On Minimal Symmetric Automorphism Groups
 of Finite Symmetric Graphs

Cheryl E Praeger
Department of Mathematics
The University of Western Australia
Nedlands WA 6009
Australia

Abstract: Let Γ be a finite connected graph, and G a group of automorphisms of Γ which is transitive on vertices. Suppose that, for a vertex α of $\Gamma, S \leq G_{\alpha}^{\Gamma(\alpha)} \leq A u t S$ for some simple group S with S acting primitively on the set $\Gamma(\alpha)$ of neighbours of α, and suppose that G is minimal with these properties. Then one of : (i) G is a nonabelian simple group, (ii) Γ is a Cayley graph for a normal subgroup N of G and $G=N . S$, (iii) Γ is bipartite, (iv) Γ is a proper cover of a graph of the same valency and with the same properties. In the special case where Γ has prime valency this is a result of Lorimer. More details of the structure of Γ and G are obtained for graphs which satisfy (ii) or (iii) but are not proper covers as in (iv). Constructions are given for several families of examples.

1. Introduction

Let Γ be a finite connected graph and G a subgroup of the automorphism group Aut Γ of Γ. Then G is said to be symmetric on Γ if G is transitive on the set $\Gamma_{1}=\{(\alpha, \beta) \mid\{\alpha, \beta\}$ an edge $\}$ of ordered pairs of adjacent vertices of Γ, and G is minimal symmetric if it is symmetric on Γ but no proper subgroup of G is symmetric on Γ. Note that symmetric graphs (that is those whose automorphism groups act symmetrically) are vertex transitive and hence are regular. The motivation for this
paper came from a theorem of Lorimer [4] about minimal symmetric groups G of automorphisms of a connected graph Γ of prime valency v. Lorimer showed, essentially, that one of the following is true for such G, Γ :
(i) G is a nonabelian simple group;
(ii) Γ is a Cayley graph for a normal subgroup N of G and $G=N \cdot Z_{v}$;
(iii) Γ is bipartite;
(iv) Γ is a proper cover of a graph Σ of valency v such that the group of automorphisms induced by G on Σ is minimal symmetric.
In [4] the result is stated differently: extra assumptions are made about Γ so that the only conclusion is that G is simple. (More information about the bipartite case (iii) is given in [6]). This expanded version of Lorimer's theorem has been stated in this way so as to highlight the inductive role of case (iv) for reducing to graphs satisfying one of (i) to (iii). For this to be a useful reduction we need more information about the graphs arising in cases (i) to (iii) which are not proper covers of smaller examples. The aim of the paper is to look at the graphs arising in cases (ii) and (iii) in detail for a larger class of symmetric graphs than the class with prime valency.

If $G \leq$ Aut Γ acts symmetrically on a connected graph Γ of prime valency v then, for a vertex α, the stabilizer G_{α} is transitive on the set $\Gamma(\alpha)$ of v neighbours of α in Γ, since G is transitive on Γ_{1}. Moreover it was shown by Burnside, see [9], that a transitive permutation group of prime degree v (such as the group $G_{\alpha}^{\Gamma(\alpha)}$ induced by G_{α} on $\Gamma(\alpha)$) has a simple normal subgroup, so we have $S \leq G_{\alpha}^{\Gamma(\alpha)} \leq$ Aut S for some simple group S. Note that S might be cyclic of order v. Moreover the group S acts primitively on $\Gamma(\alpha)$. (A permutation group on a set X is said to be primitive on X if it is transitive on X and the only partitions of X invariant under the group are the trivial ones, namely $\{X\}$, and $\{\{x\} \mid x \in X\}$.)

We shall be concerned with finite connected graphs with a group G of automorphisms which is symmetric on Γ such that, for a vertex $\alpha, S \leq G_{\alpha}^{\mathrm{T}(\alpha)} \leq$ Aut S with S simple and primitive on $\Gamma(\alpha)$. First we show that the conclusions of Lorimer's theorem hold for such graphs.

Theorem 1 Let Γ be a finite connected graph of valency v and $G \leq A u t \Gamma$. Suppose that G is symmetric on Γ and that, for a vertex $\alpha, S \leq G_{\alpha}^{\Gamma(\alpha)} \leq A u t S$ where S is simple and S is primitive on $\Gamma(\alpha)$. If G is minimal with respect to these properties then one of the following holds:
(i) G is a nonabelian simple group;
(ii) Γ is a Cayley graph for a normal subgroup N of G and $G=N . S$;
(iii) Γ is bipartite;
(iv) Γ is a proper cover of a graph Σ of valency v such that the group of automorphisms of Σ induced by G is symmetric, $S \leq G_{\sigma}^{\Sigma(\sigma)} \leq$ Aut S with S primitive on $\Sigma(\sigma)$ (σ a vertex of Σ), and is minimal with respect to these properties.

A more detailed version of this theorem will be proved in section 2. A graph Γ is said to be a cover of a graph Σ is there is an epimorphism $\phi: V \Gamma \rightarrow V \Sigma$ of the vertex sets which maps edges to edges (that is, if $\{\alpha, \beta\}$ is an edge of Γ then $\{\alpha \phi, \beta \phi\}$ is an edge of $\Sigma)$ and is such that ϕ induces an isomorphism from the induced subgraph on $\Gamma(\alpha)$ to the induced subgraph on $\Sigma(\alpha \phi)$ for all vertices α of Γ. If ϕ is not a bijection then Γ is said to be a proper cover of Σ.

In the rest of the paper we analyse cases (ii) and (iii) of Theorem 1 in more detail assuming that the graphs are not proper covers as in (iv). We construct classes of examples in each case. We do not address the problem of constructing covers of our examples with the required symmetry properties. Some constructions of this type are given by Biggs [1].

Problem Given Γ, G, S, v as in Theorem 1 (i) to (iii), find all connected graphs $\bar{\Gamma}$ which are proper covers of Γ and have a group \bar{G} of automorphisms which is symmetric on $\bar{\Gamma}$ and induces the group G on Γ.

Recall that a Cayley graph for a group G is a graph $\Gamma=\operatorname{Cay}(G, X)$ (where $X \subseteq G, 1_{G} \notin X$ and if $x \in X$ then $\left.x^{-1} \in X\right)$ with vertex set G such that g and h are adjacent if and only if $g h^{-1} \in X$. Such a graph admits G, acting by right multiplication, as a regular group of automorphisms. Also $\operatorname{Cay}(G, X)$ is connected if and only if $\langle X\rangle=G$. A graph Γ is a Cayley graph if and only if $A u t \Gamma$ contains
a subgroup N acting regularly on vertices (that is N is transitive and $N_{\alpha}=1$), and in that case the vertex set of Γ may be identified with N so that N acts by right multiplication and, if α is identified with $1_{N}, \Gamma \simeq \operatorname{Cay}(N, \Gamma(\alpha))$. We obtain a more detailed description of the structure of Γ and G for case (ii) of Theorem 1 in Theorem 2 below.

Theorem 2 Let Γ, G, S, v be as in Theorem 1 and suppose that case (ii) holds so that N is a normal subgroup of $G=N . S$ and $\Gamma=\operatorname{Cay}(N, X)$ for some $X=$ $X^{-1} \subset N, 1_{N} \notin X, N=\langle X\rangle$. Suppose also that case (iv) does not hold. Then one of the following happens:
(i) $\Gamma=C_{p}, N=Z_{p}, p$ a prime, $v=|S|=2$;
(ii) $N=Z_{2}^{k}$ and $S \leq G L(k, 2)$ is irreducible;
(iii) $N=S$ is nonabelian, $G=S \times S$, and X is a conjugacy class of involutions of S such that $C_{S}(x)$ is maximal in S for $x \in X$;
(iv) $N=T^{k}$ for some nonabelian simple group T, and $G=N S \leq A u t T$ wr S_{k} such that S projects onto a transitive subgroup of S_{k}, and X is an S-orbit of involutions in N such that $C_{S}(x)$ is maximal in S for $x \in X$.

This result will be proved in section 2. Our investigations of the bipartite case lead to Theorem 3, which will be proved in Section 3.

Theorem 3 Let Γ, G, S, v be as in Theorem 1 and suppose that case (iii) holds so that Γ is bipartite, but that case (iv) does not hold. Then G has a minimal normal subgroup $N=T^{k}$, where T is simple and $k \geq 1$, such that N has two orbits in $V \Gamma, G=<N G_{\alpha}, a>$ for some 2-element a, and one of the following holds:
(i) $\Gamma=K_{v, v}$, and $S=T$;
(ii) $T=Z_{p}$ for some prime p and one of
(a) $\Gamma=C_{2 p}, N=Z_{p}, v=|S|=2$;
(b) I is a Cayley graph for $N .2$, an abelian normal subgroup of $G, p=2$, and $G_{\alpha}=S \leq G L(k, 2)$ is irreducible;
(c) $G \leq A G L(k, p)$ and $G / N \leq G L(k, p)$ is irreducible on $N=Z_{p}^{k}$;
(iii) T is a nonabelian simple group and N is semiregular and one of
(a) $N=T=S, \Gamma=\operatorname{Cay}(S .2, X)$ where $X=X^{-1} \subseteq S .2 \backslash S$ is an S-conjugacy class of involutions such that $C_{S}(x)$ is maximal in S for $x \in X$; (Here $S .2 \leq A u t S$.)
(b) $N=T=S$, and $G=N H$ is contained in the holomorph of N with $N \cap H=1, S \leq H \leq$ Aut S and $H / S=Z_{2}{ }^{\circ}$ for some $s \geq 1$;
(c) $G \leq A u t N$;
(iv) T is a nonabelian simple group, N is not semiregular, $G \leq$ Aut $N, G / N=$ $Z_{2 \cdot}, s \geq 1$, and one of
(a) $N=T$;
(b) $k>1, k$ divides 2^{s}, and, for $\alpha \in V \Gamma, N_{\alpha}$ is a subgroup of a diagonal subgroup of $N=T^{k}$.
A diagonal subgroup of $T_{1} \times \ldots \times T_{k}$, where each $T_{i} \simeq T$, is a subgroup of the form $\left\{\left(t^{\phi_{1}}, \ldots, t^{\phi_{k}}\right) \mid t \in T\right\} \simeq T$ where the $\phi_{i} \in$ Aut T.

A discussion of the graphs which arise, including constructions for several families of examples, is given in section 4.

2. Proofs of Theorem 1 and Theorem 2.

In this section we prove the following technical version of Theorem 1. Then we begin the more detailed analysis of the various cases leading to a proof of Theorem 2.

Proposition 2.1 Let Γ be a finite connected graph of valency v and let $G \leq$ Aut Γ. Suppose that G is symmetric on Γ and, for $\alpha \in V \Gamma, S \leq G_{\alpha}^{\Gamma(\alpha)} \leq$ Aut S with S simple and primitive on $\Gamma(\alpha)$; and let G be minimal with respect to these properties. Let N be a minimal normal subgroup of G, so that $N \simeq T^{k}$ for some simple group T and integer $k \geq 1$. Then one of the following holds:
(i) $G=N=T$ is a nonabelian simple group;
(ii) $G=N S$ and Γ is a Cayley graph for N;
(iii) Γ is bipartite, N has two orbits on vertices, and either
(a) $\Gamma=K_{v, v}, v=|S|$ is prime, $S=T, N=S \times S$;
(b) N is semiregular, so $|V \Gamma|=2|N|$;
(c) $S \leq N_{\alpha}^{\Gamma(\alpha)} \leq A u t S, G=\langle a, N\rangle, N$ is nonabelian, $G / N=\langle a N\rangle=$ $Z_{2^{*}}$ with k dividing $2^{s}, s \geq 1$.
(iv) Γ is a proper cover of some graph Σ with valency v and the group of automorphisms induced by G on Σ is symmetric, $S \leq G_{\sigma}^{\Sigma(\sigma)} \leq$ Aut S with S primitive on $\Sigma(\sigma)$ (σ a vertex of Σ), and is minimal with respect to these properties.

If a normal subgroup N of G has more than two orbits on vertices then the quotient graph Γ_{N} is defined as the graph with vertices the N-orbits, two N-orbits being adjacent in Γ_{N} if some vertex in one is joined to some vertex in the other N-orbit. In the proof of this proposition the graph Σ in (iv) will be Γ_{N}, but in subsequent lemmas Σ may be Γ_{C} for some other normal subgroup C of G.

Proof The subgroup $N_{\alpha}^{\Gamma(\alpha)}$ is normal in $G_{\alpha}^{\Gamma(\alpha)}$. Suppose first that $N_{\alpha}^{\Gamma(\alpha)}=1$. Then, by the connectivity of $\Gamma, N_{\alpha}=1$. If N has more than two orbits then, by [7, Lemma 1.6 and the remarks following], the quotient graph Γ_{N} with N-orbits as vertices is such that the group of automorphisms induced by G is G / N; this group is symmetric on Γ_{N} and the group induced by the stabilizer of an N-orbit on its neighbours in Γ_{N} is permutation isomorphic to $G_{\alpha}^{\Gamma(\alpha)}$. In particular Γ_{N} has valency v and (iv) holds with $\Sigma=\Gamma_{N}$. If N has two orbits then (iii) (b) holds, while if N is transitive then Γ is a Cayley graph for N and $G=N G_{\alpha}$. In the latter case G_{α} acts faithfully on $\Gamma(\alpha)$, and by the minimality of G we have $G_{\alpha}=S, G=N S$.

So now suppose that $N_{\alpha}^{\Gamma(\alpha)} \neq 1$, whence $S \leq N_{\alpha}^{\Gamma(\alpha)} \leq$ Aut S. The group $M:=<N_{\beta} \mid \beta \in V \Gamma>$ is normal in G and by connectivity has one or two orbits in $V \Gamma$. As N is a minimal normal subgroup and $M \leq N$, it follows that $N=M$ has 1 or 2 orbits. If N is transitive on $V \Gamma$ then, by the minimality of G, we have $G=N$, whence G is a nonabelian simple group. So suppose that N has two orbits. Then Γ is bipartite. If N is abelian then $N_{\alpha} \simeq S$ has prime order v and by [8, Lemma 1.1], $\Gamma=K_{v, v}$ and $T=S=Z_{v}, N=S \times S$. So suppose that N is non-abelian. There is a 2 -element $a \in G \backslash N$ which interchanges the two N-orbits and, by minimality, $G=\langle N, a\rangle$ so G / N is cyclic of order 2^{s} for some $s \geq 1$. Since N is a minimal normal subgroup, $\langle a\rangle$ permutes the simple direct factors of V transitively so k divides 2^{s}.

Before starting on a more detailed analysis of the cases in Proposition 2.1 we make the following observations about the structure of a stabilizer G_{α}. It will be used many times in the subsequent arguments.

Lemma 2.2 If Γ, G, S are as in Proposition 2.1 then G_{α} has exactly one composition factor isomorphic to S, and every other composition factor has order less than $|S|$.

Proof For $i \geq 1$ let $G_{i}(\alpha)$ denote the subgroup of G_{α} fixing pointwise every vertex distant at most i from α. If $G_{i}(\alpha) \neq 1$ then, for each vertex β at distance i from $\alpha, G_{i}(\alpha)^{\Gamma(\beta)}$ is a subgroup of $G_{\beta}^{\Gamma(\beta)}$ fixing a point of $\Gamma(\beta)$ at distance $i-1$ from α. Consequently every composition factor of $G_{i}(\alpha)^{\Gamma(\beta)}$ is a composition factor of some proper subgroup of S or of Out S and hence has order less than $|S|$. (This uses the simple group classification in the assertion that \mid Out $S|<|S|$.) Thus each composition factor of $G_{i}(\alpha) / G_{i+1}(\alpha)$ has order less than $|S|$. This, together with the fact that $G_{\alpha}^{\Gamma(\alpha)}$ has one composition factor S and all others have order less than $|S|$, completes the proof.

First we consider the case where the subgroup N of Proposition 2.1 is abelian.

Lemma 2.3 Let Γ, G, S, N, v be as in Proposition 2.1 with N abelian.
(i) If Proposition 2.1(ii) holds then either
(a) $\Gamma=C_{p}, p$, a prime, $v=|S|=2$, or
(b) $N=Z_{2}^{k}, S \leq G L(k, 2), S$ irreducible.
(ii) If Proposition 2.1(iii) holds then either
(a) $\Gamma=K_{v, v}$, and $v=|S|$ is prime, or
(b) $\Gamma=C_{2 p}, N=Z_{p}, p$ a prime, $v=|S|=2$, or
(c) $N=Z_{2}^{k}, \Gamma$ is a Cayley graph for $C_{G}(N)=N .2$, an abelian regular normal subgroup of $G, G=C_{G}(N) \cdot G_{\alpha}$, and $G_{\alpha}=S \leq G L(k, 2)$ is irreducible, or
(d) $N=Z_{p}^{k}$, and $G \leq A G L(k, p)$ with $G / N \leq G L(k, p)$ irreducible.

Proof In case (ii), $\Gamma=\operatorname{Cay}(N, X)$ with $X \subseteq N, X=X^{-1}$, and if α is the vertex identified with I_{N} then G_{α} acts primitively on $\Gamma(\alpha)=X$. For $x \in X,\left\{x, x^{-1}\right\}$ is a
block of imprimitivity for G_{α} in $\Gamma(\alpha)$ and hence either $x=x^{-1}$ whence $N=Z_{2}^{k}$, or $\Gamma(\alpha)=\left\{x, x^{-1}\right\}$ whence $v=2$ and Γ is a cycle. In the latter case Γ is a cycle of prime length since N is a minimal normal subgroup. In the former case N is self-centralizing in G (see [9]) so $G_{\alpha}=S \leq G L(k, 2)$ and by the minimality of N, S is irreducible.

In case (iii) either $\Gamma=K_{v, v}, v=|S|$ prime, or (iii)(b) holds. Suppose the latter, so N is semiregular with two orbits. Let $C=C_{G}(N)$. If $C=N$ then (ii)(d) holds, so assume that $C>N$. If $C_{\alpha} \neq 1$ then $\Gamma=K_{v, v}$ with $v=|S|$ prime. So assume that $C_{\alpha}=1$. Then C is regular and abelain and $\Gamma=\operatorname{Cay}(C, X)$ for some $X \subset C, X=X^{-1}$. If α is identified with 1_{C} then $X \subset C \backslash N$, and as above either $|X|=2$ whence $\Gamma=C_{2 p}, p$ a prime, or X consists of involutions. In the latter case $N=Z_{2}^{k}$ and $G_{\alpha} \leq A u t N=G L(k, 2)$. As Γ is connected G_{α} is faithful on $\Gamma(\alpha)$ and by minimality $G=C G_{\alpha}=C . S$ and S is irreducible.

From now on we may assume that N is nonabelian, so $N=T^{k}, T$ a nonabelian simple group. Next we treat the case where the centralizer C of N in G is nontrivial. Then G is not simple and, if C has more than two orbits then Proposition 2.1 (iv) holds with $\Sigma=\Gamma_{C}$. The following lemma deals with the case where C has at most two orbits.

Lemma 2.4 Let Γ, G, S, N, v be as in Proposition 2.1 with N nonabelian, and suppose that the centralizer C of N in G is nontrivial. Suppose further that Proposition 2.1 (iv) does not hold. Then $N=T=S$.
(i) If Proposition 2.1(ii) holds then $C \simeq S, G=N \times C \simeq S \times S$ and $\Gamma=C a y(S, X)$ where X is a conjugacy class of involutions in S such that $C_{S}(x)$ is maximal in S for $x \in X$.
(ii) If Proposition 2.1 (iii) holds then we are in case (iii)(b) and either $C=S$ or $C=S .2 \leq A u t S$. Moreover either
(a) $\Gamma=\operatorname{Cay}(S .2, X)$ for $X \subseteq(S .2) \backslash S$ an S-conjugacy class of involutions in $S .2$, such that $C_{S}(x)$ is maximal in S for $x \in X$, or
(b) $C=S$ and G is contained in the holomorph of $N=S$ with $G=N . H, N \cap$ $H=1, S \leq H \leq$ Aut $S, H / S=Z_{2}$, for some $s \geq 1$.

Proof Since Proposition 2.1(iv) does not hold, C has 1 or 2 orbits. If N were not semiregular then Proposition 2.1 (iii)(c) would hold and we would obtain $\Gamma=$ $K_{v, v}, N=S \times S$, and C would have at least one composition factor S so that $(N \times C)_{\alpha}$ would have at least two composition factors S contradicting Lemma 2.2 . Thus N is semiregular so that we are in case (ii) or case (iii)(b) of Proposition 2.1. Moreover C induces on each N-orbit a group isomorphic to T^{k} so that $(N \times C)_{\alpha}$ has a normal subgroup isomorphic to T^{k} and this normal subgroup must act nontrivially on $\Gamma(\alpha)$. It follows from Lemma 2.2 that $T=S, k=1$ and either $C=S$, or we are in case (iii)(b) and $C=S .2$. In case (ii) of Proposition $2.1 \Gamma=C a y(S, X)$ with X a self-inverse conjugacy class of S and as $G_{\alpha}=S$ is primitive on $\Gamma(\alpha)=X$, it follows that X consists of involutions and $C_{S}(x)$ is maximal in S for $x \in X$. In case (iii)(b) of Proposition 2.1, if $C=S .2$ then $\Gamma=C a y(C, X)$ with $X \subseteq C \backslash S$ a self-inverse S-conjugacy class in C. Since Proposition 2.1(iv) does not hold, $C=S .2 \leq$ Aut S (that is $C \neq S \times Z_{2}$). As S is primitive on X, X consists of involutions and $C_{S}(X)$ is maximal in S for $x \in X$. Similarly if $C=S$ and $C_{G}(C)=N .2=S .2$ then $\Gamma=\operatorname{Cay}(S .2, X)$ for some X satisfying the above properties. If $C_{G}(C)=N$ then G is contained in the holomorph of $N=S$. Thus $G=N . H$, where $N \cap H=$ $1, S \leq H \leq A u t S$. By minimality $G=<N \times C, y>$ where y is a 2-element which interchanges the bipartite halves, and so $H / S \simeq Z_{2}$. for some $s \geq 1$.

In case (ii) of Proposition 2.1, if N has trivial centralizer then $N=T^{k}$ with T a nonabelian simple group, $\Gamma=C a y(N, X)$, and $G=N S \leq A u t N=A u t T$ wr S_{k}. Moreover S must permute the simple direct factors of N and so S must project onto a transitive subgroup of S_{k}; and as S is primitive on $\Gamma(\alpha)=X$, where $\alpha=1_{N}, X$ is an S-orbit of involutions. Theorem 2 follows from Lemmas 2.3 and 2.4, and these remarks.

3. The bipartite case

Let Γ, G, S, v be as in case (iii) of Proposition 2.1, and hence case (iii) of Theorem 1, so that Γ is bipartite and some minimal normal subgroup N of G has two orbits on $V \Gamma$. The cases where N has nontrivial centralizer were treated in

Lemmas 2.3 and 2.4, so we may assume that $N=T^{k}=T_{1} \times \ldots \times T_{k}$ for some nonabelian simple group T and integer $k \geq 1$, and that $G \leq A u t N=A u t T$ wr S_{k}. Let Δ_{1} and Δ_{2} be the two N-orbits in $V \Gamma$. We shall investigate the action of several normal subgroups of N on Γ.

Lemma 3.1 If the pointwise stabilizer $N_{\left(\Delta_{1}\right)}$ of Δ_{1} in N is nontrivial then $\Gamma=$ $K_{v, v}$, and $N=S \times S \leq G \leq A u t S$ wr Z_{2}.

Proof Let $M_{1}=N_{\left(\Delta_{1}\right)} \neq 1$. We may assume that $T_{1} \leq M_{1}$. We are in case (iii)(c) of Proposition 2.1, so $G=\langle a, N\rangle$ and we may assume that $T_{i}^{a}=T_{i+1}$, for all i, taking subscripts modulo k. Now $\triangle_{1}^{a}=\Delta_{2}$ so $T_{2} \leq M_{2}=N_{\left(\Delta_{2}\right)}$. Continuing this line of argument we have $N=M_{1} \times M_{2}$ with $M_{1}=T_{1} \times T_{3} \times \ldots$ and $M_{2}=T_{2} \times T_{4} \times \ldots$ with $k \geq 2$ even. Let $\alpha \in \triangle_{1}$. Now the M_{1}-orbits in Δ_{2} are of equal length greater than 1 , so $M_{1}^{\Gamma(\alpha)}$ is a nontrivial normal subgroup of $N_{\alpha}^{\Gamma(\alpha)}$. Since $M_{1}^{\Gamma(\alpha)}$, a quotient of M_{1}, is a direct power of copies of T, it follows that $M_{1}^{\Gamma(\alpha)} \simeq T \simeq S$. by Lemma 2.2, M_{1} can have only one composition factor S, and so $k=2$. By $\left[8\right.$, Lemma 1.1] $\Gamma=K_{v, v}$.

We assume from now on that N acts faithfully on each of Δ_{1}, Δ_{2}. Next we look at the case where some nonidentity element of T_{1} fixes a point, that is T_{1} is not semiregular on $V \Gamma$.

Lemma 3.2 Suppose that $N_{\left(\Delta_{1}\right)}=1$ and that some nonidentity element of T_{1} fixes a point. Then $N=T \leq G \leq$ Aut T.

Note that in any example for which Lemma 3.2 holds, N must have two conjugacy classes of subgroups (containing N_{α} and $N_{\beta}, \alpha \in \triangle_{1}, \beta \in \triangle_{2}$) which are interchanged by G.

Proof We may assume that $\left(T_{1}\right)_{\alpha} \neq 1$ for $\alpha \in \triangle_{1}$. Then, as $\left(T_{1}\right)_{\alpha}^{\Gamma(\alpha)} \triangleleft N_{\alpha}^{\Gamma(\alpha)}$, it follows that $S \leq\left(T_{1}\right)_{\alpha}^{\Gamma(\alpha)}$. We are in case (iii)(c) of Proposition 2.1: $\left.G=<N, a\right\rangle$ and we may take $T_{i}^{a}=T_{i+1}$ for all $i(\bmod k)$. If $k>2$ then some nonidentity element of $T_{3}=T_{1}^{a^{2}}$ fixes a point of $\Delta_{1}=\triangle_{1}^{a^{2}}$ and so, as the T_{3}-orbits in Δ_{1} have equal length, it follows that $S \leq\left(T_{3}\right)_{\alpha}^{\Gamma(\alpha)}$. Thus $N_{\alpha} \geq\left(T_{1}\right)_{\alpha} \times\left(T_{3}\right)_{\alpha}$ has at
least two composition factors S, contradicting Lemma 2.2. So $k \leq 2$. Suppose that $k=2$. If $\left(T_{2}\right)_{\alpha} \neq 1$ then we would obtain a contradiction as above and hence T_{2} is semiregular on \triangle_{1}, and so $T_{1}=T_{2}^{a}$ is semiregular on $\triangle_{2}=\triangle_{1}^{a}$. Thus $\left(T_{1}\right)_{\alpha}^{\Gamma(\alpha)}$ is regular. However $S \leq\left(T_{1}\right)_{\alpha}^{\Gamma(\alpha)} \leq$ Aut S and S is primitive on $\Gamma(\alpha)$, and such primitive groups are not regular (see [3]). Thus $k=1$.

Lemma 3.3 Suppose that $N_{\left(\Delta_{1}\right)}=1$ and that T_{1} is semiregular on $V \Gamma$. Then either N is semiregular on $V \Gamma$ or $k>1$ and for $\alpha \in V \Gamma, N_{\alpha}$ is a subgroup of a diagonal subgroup of $N=T_{1} \times \ldots \times T_{k}$.

Recall that a diagonal subgroup of $T_{1} \times \ldots \times T_{k}$ is a subgroup of the form $\left\{\left(t^{\phi_{1}}, t^{\phi_{2}}, \ldots, t^{\phi_{k}}\right) \mid t \in T\right\} \simeq T$ where the $\phi_{i} \in$ Aut T.

Proof Suppose that N is not semiregular and that T_{1} is semiregular on $V \Gamma$. Then case (iii)(c) of Proposition 2.1 holds so $G=\langle N, a\rangle$ with $T_{i}^{a}=T_{i+1}$ for all i. Let j be the least integer such that $Y=T_{1} \times \ldots \times T_{j}$ is not semiregular. Then $2 \leq j \leq k$. We may assume that $Y_{\alpha}^{\Gamma(\alpha)} \neq 1$ for $\alpha \in \triangle_{1}$. Then Y_{α} is a subgroup of a diagonal subgroup of $Y=T_{1} \times \ldots \times T_{j}$ since $\left(T_{1} \times \ldots \times T_{j-1}\right)_{\alpha}=1$. Now $Y^{a^{2}}=T_{3} \times \ldots \times T_{j+2}$ taking the subscripts modulo k, and $Y^{a^{2}}$ is such that $\left(Y^{a^{2}}\right)_{\alpha^{a^{2}}}$ acts nontrivially on $\Gamma\left(\alpha^{a^{2}}\right)$. Since $\alpha^{a^{2}} \in \triangle_{1}^{a^{2}}=\triangle_{1}$ it follows that $\left(Y^{a^{2}}\right)_{\alpha}^{\Gamma^{(\alpha)}} \neq 1$. Now $\left(Y^{a^{2}}\right)_{\alpha}$ is a subgroup of a diagonal subgroup of $T_{3} \times \ldots \times T_{j+2}$. If $j<k$ then $Y_{\alpha} \cap\left(Y^{a^{2}}\right)_{\alpha}=1$ whence $N_{\alpha} \geq Y_{\alpha} \times\left(Y^{a^{2}}\right)_{\alpha}$ has at least two composition factors S, contradicting Lemma 2.2. So $j=k$ and $N=Y$, and the lemma is proved.

Theorem 3 now follows from Lemmas 2.3,2.4,3.1, 3.2 and 3.3.

4. Constructions and discussions

There are many examples of graphs satisfying the conditions of Theorem 1 with G a nonabelian simple group: a second paper of Lorimer [5] classifies all such cubic graphs on up to 120 vertices. The purpose of this section is to give constructions for classes of graphs satisfying the conditions of Theorem 2 or 3 to illustrate the various types of examples which arise. We begin with Theorem 2. There are many

Cayley graphs on Z_{2}^{k} as in Theorem 2(ii), perhaps the best known are the folded cubes.

4.1 Cubes and folded cubes The cube Q_{k} has vertex set Z_{2}^{k} with vertices

 adjacent if they differ in one coordinate. The vertices of the folded cube \square_{k} are pairs of antipodal vertices, that is $\{x, y\}$ where $x+y$ is the all-1 vector. Now Q_{k} satisfies the conditions of Theorem 1 with $G=Z_{2}^{k}$. A_{k} with the alternating group A_{k} permuting coordinates, and Q_{k} is a double cover of a_{k} and so is an example of Theorem 1(iv). Factoring out by $\langle(1,1, \ldots, 1)\rangle \simeq Z_{2}$ we obtain the group $Z_{2}^{k-1} A_{k}$ acting on \square_{k}. If k is odd then A_{k} acts irreducibly on the normal subgroup Z_{2}^{k-1} and Theorem 2(ii) holds, while if k is even then Q_{k} and a_{k} are bipartite and \square_{k} arises in case (ii)(b) of Theorem 3.The Cayley graphs arising in case (iii) of Theorem 2 are easily understood and there will be an example for each self-inverse conjugacy class X of a nonabelian simple group S such that $C_{S}(x)$ is maximal, for $x \in X$. The nature of the graphs satisfying Theorem 2(iv) is a little less clear. We give examples, for most pairs T, S, of Cayley graphs for T^{k} admitting $T^{k} . S$ (for some k) satisfying most of the conditiuns of Theorem 2(iv): the primitivity of S on $\Gamma(\alpha)$ is the most difficult property to guarantee.
4.2 Cayley graphs for T^{k} Let T and S be simple groups with T nonabelian. Let k be an integer such that S is isomorphic to a transitive subgroup of the symmetric group S_{k}. (This is equivalent to choosing a proper subgroup M of S and considering the action by right multiplication on the $k=|S: M|$ right cosets of M in S.) Set $G=T$ wr $S=T^{k}$.S. Then $N=T^{k}$ is a minimal normal subgroup of G. Now we define a Cayley graph on T^{k} admitting G. Let X be an S-invariant class of involutions in N such that X generates N and define $\Gamma=\operatorname{Cay}(N, X)$. Since X generates N, Γ is connected and Γ admits G. In order for this to be an example, S must act primitively on X. If $S=Z_{k}$ with k prime, and if T has a generating set x_{1}, \ldots, x_{i} of $t \leq k$ involutions, then we can take X to be the set of images under S of $\left(x_{1}, \ldots, x_{t}, 1, \ldots 1\right) \in T^{k}$. For other groups S a different choice of generating
set X for T^{k} may give an example with S primitive. Note that we require $C_{S}(x)$ maximal in S for $x \in X$, and $C_{S}(x)$ must preserve the partition of the k entries determined by equality of x-entries. Thus each element x of X must determine a different such partition. For example suppose that T has a generating set y_{1}, \ldots, y_{t} of t involutions, and that the subgroup M of S stabilizing the first entry of elements of N is maximal in S and has t orbits on entries. Then let $x=\left(x_{1}, \ldots, x_{k}\right) \in N$ be such that $x_{i}=y_{j}$ if i is in the j th orbit of M on entries and let X be the set of images of x under S. Then S acts primitively on X since $C_{S}(x)=M$ is maximal in S, and $\langle X\rangle=N$, again since the stabilizer of an entry is maximal in S.

These examples are fairly typical of graphs satisfying Theorem 2(iv). For such graphs the group G has a minimal normal subgroup $N=T^{k}$ and a simple subgroup S which complements N and which permutes the simple direct factors of N transitively. A group G with these properties is a twisted wreath product of T by S (see [2, Section 3]). The groups discussed above were ordinary wreath products, but the problem of constructing examples for twisted wreath products is similar.

Next we consider examples satisfying the conditions of Theorem 3. There are many examples in case (ii)(b), some having been mentioned in 4.1 above. Also constructions of examples in case (ii)(a) are obvious and need no more discussion. We next describe a general construction which applies in cases (ii)(c), (iii)(b) and (iii)(c).

4.3 Examples for Theorem 3(ii) and (iii)

(a) In these cases we have $G=<N G_{\alpha}, a>$ for some 2 -element a interchanging the two halves \triangle_{1} and \triangle_{2} of the bipartition, and with N semiregular with orbits \triangle_{1} and \triangle_{2}. Set $M=G_{\alpha}$. Then $V \Gamma$ may be identified with the transversal (that is a set of right coset representatives) $N \cup N a$ for M in G, so that $\alpha=1_{N}$ and $\Gamma(\alpha) \subseteq N a$, say $\Gamma(\alpha)=X a$ with $X \subseteq N$. It is difficult to get precise conditions on X in general so let us suppose that a normalizes M and $a^{2} \in M$ which is true in many cases. Then the image of the edge $\left\{1_{N}, x a\right\}, x \in X$, under a is $\left\{a, x^{a^{2}}\right\}$ since $M x a^{2}=M x^{a^{2}}$, and the image of this edge under $\left(x^{a^{2}}\right)^{-1} \in N$ is $\left\{\left(x^{a}\right)^{-1} a, 1_{N}\right\}$ whence $\left(x^{a}\right)^{-1} \in X$. This is condition $\left(x \in X\right.$ implies $\left.\left(x^{a}\right)^{-1} \in X\right)$ is the condition
for Γ to be undirected. An element $m \in M$ sends $x a \in \Gamma(\alpha)$ to $x^{a m a^{-1}} a$, so $x^{a m a^{-1}} \in X$ whence X is an M-orbit in N on which M acts primitively.
(b) One class of examples satisfying (ii)(c) can be easily obtained as follows. Let $N=Z_{p}^{k}$ with p prime, $G=N S_{k}$, with S_{k} permuting entries, $M=S=A_{k}$ and $a=(1,2)$. Let X be the set of standard basis vectors $x_{i}=\left(0^{i-1} 10^{k-i}\right), 1 \leq i \leq k$. The graph $\Gamma=C a y(N, X)$ with group G satisfies most of the conditions of Theorem $3($ ii)(c); unfortunately N is not a minimal normal subgroup. The subgroup $C=<$ $(1, \ldots, 1)>$ of N is nomal in G and the quotient graph Γ_{C} and group G / C satisfy Theorem 3(ii)(c) if p does not divide k (for in that case N / C is minimal normal in $G / C)$.
(c) In Theorem 3(iii)(b) G has a normal subgroup $T \times T$ such that $N=T \times\{1\}$ and $G=N H$ with $S=H \cap(T \times T)=\{(t, t) \mid t \in T\} \simeq T$. In this case $H=$ $<M, a>=<S, a>,|H: M|=2$, and the above assumptions on a all hold. The subset X is an M-conjugacy class of T (for $T \simeq S \leq M \leq A$ ut T) and we require $C_{T}(x)$ maximal in T for $x \in X$ in order that $S=T$ be primitive on $\Gamma(\alpha)$.
(d) In Theorem 3 (iii)(c), $N=T^{k} \leq G \leq A u t N$. Let $\operatorname{Cay}(N, X)$ be one of the graphs obtained from the construction in 4.2 satisfying Theorem 2(iv) admitting $N . S=T$ wr S and suppose that S has an automorphism $a \in$ Aut $S \backslash S$ of order 2 such that $\langle S, a\rangle$ still acts transitively of degree k, that is a lies in the normalizer of S in S_{k}. Let $G=T$ wr $\langle S, a\rangle=\langle N S, a\rangle$. Then a satisfies the assumptions above and the graph with vertex set identified with $N \cup N a$ and with $\Gamma(\alpha)=X a$ defined above satisfies all the conditions of (iii) (c).

Examples for Theorem 3 (iv)(a) may be constructed in a similar manner to 4.3(d) from examples of Theorem 1 (i).
4.4 Almost simple bipartite graphs Let Σ be a graph satisfying the conditions of Theorem 1 (i) but not (iv) admitting T, a nonabelian simple group, and suppose that T has an automorphism $a \in T$ such that $a^{2} \in T$ and a normalizes the stabilizer M of vertex α. Set $G=\langle T, a\rangle$, identify $V \Sigma$ with the coset space $[T: M]$ and define Γ to be the graph with vertex set $[G: M]$ such
that $\Gamma(\alpha)=\{M x a \mid M x \in \Sigma(\alpha)\}$. Note that $m \in M$ maps $M x a \in \Gamma(\alpha)$ to $M x a m=M x\left(a m a^{-1}\right) a \in \Gamma(\alpha)$ (since $a m a^{-1} \in M$), so this graph Γ satisfies Theorem 3(iv)(a). The stabilizer M fixes a point in both parts of the bipartition, namely M fixes M and $M a$. A graph in case (iv)(a) need not have this property, but if it does then it will arise in the way described above.

Examples in case (iv)(b) of Theorem 3 are the most difficult to describe in general. We give just one class of examples with $S=T$.
4.5 Bipartite graphs with diagonal action In Theorem 3(iv)(b), $N=T^{k} \leq$ $G=\langle N, a\rangle$ with a a 2-element. We shall take here $a=(1,2, \ldots, k)$ of order $k=2^{s}$ such that $N=T_{1} \times \ldots \times T_{k}$ and $T_{i}^{a}=T_{i+1}$ for all i. So $G=N .\langle a\rangle$. Let $S=\{(t, \ldots, t) \mid t \in T\}$ and set $M=S .\left\langle a^{2}\right\rangle \leq$ Aut T. Note that $m \in S$ acts on $t=\left(t_{1}, \ldots, t_{k}\right) \in N$ by $t^{m}=\left(t_{1}^{m}, \ldots, t_{k}^{m}\right)$. The vertex set of Γ will be the coset space $[G: M]$ which can be identified with the tranversal $V \cup V a$ for M in G where $V=T_{1} \times \ldots \times T_{k-1}$. Then for $\alpha=M, G_{\alpha}=M$ and $\Gamma(\alpha) \subseteq V a$. An element $m \in M \leq A u t T$ maps a coset $M v a, v \in V$, to $M v a m=M v^{a m a} a^{-1} a$ since $a m a^{-1} \in M$, and $v^{a m a^{-1}} \in V$. So $\Gamma(\alpha)=X a$ with $X \subseteq V$ an M-orbit in V such that $C_{S}(x)$ is maximal in S for $x \in X$. This can be achieved for example by choosing $t \in T$ to be an involution such that $C_{T}(t)$ is maximal in T and taking $X=\left\{\left(t^{m}, t^{m}, \ldots t^{m}, 1\right) \mid m \in M\right\} \subseteq V$.

References

[1] N. Biggs, Algebraic Graph Theory (Cambridge University Press, Cambridge, 1974).
[2] F. Gross and L.G. Kovacs, 'On normal subgroups which are direct products', J. Algebra 90 (1984), 133-168.
[3] M.W. Liebeck, C.E. Praeger and J. Saxl, 'On the O'Nan-Scott Theorem for finite primitive permutation groups', J. Austral. Math. Soc. (A) 44 (1988), 389-396.
[4] P. Lorimer, 'Vertex-transitive graphs: symmetric graphs of prime valency', J. Graph Theory 8 (1984), 55-68.
[5] P. Lorimer, 'Trivalent symmetric graphs of order at most 120 ', European J. Combinatorics 5 (1984), 163-171.
[6] P. Lorimer, 'Symmetric bipartite graphs of prime valency', European J. Combinatorics 11 (1990), to appear.
[7] C.E. Praeger, 'Imprimitive symmetric graphs', Ars Combinatoria 19A (1985), 149-163.
[8] C.E. Praeger, 'On automorphism groups of imprimitve symmetric graphs', Ars Combinatoria 23A (1987), 207-224.
[9] H. Wielandt, Finite Permutation Groups (Academic Press, New York, 1964).

