By M.E. Morley

Introduction

Define, as in Mills[1], a (v,k,t)-covering to be a collection of k-element subsets (called blocks) of a v-element set. S. such that every t-element subset of S is contained in at least one block. Let the covering number $N(v, k, t)$ be the least number of blocks in any (v,k,t)-covering.

We begin with two well-known designs:

$$
N(9,6,4)=12 \quad N(9,3,2)=12
$$

1.	4	5	6	7	8	9	1	2	3
2.	2	3	6	7	8	9	1	4	5
3.	2	3	4	5	8	9	1	6	7
4.	2	3	4	5	6	7	1	8	9
5.	1	3	5	6	7	8	2	4	9
6.	1	3	4	7	8	9	2	5	6
7.	1	3	4	5	6	9	2	7	8
8.	1	2	5	6	8	9	3	4	7
9.	1	2	4	6	7	9	3	5	8
10.	1	2	4	5	7	8	3	6	9
11.	1	2	3	5	7	9	4	6	8
12.	1	2	3	4	6	8	5	7	9

Question

Now is it important or trivial to ask:
Does the full complemert of a (9.6.4)-cover give a (9.3.2)cover, or, does the full complement of a (9,3,2)-cover give a (9.6.4)-cover? Are both covers of equal importance and only have a coincidentel xelationarip

Australasian Journal of Combinatorics 4(1991), pp 285-289

	$N(10,4,3)=30$				$N(10,6,4)=20$					
1.	1	2	3	4	5	6	7	8	9	10
2.	1	2	5	8						
3.	1	2	6	9	3	4	5	7	8	10
4.	1	2	7	10	3	4	5	6	8	9
5.	1	3	5	7	2	4	6	8	9	10
6.	1	3	6	10						
7.	1	3	8	9	2	4	5	6	7	10
8.	1	4	5	6	2	3	7	8	9	10
9.	1	4	7	9						
10.	1	4	8	20						
11.	1	5	9	10	2	3	4	6	7	8
12.	1	6	7	8	2	3	4	5	9	10
13.	2	3	5	6	1	4	7	8	9	10
14.	2	3	7	8						
15.	2	3	9	10						
16.	2	4	5	10	1	3	6	7	8	9
17.	2	4	6	7						
18.	2	4	8	9	1	3	5	6	7	10
19.	2	5	7	9	1	3	4	6	8	10
20.	2	6	8	10	1	3	4	5	7	9
21.	3	4	5	9						
22.	3	4	6	8	1	2	5	7	9	10
23.	3	4	7	10	1	2	5	6	8	9
24.	3	5	8	10	1	2	4	6	7	9
25.	3	6	7	9	1	2	4	5	8	10
26.	4	5	7	8	1	2	3	6	9	10
27.	4	6	9	10	1	2	3	5	7	8
28.	5	6	7	10						
29.	5	6	8	9						
30.	7	8	9	10	1	2	3	4	5	6

Question

While these designs are well known. it may not be well known that $(10,6,4)$-covering design cen be found in the complement of a (10.4.3)-covering design. The question now may not be so trivial because we could ash: does the complement of a (10,4,3)-cover show a simple way of finding a (10.6,4)-cover. or does the complement of a (10.6 .4 -cover provide a simple way of constructing a $\langle 10,4,3)$-cover because it leaves us with only 10 blocks to find? Or is the relationship between these two designs purely coincidental?

Now suppose we wish to find a covering design for (11.7.5), for which, at the time of writing, the minimum number of blocks is not known. The Schonheim boundllj indicates a minimum of 32 blocks. We can quickly reconcile this as we know that a $(10,6.4)$-cover requires 20 blocks and since v. k and t have all been increased by 1. then 11 multiplied by 20 and divided by $?$ equals 31.4. Since we cannot use part of a block we must go to the nearest whole number and therefore an (11, 7,5)-cover is going to require a minimum of 32 blocks. How do we proceed to construct this design? To simplify the problem we could increase v, K and t so that we look for a (12.8.6)-cover as sometimes it is essier to work with an even number of elements. If we can find a neat way to construct a (12,8,6)-cover, then an (11.7.5)-cover could be taken from such a construction. This is not necessarily the best approach. it is mexely a suggestion when faced with a difficult problem for which no hard and fast rules exist. There is no proof either, in this particular case, that it gives the absolute minimum number of blocks, but it does give a very close approximation.

Constructing $N(12,8,6)=$?
We commence by dividing the 12 elements into two groups of six which we call A and B. $A s t=6$, we place under A and B every possibility where the Eull value of t could fall.

If the full value of t falls in any of the first four possibilities (up to the dividing line). then we would only need six blocks to contain them and these can be:

1.	1	2	3	4	5	6	7	8
2.	1	2	3	4	5	6	9	10
3.	1	2	3	4	5	6	11	12
4.	1	2	7	8	9	10	11	12
5.	3	4	7	8	9	10	11	12
6.	5	6	7	8	9	10	11	12

Of the remaining possibilities where t could fell, they can be covered in 45 blocks, and the 45 blocks can be found in the complement of an N(12,4,3)-covering design. You will note that the 45 blocks use exactly four elements from A and B. This of course means that an $N(12,8,6)$ cover can be constructed in 51 blocks and where each element is used exactly 34 times.

From the 51 blocks a total of 49 are taken from the complement of the (12,4,3)-covering design.

N(12.4.3) $=57$

1. $1 \quad 2 \quad 34$
2. 1.2 3 5
3. 1236
4. 1278
5. 12910
6. 121112
7.1379
7. 1 3 811
8. 131012
9. 1456
10. 14710
11. 14812
12. 14911
13. 15711
15.15810
14. 15912
15. 16712
16. 1689
17. 161011
18. $2 \quad 3 \quad 7 \quad 12$
19. 2389
20. $\quad 2 \quad 3 \quad 1011$
21. 2456
22. 24711
23. 24810
24. 2 4912
25. 2579
26. 258811
27. $\quad 2 \quad 5 \quad 1012$
28. 26710
31.26812
29. 266911
30. 3456
31. 3478
32. 34910
$36 . \quad 341112$
33. 35710
34. 35812

Complementary blocks
567.89101112%
$\begin{array}{llllllllll}3 & 4 & 5 & 6 & 9 & 10 & 1 & 1 & 12 \\ 3 & 4 & 5 & 6 & 7 & 8 & 1 & 1 & 12 \\ 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 4 & 5 & 6 & 8 & 10 & 1 & 1 & 12 \\ 2 & 4 & 5 & 6 & 7 & 9 & 10 & 12 \\ 2 & 4 & 5 & 6 & 7 & 8 & 9 & 11\end{array}$

2	3	5	6	8	9	11	12
2	3	5	6	7	9	10	11
2	3	5	6	7	8	10	12
2	3	4	6	8	9	10	12
2	3	4	6	7	9	11	12
2	3	4	6	7	8	10	11
2	3	4	5	8	9	10	11
2	3	4	5	7	10	11	12
2	3	4	5	7	8	9	12
1	4	5	6	8	9	10	11
1	4	5	6	7	10	11	12
1	4	5	6	7	8	9	12

1356891012
$\begin{array}{lllllll}1 & 3 & 5 & 6 & 7 & 9 & 11\end{array} 12$
133568781011
$\begin{array}{llllllll}1 & 3 & 4 & 6 & 8 & 10 & 11 & 12\end{array}$
13466741012
$\begin{array}{llllllll}1 & 3 & 4 & 6 & 7 & 8 & 9 & 11\end{array}$
1345891112
$\begin{array}{llllllll}1 & 3 & 4 & 5 & 7 & 9 & 10 & 11\end{array}$
$\begin{array}{lllllllll}1 & 3 & 4 & 5 & 7 & 8 & 10 & 12\end{array}$
$12789 \quad 101112 \%$
$\begin{array}{lllllllll}1 & 2 & 5 & 6 & 9 & 10 & 11 & 12\end{array}$
$\begin{array}{lllllllll}1 & 2 & 5 & 6 & 7 & 8 & 11 & 12\end{array}$
$\begin{array}{lllllllll}1 & 2 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
$\begin{array}{llllllll}1 & 2 & 4 & 6 & 8 & 9 & 11 & 12\end{array}$
$1 \begin{array}{lllllll}1 & 2 & 4 & 6 & 7 & 9 & 10\end{array} 11$

39.	3	5	9	11	1	2	4	6	7	8	10	12
40.	3	6	7	11	1	2	4	5	8	9		12
41.	3	6	8	10	1	2	4	5	7	9	11	12
42.	3	6	9	12	3	2	4	5	7	8	10	11
43.	4	5	7	12	1	2	3	6	8	9	10	11
44.	4	5	8	9	1	2	3	6	7	10	11	12
45.	4	5	10	11	1	2	3	6	7	8	91	
46.	4	6	7	9	1	2	3	5	8		11	12
47.	4	6	8	11	1	2	3	5	7	9	10	12
48.	4	6	10	12	1	2	3	5	7	8	91	1
49.	5	6	7	8	1	2	3	4	9	10	11	12
50.	5	6	9	10	1	2	3	4	7	8	11	12
51.	5	6	11	12	1	2	3	4	7	8	91	
52.	7	10		112								
53.	8	10		112								
54.	9	10		112	1	2	3	4	5	6	78	
55.	7	8	9	10	1	2	3	4	5	6	11	12*
56.	7	8	9	11								
57.	7	8	9	12								

*Aready included in the first six blocke.

If we can cover ($12,8,6$) in 51 blocke uaing each element exactly 34 times then we can cover (11.7.5) in 34 blocks. This is no proof, of course, that either of these designs is a minimum cover. If they are not, then a completely different method of construction is needed.

Question

In the three examples given, are all the complementaxy blooks purely coincidental?

Reference

[1] M.H. Mills, Construction of covering designs, Congressus Numermntium, 73 (1990) 29-36.

M.E. Morley
4/66 Wattle Valley Road
CANTERBURY VIC 3126

