 . 

n ;:: (r+2)t + o(G-S) - l + lSi 

(r+l)t + 21S1 + d 

;:: (r+1) r r~~ 1 + d + 2 r ~=; 1 
d d-l 

(r+2)d + (r+l) r r-l 1 + 2 r r-2 1 
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This proves (c). 

We need to consider the case when r - q - 2 ~ t ~ r - 3. 

d 
Then r r-l 1 t + 1 and r ~ 5. We have 

Hence 

d-l 
~ r r-2 1 

o(G-S) 

r t + 1 1 

t + 2. 

lsi + d 

~ t + 2 + d 

r rd 1 + 1 . 
r-l 

We distinguish two cases according to the value of v(G i ), where r r~~ 1 
+ 1 ~ i ~ o(G-S). Suppose that v(G

i
) ~ r for such some i. Then 

n ~ (r+2) rr~~ 1 + r r rd + o(G-S) - r-l 1- 1 + lsi 
~ (r+l) r r~~ 1 + r + d - 1 + 2 (r r~l 1 + 1) 

(r+3) d (r+2)d + r r-l 1 + r + 1 

= n (4.1) 
1 

If, on the other hand, vCGi ) ~ r - 2 for every i. then e = r r~~ 1 
and each G

i 
has at least r edges going to S. If vCG

i
) ~ 3 for some i, 

then there are at least 

r v(G.) - (v(G.) (v(G.) - 1)) 
1 1 1 

~ 3r - 6 
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edges between G
i 

and S. Consequently 

and hence 

rlSI ~ t + 3r 6 + r(o(G-S) - t - 1) 

= t + 3r - 6 + r ( I S I + d - t - 1) 

t rd + 2r - 6 
~ 

1 r 

~ 1 rd +-r-1 

But this contradicts the fact that t = r ~ 1. Therefore v(G.) r-1 1 

for every r r~~ 1 + 1 ::s i ::s o(G-S). Hence lSi ~ rand 

n ~ (r+2)t + oCG-S) - t + lSi 

(r+1) r r~~ 1 + 21 S I + d 

d 
~ (r+2)d + (r+1) r r-1 1 + 2r 

n 
2 

Inequalities (4.1) and (4.2) imply that 

Now we have 

d 
n

1 
- n

2 
= 2 r r-l 1 + 1 - r 

= 2t + 3 - r. 
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Hence when t (b) and completes 

the proof of the theorem. 0 

That the above bounds are sharp follows from our next result. We 

make use of some of the graphs defined in the previous section. 

Theorem 4. Suppose d t(r-l) + q + is an even non-nega t i ve 

integer, where q,r and t are integers, r is odd and 0 ~ q ~ r - 3. 

Let 

r + 1 ifd 0 

(r+2)d + (1"'+3) r d 
1 + r + I, if t !(r-3) 

n 2 
1 d (r+2)d + (r+l) r r-l 1 + 2r if ), r-q-2}s t ~ r-3 

(r+2)d + (r+l) d r r-l 1 + 2 d-l r r-2 1 otherwise. 

Then for every even n ~ n
1 

there exists a Geg(n,r,l) with def(G) = d. 

Proof: Assume that n ~ n
l 

is even. First we observe that the graph 

1 (n'Z(n-r-l)) e ~(n,r,l) and has a perfect matching. This proves the 

result for d = O. For d ~ 2 we consider four cases. 

Case 1 r - q - 2 s t (r-3) . 

Recall that the graph Gp(n,h), p s ~ nand 1 s h < ~ n has 2p 

vertices of degree n - 2h, n - 2p vertices of degree n - 2h - 1 and 

* * is hamil tonian. We form a graph G
1 

e ~(n,r,l) with def(G
1

) = d 

as follows. Take the empty graph Kt with vertices u ,u , ... ,ut ' 
+2 1 2 +2 

the complete graph Kr with vertices v
1
,v

2
, ... ,v

r
, rt + q + 2 copies 
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G
1

, G of G (r + 2, 1) and the graph 
... , rt+q+2 ~(r+l) 

2 

G (r + 2 
~(n-n +q+4) 

1 
+ n - n

1
, ~(n - n

1 
+ 2). Observe that 

2 1 

G
i

, 1 sis rt + q + 2, has exactly one vertex, vr+i say, of degree r -

and the graph Grt+q+
3 

has (r - q 2) vertices, v r{ t+l) +q+3 

,vr (t+l)+q+4"'" vrt+2r say, of degree r-1. Add the edges uiv j if i = 
j (mod(t+2». This defines the graph Observe that 

* v(G ) 
1 

t + 2 + r + (rt + q + 2)(r + 2) + r + 2 + n - n
1 

(r + 2) (rt - t 

+ n - n 
1 

q + 2) + (r + 3)(t + 1) + r + 1 

d 
(r + 2)d + (r + 3) r r-1 1 + r + 1 + n - n

1 

n. 

* It is easy to verify that G
1 

is connected and r-regular. '" Thus G E 
1 

~(n,r,l). Further, taking S = {U
1

,U
2

'" .,ut +
2
}, G - S has rt + q + 4 

odd components each having a Hamilton cycle and hence 

def(G) rt + q + 4 - t - 2 

d, 

as required. 
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Case 2 r - q - 2} t ~ r 

We form graph (n, r, 1) with def d follows. Take the 

empty graph 

copies G
1 

• 

G 
1 

+q+4) 
:2 

graph 1 

r - 1, and 

v rt+q+4' ... , 

every 

~ rt + r, 1 

v 

with u l ' rt + q 

of G (r + 2, 1) and the graph 
1 

) 

(r 2 + n - n
1

, + 2)). As in 1, above, the 

rt + q + 2, exactly one vertex, v. say, of degree 
1 

the graph has (r -

say, of degree r 1. 

+ 1 j ~ t- 1; 

q - 2) vertices, v rt+q+3' 

Add the edges: u.u. for 
1 J 

• if i = j(mod r), 1 ~ i 

r. This defines the graph Observe that 

2r - t - 1 + Crt + q + )(r + + + 2 + n - n 
1 

(r + 2)(rt - t + q + 2) + (r + 1)(t + 1) 

+ 2r + n - n 
1 

d 
(r + 2)d + (r + 1) r r-l 1 + 2r + n - n

1 

n. 

'" Again it is easy to verify that G
2 

is connected and r-regular. * Thus G 
2 

E §'(n,r,1) Further, taking S = {Ul' ... ,u
r

}, G - S has (rt + q + 3) 

odd components each having a Hamilton cycle and r - t - 1 components 

each a single vertex. Hence 
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* def(G ) 
2 

rt + q + 3 + r t - 1 - r 

d, 

as required. 

Case 3 : t :s r - q - 3. 

We construct the required graph as follows. Take the empty graph 

K 
t+l 

wi th vertices and the graphs 

defined in Case 2. Labelling the vertices of G
i

, 1:s i :s rt + q + 3 

as in Case 

verify that 

* v(G ) 
3 

* 

add the edges: viu
j 

if i == j(modCt+1)). It is easy to 

is connected and r-regular. Further 

t + 1 + (r + 2)(rt + q + 2) + r + 2 + n - n
1 

(r + 2)(rt - t + q + 2) + (r + 1)(t + 1) + 2(t + 1) 

+ n - n 
1 

d d-1 
(r + 2)d + (r + 1) r r-1 1 + 2r r-2 1 + n - n

1 

n, 

and so G
3 

E ~(n,r,l). Taking S = {u
1
,u

2
, ... ,u

t
+

1
}, G-S has rt + q + 3 

odd components each having a Hamilton cycle. Hence 

rt + q + 3 - t - 1 

d , 

as required. 
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Case 

Let t (r -

~ r 3. We have 

n 
1 

(r + 

r 

+ b, where and 

+ (r + ) r r~l 1 + r 

(r + 2)d + (r + l)(t 1) + 2t 

(r + + (r + 1)(a(r- + b 

+ 1 . 

Substituting simp 1 ify ing 

+ (2b q + 3)r b 

where 

{ 
1, ifb:sr- q - 3 

IX == 

2, otherwise. 

with 0 

1 

+ (r ) + 2b 

+ 5, 

We begin our constructions by defining a graph Tr(p) for posi tive 

integer p. This graph wi 11 form the basic building block in our 

constructions to follow. Take p disjoint copies, G
1

, 

say, of the star K
1
,r-l and one copy, say, of the star K

1
,r-2 Let 

x. be the centre of G .. 
1 1 

The graph Tr(p) is formed by adding a new 

vertex, y say, and joining y to each , 1 :s i :S p. Observe that for p 

> 1, Tr(p) has PI' vertices of which (r - 2) + (p - 1)(r - 1) have 
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degree 1. In using Tr (p) as a building block the vertices y and xp 

need to be identified. For convenience we relabel x as 2. 
p 

We consider two subcases according to the value of b. First suppose 

that b~r-q-3. Take a copiesT
1

,T
2

, ... ,T
a 

of Tr(r-U, and 

one copy Ta+l say, of Tr (2 L ~b J + 1). We relabel the vertices yand 

2 of Ti by Yi and zi' respectively. Now add the edges Yi2i+l for ~ i 

~ a. We form the graph G' as follows : if b is even, add a new vertex 

Uc and join it to 2
1

; if b is odd, add the star K
1

, r-l and join its 

centre to z. Observe that 
1 

v(G') = { 
ar(r 1) + reb + 1) + 1, if b is even 

(4.3) 

ar(r - 1) + br + r, otherwise. 

From the graph G' we form the graph Gil as follows. Let A = r - 2 -

2(b - L ~ b J) - q. Observe that is odd and A ~ r - 2 . 

Recall that the graph H1 G
1 

(r+2+n-n
1

, !(n-n +2») defined 
-(r+2+n-n -A) 2 1 
2 1 

in Section 3 has A vertices, u
1
,u

2
, ... ,uA say, of degree r - 1 and all 

other vertices have degree r. Further, the graph 

G (r+2,l) 
~(r+1-2L~bJ ) 

has 
1 

2 L Z-b J +1 vertices, 

say, of degree r - 1 and all other vertices of degree r. 

H 
2 

Take A 

vertices, u~)u;, ... ,u~ say, of G' that are adjacent to 21 and have 

degree one in G' (note that there are at least r - 2 ~ A vertices of G' 

adjacent to 2 
1 

that have degree in G' ) and the 2L ~b 
2 J + 

neighbours, v~ ) v;, ... ,v' 1 say, of Ya+l' 
Gil is formed 

2 L"2b J +1 

from G'- {u~,u;, ... ,U'A' Ya+l} by adding the graphs HI and H2 along 

with the edges: 



Observe that 

v(G") 

for 1 i for i :S 

v(G') + r + 2 + n - n - A + r + 1. 
t 

Of these, there are f vertices of degree one, where 

(4.4) 

f ar (r - 2) + (r 2) + b (r-l) + 2 L~ b J - b + 1 - A 

+ (b - 2a)r + q + 1. (4.5) 

Identify these vertices 

* We form the graph G 
4. 

from Gil as follows. Take f copies, 

say, of the graph G (r + 2, 1 ) . 
~(r+l) 

Observe that each 

2 

G
i

, 1 :S i :s f, has exactly one vertex, wi say, of degree r - 1 and all 

other vertices of degree r. Let the neighbour of 

* The graph G
4 

is now formed from Gil - {w
1

,w
2

' ... ' 

* v(G ) 
4. 

in Gn
, be w~ . 

1 

by adding the 

Observe that 

lIE 

Now (4.3) and (4.4) together with a little algebra yield v(G
4

) 

n ?: n. It is Immediate from our construction that 
1 

connected. 

is r-regular and 

* We now show that defCG
4

) = d, as required. Letting S {v v is 

adjacent to a vertex of degree 1 in G'}, we have 
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lsi a(r 1)+b+l 

and 

* o(G 
4 

s) f + a + 2 

+ (b - 2a)r + a + q + 3 

( us i ng ( 4 . 5) ) . 

'" Further every odd component of S which is not a single vertex, 

has a Hamilton cycle 

Hence, 

'* '* def(G
4

) o(G - S) 
4 I I 
+ (b - 2a)r + a + q + 3 - a(r 1)-b-l 

(a(r 2) b)(r - 1) + q + 2 

d, as required. 

The only case that remains tha t when b ~ r - q 2. Take 

T
1

,T
2

, ... ,T
a 

as above and let Ta+l be the graph TrCb + 2). Label the 

vertices Yi and zi in Ti' 1 ~ i ~ a + 1, as before. Now add the edge 

Yi Zi+l for every 1 Call the resulting 

graph G'. The graph H G (r + 2, 1) has r - q - 2 vertices, 
~(q+4) 
2 

V
1

'V
2

' ••. ,vr - q -
2 

say, 01 degree r - 1 and all other vertices of 

degree r. Let v~ , v;, ... , be (r - q - 2) vertices of G' that 

are adjacent to z and have degree one in G'. Note that d (z ) == r. 
1 G' 1 

We now form the graph Gil from G' . 

The graph G' contains at least (r b 3) vertices, 

u
l 

' u
2

' ... ,ur - b-
3 

say, in T 1 of degree having distinct neighbours 

u~,u;, ... ,U~-b-3 none of which are z. 
1 

We form Gil from G' 

Vi ,v' , ... , v' } by adding the graph H together 
1 2 r-q-2 
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, 1 r q , 1 b 

Observe that 

f' 

We 

'" G from 
4 

"!'or 

1 
2' en 

that 

v ) - - q ) - (r - + 

(r 1) + r - r + q + + 

+ (b + l)r + b + + 7. 

of degree 1 or The number of vertices 

arCr (r - 2) + (b )(r'- ) - (r -

- (r 

+ q + 2 

'" the graph G
s 

from en in same way as we formed the graph 

except that here we take to be graph (r + 
) 

f' 

+ 2)) 

E §'(n, 

and Gfl to be the graph (r + 
) 

Following the same argument we can establish 

* and defCGs ) = d (here taking S as above, we have 

* Is a(r-1) + and 0 (G - S) == f I + a + ) . This completes the 
5 

proof of the theorem. Cl 
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