A neighborhood and degree condition for pancyclicity and vertex pancyclicity

Ryota Matsubara Masao Tsugaki
Department of Mathematical Information Science
Tokyo University of Science
1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601
Japan
qq8c6dt9n@able.ocn.ne.jp tsugaki@hotmail.com

Tomoki Yamashita

Department of Mathematics
School of Dentistry, Asahi University
1851 Hozumi, Gifu 501-0296
Japan
tomoki@dent.asahi-u.ac.jp

Abstract

Let G be a 2-connected graph of order n. For any $u \in V(G)$ and $l \in$ $\{m, m+1, \ldots, n\}$, if G has a cycle of length l, then G is called $[m, n]-$ pancyclic, and if G has a cycle of length l which contains u, then G is called $[m, n]$-vertex pancyclic. Let $\delta(G)$ be a minimum degree of G and let $N_{G}(x)$ be the neighborhood of a vertex x in G. In [Australas. J. Combin. 12 (1995), 81-91] Liu, Lou and Zhao proved that if $\left|N_{G}(u) \cup N_{G}(v)\right|+$ $\delta(G) \geq n+1$ for any nonadjacent vertices u, v of G, then G is $[3, n]$-vertex pancyclic. In this paper, we prove if $n \geq 6$ and $\left|N_{G}(u) \cup N_{G}(v)\right|+d_{G}(w) \geq$ n for every triple independent vertices u, v, w of G, then (i) G is [3,n]pancyclic or isomorphic to the complete bipartite graph $K_{n / 2, n / 2}$, and (ii) G is [5,n]-vertex pancyclic or isomorphic to the complete bipartite graph $K_{n / 2, n / 2}$.

1 Introduction

In this paper, we consider only finite graphs without loops or multiple edges. For standard graph-theoretic terminology not explained in this paper, we refer the reader to [3]. We denote by $N_{G}(x)$ the neighborhood of a vertex x in a graph G. For a subgraph H of G and a vertex $x \in V(G)$, we also denote $N_{H}(x):=N_{G}(x) \cap V(H)$
and $d_{H}(x):=\left|N_{H}(x)\right|$. For $X \subset V(G), N_{G}(X)$ denote the set of vertices in $G \backslash X$ which are adjacent to some vertex in X. If there is no fear of confusion, then we often identify a subgraph H of a graph G with its vertex set $V(H)$. Let G be a graph of order n and a, b be two integers with $3 \leq a \leq b \leq n$. Then G is said to be $[a, b]$-pancyclic if for every $l \in\{a, a+1, \ldots, b\}$, it contains a cycle of length l. Especially, $[3, n]$-pancyclic is called pancyclic.

The study of pancyclic graphs was initiated by Bondy [1] in 1971. In [1], he proved that if G is a graph of order n with $d_{G}(x)+d_{G}(y) \geq n$ for each pair of nonadjacent vertices x, y of G, then G is either pancyclic or isomorphic to the complete bipartite graph $K_{n / 2, n / 2}$. In particular, a pancyclic graph is hamiltonian. Therefore this shows that Ore's condition for a graph to be hamiltonian also implies that it is pancyclic except for some exceptional graphs. He proposed in [2] his famous "metaconjecture". It says that almost all nontrivial sufficient conditions for a graph to be hamiltonian also imply that it is pancyclic except for maybe a simple family of exceptional graphs.

The following proposition concerning hamiltonian graphs is obtained easily.
Proposition 1. Let G be a 2-connected graph of order n. Suppose that $\mid N_{G}(x) \cup$ $N_{G}(y) \mid+d_{G}(z) \geq n$ for every triple independent vertices x, y, z of G. Then G is hamiltonian.

The condition of Proposition 1 is weaker than Ore's condition. In this paper, motivated by Proposition 1 and Bondy's metaconjecture, we prove the following.

Theorem 2. Let G be a 2 -connected graph of order $n \geq 6$. Suppose that $\mid N_{G}(x) \cup$ $N_{G}(y) \mid+d_{G}(z) \geq n$ for every triple independent vertices x, y, z of G. Then G is pancyclic or isomorphic to the complete bipartite graph $K_{n / 2, n / 2}$.

Let G be a 2 -connected graph of order n. For any $u \in V(G)$ and $l \in\{m, m+$ $1, \cdots, n\}$, if G has a cycle of length l which contains u, then G is called $[m, n]$ vertex pancyclic. Especially, $[3, n]$-vertex pancyclic is called vertex pancyclic. Let $\kappa(G)$ and $\delta(G)$ be the connectivity and the minimum degree of a graph G. In [4], Faudree, Gould, Jacobson and Lesniak conjectured that if a connected graph G of order n with $\delta(G) \geq \kappa(G)+1$ satisfies $\left|N_{G}(u) \cup N_{G}(v)\right| \geq n-\kappa(G)$ for any nonadjacent vertices u, v of G, then G is vertex pancyclic. Song, in [6], refomulated this conjecture. He conjectured that if a 2-connected graph G of order n satisfies $\left|N_{G}(u) \cup N_{G}(v)\right| \geq n-\delta(G)+1$ for any nonadjacent vertices u, v of G, then G is vertex pancyclic. Obviously, Song's conjecture implies the conjecture by Faudree et al. In [5], Liu, Lou and Zhao settled Song's conjecture.

Theorem 3 (Liu, Lou and Zhao [5]). Let G be a 2-connected graph of order n. Suppose that $\left|N_{G}(u) \cup N_{G}(v)\right|+\delta(G) \geq n+1$ for any nonadjacent vertices u, v of G. Then G is vertex pancyclic.

By observing Theorems 2 and 3, one might expect the condition of Theorem 2 can yield vertex pancyclic. However, there exist graphs which satisfy the conditions of Theorem 2 but do not have a cycle of length 3 and 4 containing some $u \in V(G)$.

We define a graph G_{0} of order $3 m+3$ as follows: let $H_{i}(1 \leq i \leq 3)$ be complete graphs of order $m \geq 3$, and let

$$
\begin{aligned}
V\left(G_{0}\right)= & \bigcup_{1 \leq i \leq 3} V\left(H_{i}\right) \cup\left\{a_{1}, a_{2}\right\} \cup\{u\} \\
E\left(G_{0}\right)= & \bigcup_{1 \leq i \leq 3}\left(E\left(H_{i}\right) \cup\left\{v w: v \in V\left(H_{i}\right), w \in V\left(H_{i+1}\right)\right\}\right) \\
& \cup\left\{a_{1} v: v \in V\left(H_{1}\right)\right\} \cup\left\{a_{2} w: w \in V\left(H_{2}\right)\right\} \cup\left\{a_{1} u, a_{2} u\right\},
\end{aligned}
$$

where $H_{4}=H_{1}$. Then G_{0} is not isomorphic to a complete bipartite graph and does not have a cycle of length 3 and 4 containing u, and $\left|N_{G_{0}}\left(a_{1}\right) \cup N_{G_{0}}(w)\right|+d_{G_{0}}\left(a_{2}\right)=$ $4 m+1 \geq 3 m+4=\left|V\left(G_{0}\right)\right|+1$, where $w \in V\left(H_{3}\right)$.

Therefore, we prove the following theorem.
Theorem 4. Let G be a 2 -connected graph of order $n \geq 6$. Suppose that $\mid N_{G}(x) \cup$ $N_{G}(y) \mid+d_{G}(z) \geq n$ for every triple independent vertices x, y, z of G. Then G is [5, n]-vertex pancyclic or isomorphic to the complete bipartite graph $K_{n / 2, n / 2}$.

By Theorem 4, we can obtain the following corollary. Again, by considering G_{0}, we cannot replace the conclusion " $[5, n]$-vertex pancyclic" with " $[4, n]$-vertex pancyclic".
Corollary 5. Let G be a 2-connected graph of order $n \geq 6$. Suppose that $\mid N_{G}(x) \cup$ $N_{G}(y) \mid+d_{G}(z) \geq n+1$ for every triple independent vertices x, y, z of G. Then G is [$5, n]$-vertex pancyclic.

In [7], Wei and Zhu considered similar conditions for $[a, b]$-panconnected graphs. A graph G is called $[a, b]$-panconnected, if for any two distinct vertices u, v, there exists a path joining u and v with l vertices, for each $a \leq l \leq b$.
Theorem 6 (Wei and Zhu [7]). Let G be a 3-connected graph of order n. Suppose that $\left|N_{G}(x) \cup N_{G}(y)\right|+d_{G}(z) \geq n+1$ for every triple independent vertices x, y, z of G. Then G is $[7, n]$-panconnected.

We write a cycle C with a given orientation by \vec{C}. For $x \in V(C)$, we denote the successor and the predecessor of x on \vec{C} by $x^{+(C)}$ and $x^{-(C)}$, respectively. If there is no fear of confusion, we write v^{+}and v^{-}in stead of $v^{+(C)}$ and $v^{-(C)}$, respectively. For a cycle \vec{C} and $X \subset V(C)$, we define $X^{+}:=\left\{x^{+}: x \in X\right\}$ and $X^{-}:=\left\{x^{-}: x \in X\right\}$. For $x, y \in V(C)$, we denote by $C[x, y]$ a path from x to y on \vec{C}. The reverse sequence of $C[x, y]$ is denoted by $C^{-}[y, x]$. For $x, y \in V(G)$, we let $d_{G}(x, y)$ denote the length of the shortest path connecting x and y. For a subset S of $V(G)$, we let $G[S]$ denote the subgraph induced by S in G.

2 Proof of Theorem 4

Suppose that G satisfies the assumptions of Theorem 4. Then we can obtain the following fact.

Fact 2.1. If G is a bipartite graph, then G is balanced and complete.
Let $u \in V(G)$ and let \mathcal{C}_{m} be the set of cycles of length m which contains u.
Lemma 2.2. At least one of the following statements hold:
(i) $\mathcal{C}_{3} \neq \emptyset$ and $\mathcal{C}_{4} \neq \emptyset$.
(ii) $\mathcal{C}_{4} \neq \emptyset$ and $\mathcal{C}_{5} \neq \emptyset$.
(iii) $\mathcal{C}_{5} \neq \emptyset$ and $\mathcal{C}_{6} \neq \emptyset$.
(iv) $G=K_{n / 2, n / 2}$.

Proof. Suppose that (i)-(iv) do not hold. Let

$$
\begin{aligned}
& A_{1}=\left\{v \in V(G): d_{G}(u, v)=1\right\} \\
& A_{2}=\left\{v \in V(G): d_{G}(u, v)=2\right\} \text { and } \\
& A_{3}=\left\{v \in V(G): d_{G}(u, v) \geq 3\right\}
\end{aligned}
$$

Claim 1. $d_{G}(u) \geq 3$
Proof. Suppose that $d_{G}(u)=2$. Let $N_{G}(u)=\left\{v_{1}, v_{2}\right\}$. Further assume that there exist $x, y \in A_{2} \cup A_{3}$ such that $x y \notin E(G)$. Then $\{u, x, y\}$ is an independent set, and we obtain

$$
\left|N_{G}(x) \cup N_{G}(y)\right|+d_{G}(u) \leq|V(G)|-|\{u, x, y\}|+\left|\left\{v_{1}, v_{2}\right\}\right|=n-1
$$

a contradiction. Therefore $G\left[A_{2} \cup A_{3}\right]$ is complete. Since $\left|A_{2} \cup A_{3}\right| \geq n-3 \geq 3$ and G is 2 -connected, there exist $w_{1}, w_{2} \in A_{2}$ such that $v_{1} w_{1}, v_{2} w_{2} \in E(G)$. Then $u v_{1} w_{1} w_{2} v_{1} u \in \mathcal{C}_{5}$. Let $w_{3} \in\left(A_{2} \cup A_{3}\right) \backslash\left\{w_{1}, w_{2}\right\}$. Then $u v_{1} w_{1} w_{3} w_{2} v_{2} u \in \mathcal{C}_{6}$ because $w_{1} w_{3}, w_{2} w_{3} \in E(G)$. This contradicts that (iii) does not hold.

CASE 1. $\mathcal{C}_{6}=\emptyset$.
Claim 2. Let $x, y, z \in A_{1}$. If $\left(N_{G}(x) \cap N_{G}(y)\right) \backslash\{u\} \neq \emptyset$, then $\mid\left(N_{G}(x) \cup N_{G}(y)\right) \cap$ $N_{G}(z) \mid \leq 2$.

Proof. Suppose that there exist $x, y, z \in A_{1}$ such that $\left(N_{G}(x) \cap N_{G}(y)\right) \backslash\{u\} \neq \emptyset$ and $\left|\left(\left(N_{G}(x) \cup N_{G}(y)\right) \cap N_{G}(z)\right) \backslash\{u\}\right| \geq 2$. We may assume there exist $a \in\left(N_{G}(x) \cap\right.$ $\left.N_{G}(y)\right) \backslash\{u\}$ and $b \in\left(N_{G}(x) \cap N_{G}(z)\right) \backslash\{u\}$ such that $a \neq b$. Then uyaxbzu $\in \mathcal{C}_{6}$. This contradicts the assumption of CASE 1.

Claim 3. The independence number of A_{1} is at most two.
Proof. Suppose that there exists an independent set $\{x, y, z\} \subseteq A_{1}$. By Claim 2, we may assume $\left|\left(N_{G}(x) \cup N_{G}(y)\right) \cap N_{G}(z)\right| \leq 2$. Therefore we have

$$
\begin{aligned}
\left|N_{G}(x) \cup N_{G}(y)\right| & \leq|V(G)|-|\{x, y, z\}|-\left(\left|N_{G}(z)\right|-2\right) \\
& =n-d_{G}(z)-1,
\end{aligned}
$$

a contradiction.

Since (i) does not hold, we obtain the following claim.
Claim 4. The order of a component of $G\left[A_{1}\right]$ is at most two.
By Claims 1,3 and $4, G\left[A_{1}\right]$ consists of two components H_{1} and H_{2} with $\left|H_{1}\right|=2$ and $\left|H_{2}\right| \leq 2$. Then note that $d_{G}(u) \leq 4$. Since G is 2-connected, $N_{G}\left(H_{1}\right) \cap A_{2} \neq \emptyset$ and $N_{G}\left(H_{2}\right) \cap A_{2} \neq \emptyset$ hold. Let $x \in N_{G}\left(H_{1}\right) \cap A_{2}$ and $y \in N_{G}\left(H_{2}\right) \cap A_{2}$. By Claims 1 and $3, \mathcal{C}_{3} \neq \emptyset$. Since (i) does not hold, we obtain $x \neq y$ and $\left|\left(N_{G}(x) \cup N_{G}(y)\right) \cap A_{1}\right|=$ 2. Since $\mathcal{C}_{6}=\emptyset$, we have $x y \notin E(G)$. Thus, $\{x, y, u\}$ is an independent set, and we obtain

$$
\begin{aligned}
\left|N_{G}(x) \cup N_{G}(y)\right|+d_{G}(u) & \leq\left(2+\left|A_{2} \cup A_{3}\right|-|\{x, y\}|\right)+4 \\
& =n-1,
\end{aligned}
$$

a contradiction.
CASE 2. $\mathcal{C}_{6} \neq \emptyset$.
Then $\mathcal{C}_{5}=\emptyset$ holds. Hence we can easily obtain the following claim.
Claim 5. For $C=u_{1} u_{2} u_{3} u_{4} u_{5} u_{6} u_{1} \in \mathcal{C}_{6}$ with $u_{1}=u,\left\{u_{1}, u_{3}, u_{5}\right\}$ is an independent set.

Claim 6. For $C \in \mathcal{C}_{6},\left|V(C) \cap A_{1}\right|=\left|V(C) \cap A_{2}\right|=2$.
Proof. Let $C=v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{1} \in \mathcal{C}_{6}$ and $v_{1}=u$. By Claim 5, $v_{3}, v_{5} \notin A_{1}$, that is, $v_{3}, v_{5} \in A_{2}$. Therefore it suffices to show $v_{4} \notin A_{1} \cup A_{2}$. Assume $v_{4} \in A_{2}$. Since $\mathcal{C}_{5}=\emptyset, N_{G}\left(v_{4}\right) \cap A_{1}=\emptyset$. This contradicts the definition of A_{2}. Hence assume $v_{4} \in A_{1}$. First, suppose that $\left|A_{1}\right| \leq\left|A_{2}\right|$. Since $\mathcal{C}_{5}=\emptyset,\left(N_{G}\left(v_{3}\right) \cup N_{G}\left(v_{5}\right)\right) \cap A_{2}=\emptyset$. Therefore $\left\{v_{3}, v_{5}, u\right\}$ is an independent set by Claim 5, and we obtain

$$
\begin{aligned}
\left|N_{G}\left(v_{3}\right) \cup N_{G}\left(v_{5}\right)\right|+d_{G}(u) & \leq\left|A_{1}\right|+\left|A_{3}\right|+\left|A_{1}\right| \\
& \leq\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right| \\
& =n-1,
\end{aligned}
$$

a contradiction. Next, suppose that $\left|A_{2}\right| \leq\left|A_{1}\right|-1$. Since $u v_{2} v_{3} v_{4} u \in \mathcal{C}_{4}$ and (i) does not hold, A_{1} is an independent set. Especially, we see $N_{G}\left(v_{i}\right) \cap A_{1}=\emptyset$ for $i=2,4,6$ and $\left\{v_{2}, v_{4}, v_{6}\right\}$ is an independent set. Therefore we obtain

$$
\begin{aligned}
\left|N_{G}\left(v_{2}\right) \cup N_{G}\left(v_{6}\right)\right|+d_{G}\left(v_{4}\right) & \leq 1+\left|A_{2}\right|+\left|A_{2}\right|+1 \\
& =\left|A_{2}\right|+\left|A_{2}\right|+2 .
\end{aligned}
$$

If $\left|A_{2}\right| \leq\left|A_{1}\right|-2$ or $A_{3} \neq \emptyset$, then $\left|N_{G}\left(v_{2}\right) \cup N_{G}\left(v_{6}\right)\right|+d_{G}\left(v_{4}\right) \leq n-1$, a contradiction. Hence $\left|A_{2}\right|=\left|A_{1}\right|-1, A_{3}=\emptyset$ and $N_{G}\left(v_{2}\right) \cup N_{G}\left(v_{6}\right)=N_{G}\left(v_{4}\right)=A_{2} \cup\{u\}$. Therefore A_{2} is an independent set, because $\mathcal{C}_{5}=\emptyset$. By Fact 2.1, G is a balanced complete bipartite graph, which contradicts that (iv) does not hold.

Let $C=v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{1} \in \mathcal{C}_{6}$ with $v_{1}=u$. By Claim 6, we see $v_{2}, v_{6} \in A_{1}, v_{3}, v_{5} \in$ A_{2} and $v_{4} \in A_{3}$. By Claim 1, $A_{1} \backslash\left\{v_{2}, v_{6}\right\} \neq \emptyset$, say $x \in A_{1} \backslash\left\{v_{2}, v_{6}\right\}$. Assume $v_{3}, v_{5} \notin N_{G}(x)$. Then $\left\{x, v_{3}, v_{5}\right\}$ is an independent set by Claim 5. Since $\mathcal{C}_{5}=\emptyset$, $N_{G}(x) \cap N_{G}\left(v_{3}\right) \subseteq\left\{v_{2}\right\}$ and $N_{G}(x) \cap N_{G}\left(v_{5}\right) \subseteq\left\{v_{6}\right\}$. Thus we have

$$
\begin{aligned}
\left|N_{G}\left(v_{3}\right) \cup N_{G}\left(v_{5}\right)\right| & \leq|V(G)|-\left|\left\{x, v_{3}, v_{5}\right\}\right|-\left|N_{G}(x) \backslash\left\{v_{2}, v_{6}\right\}\right| \\
& =n-d_{G}(x)-1,
\end{aligned}
$$

a contradiction. Hence $v_{3} \in N_{G}(x)$ or $v_{5} \in N_{G}(x)$ holds. By symmetry, we may assume that $v_{5} \in N_{G}(x)$. By Claim $6, v_{6} v_{3}, x v_{3} \notin E(G)$. Since $u x v_{5} v_{6} \in \mathcal{C}_{4}$ and (i) dose not hold, it follows that $v_{6} \notin N_{G}(x)$. Hence $\left\{v_{3}, v_{6}, x\right\}$ is an independent set. Since $\mathcal{C}_{5}=\emptyset$, we see $N_{G}\left(v_{3}\right) \cap N_{G}\left(v_{6}\right)=\emptyset$ and $N_{G}\left(v_{3}\right) \cap N_{G}(x)=\emptyset$. Thus, we obtain

$$
\begin{aligned}
\left|N_{G}\left(v_{6}\right) \cup N_{G}(x)\right| & \leq|V(G)|-\left|\left\{v_{3}, v_{6}, x\right\}\right|-\left|N_{G}\left(v_{3}\right)\right| \\
& =n-d_{G}\left(v_{3}\right)-3,
\end{aligned}
$$

a contradiction.

Lemma 2.3. If $\mathcal{C}_{m} \neq \emptyset$ for $3 \leq m \leq n-2$, then $\mathcal{C}_{m+2} \neq \emptyset$ holds.
Proof. Suppose that there exists $3 \leq m \leq n-2$ such that $\mathcal{C}_{m} \neq \emptyset$ and $\mathcal{C}_{m+2}=\emptyset$. Since $\mathcal{C}_{m+2}=\emptyset$, we obtain the following two claims.

Claim 7. $N_{G \backslash C}(x) \cap N_{G \backslash C}\left(y^{+}\right)=\emptyset$ holds for $C \in \mathcal{C}_{m}, x \in V(G \backslash C)$ and $y \in N_{C}(x)$.
Claim 8. For $C \in \mathcal{C}_{m+1}, x \in V(G \backslash C)$ and $y, z \in N_{C}(x)$, the followings hold.
(i) $y^{+} \notin N_{C}(x)$.
(ii) $\left\{x, y^{+}, z^{+}\right\}$is an independent set.
(iii) $N_{C}(x)^{+} \cap\left(N_{C}\left(y^{+}\right) \cup N_{C}\left(z^{+}\right)\right)=\emptyset$.

Claim 9. Suppose that C is a cycle and $\{x, y, z\}$ is an independent set such that $(C 1) x \in V(G \backslash C)$ and $y, z \in V(C)$ or $(C 2) x \in V(C)$ and $y, z \in V(G \backslash C)$. Then one of the following holds.
(i) If (C1) holds, then $\left|N_{C}(x)^{+} \cap\left(N_{C}(y) \cup N_{C}(z)\right)\right| \geq 1$. If $(C 2)$ holds, then $\left|N_{C}(x)^{-} \cap\left(N_{C}(y) \cup N_{C}(z)\right)\right| \geq 2$ and $\left|N_{C}(x)^{+} \cap\left(N_{C}(y) \cup N_{C}(z)\right)\right| \geq 2$.
(ii) $N_{G \backslash C}(x) \cap\left(N_{G \backslash C}(y) \cup N_{G \backslash C}(z)\right) \neq \emptyset$.

Proof. Suppose that neither (i) nor (ii) holds. Since (i) does not hold, we have

$$
\begin{aligned}
\left|N_{C}(y) \cup N_{C}(z)\right|+d_{C}(x) & =\left|N_{C}(y) \cup N_{C}(z)\right|+\left|N_{C}(x)^{+}\right| \\
& \leq|V(C)|+\left|N_{C}(x)^{+} \cap\left(N_{C}(y) \cup N_{C}(z)\right)\right| \\
& \leq|V(C)|
\end{aligned}
$$

if $(C 1)$ holds; otherwise similarly $\left|N_{C}(y) \cup N_{C}(z)\right|+d_{C}(x) \leq|V(C)|+1$. In either case, we obtain

$$
\left|N_{C}(y) \cup N_{C}(z)\right|+d_{C}(x) \leq|V(C)|+|V(G \backslash C) \cap\{x, y, z\}|-1
$$

Since (ii) does not hold, we now obtain

$$
\begin{aligned}
\left|N_{G \backslash C}(y) \cup N_{G \backslash C}(z)\right|+d_{G \backslash C}(x) & =\left|\left(N_{G \backslash C}(y) \cup N_{G \backslash C}(z)\right) \cup N_{G \backslash C}(x)\right| \\
& \leq|V(G \backslash C)|-|V(G \backslash C) \cap\{x, y, z\}|
\end{aligned}
$$

Therefore we deduce $\left|N_{G}(y) \cup N_{G}(z)\right|+d_{G}(x) \leq n-1$, a contradiction.
CASE 1. $\left|\left\{v \in V(G \backslash C):\left|N_{C}(v)\right| \geq 2\right\}\right| \geq 2$ for some $C \in \mathcal{C}_{m}$.
Let $C \in \mathcal{C}_{m}$ with $\left|\left\{v \in V(G \backslash C):\left|N_{C}(v)\right| \geq 2\right\}\right| \geq 2$, say $x_{1}, x_{2} \in\{v \in V(G \backslash C):$ $\left.\left|N_{C}(v)\right| \geq 2\right\}$.

CASE 1.1. $\left|N_{C}\left(x_{1}\right) \cup N_{C}\left(x_{2}\right)\right|=2$.
Let $N_{C}\left(x_{1}\right)=N_{C}\left(x_{2}\right)=\left\{v_{1}, v_{2}\right\}$. We may assume that $v_{1}^{+} \neq v_{2}$. Suppose that $x_{1} x_{2} \notin E(G)$. Then $\left\{x_{1}, x_{2}, v_{1}^{+}\right\}$is an independent set. By the assumption of CASE 1.1, $N_{C}\left(v_{1}^{+}\right)^{-} \cap\left(N_{C}\left(x_{1}\right) \cup N_{C}\left(x_{2}\right)\right) \subseteq\left\{v_{2}\right\}$. By Claim 7, $N_{G \backslash C}\left(v_{1}^{+}\right) \cap$ $\left(N_{G \backslash C}\left(x_{1}\right) \cup N_{G \backslash C}\left(x_{2}\right)\right)=\emptyset$. This contradicts Claim 9. Hence $x_{1} x_{2} \in E(G)$ holds. By Claim 7, we obtain $v_{2}^{+} \neq v_{1}$ and so $v_{1}^{+}, v_{2}^{+} \notin N_{G}\left(x_{1}\right)$. If $v_{1}^{+} v_{2}^{+} \in E(G)$, then $C\left[v_{2}^{+}, v_{1}\right] x_{1} x_{2} C^{-}\left[v_{2}, v_{1}^{+}\right] v_{2}^{+} \in \mathcal{C}_{m+2}$, a contradiction. Thus $\left\{v_{1}^{+}, v_{2}^{+}, x_{1}\right\}$ is an independent set. Hence, by the assumption of CASE 1.1, $N_{C}\left(x_{1}\right)^{+} \cap\left(N_{C}\left(v_{1}^{+}\right) \cup N_{C}\left(v_{2}^{+}\right)\right)=\emptyset$. By Claim 7, $N_{G \backslash C}\left(x_{1}\right) \cap\left(N_{G \backslash C}\left(v_{1}^{+}\right) \cup N_{G \backslash C}\left(v_{2}^{+}\right)\right)=\emptyset$. These contradict Claim 9.

CASE 1.2. $\left|N_{C}\left(x_{1}\right) \cup N_{C}\left(x_{2}\right)\right| \geq 3$.
Let $B_{i}=\left\{v \in V(C): v, v^{-} \in N_{G}\left(x_{i}\right)\right\}$ for $i=1,2$.
Claim 10. For some $1 \leq i \leq 2, B_{i}=\emptyset$.
Proof. Suppose that $B_{1} \neq \emptyset$ and $B_{2} \neq \emptyset$. Since $\mathcal{C}_{m+2}=\emptyset$, it follows that $B_{1}=$ $B_{2},\left|B_{1}\right|=\left|B_{2}\right|=1$ and $x_{1} x_{2} \notin E(G)$. Let $B_{1}=\left\{v_{1}\right\}$. Then $\left\{x_{1}, x_{2}, v_{1}^{+}\right\}$is an independent set. By Claim 7, $N_{G \backslash C}\left(v_{1}^{+}\right) \cap\left(N_{G \backslash C}\left(x_{1}\right) \cup N_{G \backslash C}\left(x_{2}\right)\right)=\emptyset$. By Claim 9, $\left(N_{C}\left(v_{1}^{+}\right)^{-} \cap\left(N_{C}\left(x_{1}\right) \cup N_{C}\left(x_{2}\right)\right)\right) \backslash\left\{v_{1}^{-}\right\} \neq \emptyset$. Without loss of generality, we may assume that $v_{2} \in\left(N_{C}\left(v_{1}^{+}\right)^{-} \cap N_{C}\left(x_{1}\right)\right) \backslash\left\{v_{1}^{-}\right\}$. Note that $v_{2} \neq v_{1}$ because $v_{1} \notin N_{C}\left(v_{1}^{+}\right)^{-}$. Then $x_{1} C^{-}\left[v_{2}, v_{1}^{+}\right] C\left[v_{2}^{+}, v_{1}^{-}\right] x_{2} v_{1} x_{1} \in \mathcal{C}_{m+2}$, a contradiction.

Claim 11. For some $1 \leq i \leq 2$, there exist $v_{1}, v_{2} \in N_{C}\left(x_{i}\right)$ such that (i) $v_{1}^{+}, v_{2}^{+} \notin$ $N_{C}\left(x_{i}\right)$, (ii) $v_{1}^{+} v_{2}^{+} \in E(G)$ and (iii) $N_{G}\left(x_{3-i}\right) \backslash\left\{v_{1}, v_{2}\right\} \neq \emptyset$.

Proof. If $B_{1}=B_{2}=\emptyset$, then $\left|N_{C}\left(x_{i}\right)\right| \geq 3$ for some i by the assumption of CASE 1.2. If $B_{i} \neq \emptyset$ for some $1 \leq i \leq 2$, then $B_{3-i}=\emptyset$ by Claim 10. Let $v \in$ B_{i}. Then $\left\{v, v^{-}\right\} \nsubseteq N_{C}\left(x_{3-i}\right)$ because $B_{3-i}=\emptyset$. Therefore we may assume that there exist $v_{1}, v_{2} \in N_{C}\left(x_{1}\right)$ such that $\left\{v_{1}^{+}, v_{2}^{+}, v_{1}^{-}, v_{2}^{-}\right\} \cap N_{C}\left(x_{1}\right)=\emptyset$ and $N_{G}\left(x_{2}\right) \backslash\left\{v_{1}, v_{2}\right\} \neq \emptyset$. If $v_{1}^{+} v_{2}^{+} \in E(G)$, then $v_{1}, v_{2} \in N_{C}\left(x_{1}\right)$ are desired vertices.

Hence we may assume that $\left\{x_{1}, v_{1}^{+}, v_{2}^{+}\right\}$is an independent set. By Claims 7 and 9 , we have $\left(N_{C}\left(x_{1}\right)^{+} \cap\left(N_{C}\left(v_{1}^{+}\right) \cup N_{C}\left(v_{2}^{+}\right)\right) \backslash\left\{v_{1}, v_{2}\right\} \neq \emptyset\right.$. By symmetry, we may assume that $v_{3}^{+} \in\left(N_{C}\left(x_{1}\right)^{+} \cap N_{C}\left(v_{1}^{+}\right)\right) \backslash\left\{v_{1}, v_{2}\right\}$. If $N_{C}\left(x_{2}\right) \neq\left\{v_{1}, v_{3}\right\}$, then $v_{1}, v_{3} \in N_{C}\left(x_{1}\right)$ are desired vertices; otherwise $v_{1}, v_{3} \in N_{C}\left(x_{2}\right)$ are desired vertices.

By Claim 11, we may assume that there exist $v_{1}, v_{2} \in N_{C}\left(x_{1}\right)$ such that $v_{1}^{+}, v_{2}^{+} \notin$ $N_{C}\left(x_{1}\right), v_{1}^{+} v_{2}^{+} \in E(G)$ and $N_{G}\left(x_{2}\right) \backslash\left\{v_{1}, v_{2}\right\} \neq \emptyset$. Let $C_{1}=x_{1} C^{-}\left[v_{1}, v_{2}^{+}\right] C\left[v_{1}^{+}, v_{2}\right] x_{1}$ and $w_{1}, w_{2} \in N_{C}\left(x_{2}\right)$ such that $\left\{w_{1}, w_{2}\right\} \neq\left\{v_{1}, v_{2}\right\}$. By Claims 8 (ii),(iii) and 9 , $N_{G \backslash C_{1}}\left(x_{2}\right) \cap\left(N_{G \backslash C_{1}}\left(w_{1}^{+\left(C_{1}\right)}\right) \cup N_{G \backslash C_{1}}\left(w_{2}^{+\left(C_{1}\right)}\right)\right) \neq \emptyset$. Without loss of generality, we may assume that $N_{G \backslash C_{1}}\left(x_{2}\right) \cap N_{G \backslash C_{1}}\left(w_{1}^{+\left(C_{1}\right)}\right) \neq \emptyset$, say $x_{3} \in N_{G \backslash C_{1}}\left(x_{2}\right) \cap N_{G \backslash C_{1}}\left(w_{1}^{+\left(C_{1}\right)}\right)$. By Claim 7, w_{1} and $w_{1}^{+\left(C_{1}\right)}$ are not consecutive vertices on C. Therefore $w_{1} \in\left\{v_{2}, v_{2}^{+}\right\}$. By considering $C_{2}=x_{1} C^{-}\left[v_{2}, v_{1}^{+}\right] C\left[v_{2}^{+}, v_{1}\right] x_{1}$, it follows from Claim 11 (i) that $w_{2} \in$ $\left\{v_{1}, v_{1}^{+}\right\}$. By Claim 8 (i) we have $\left\{w_{1}, w_{2}\right\} \neq\left\{v_{2}^{+}, v_{1}^{+}\right\}$. Therefore we may assume $\left\{w_{1}, w_{2}\right\}=\left\{v_{2}^{+}, v_{1}\right\}$ by symmetry. Then $x_{3} C\left[v_{1}^{+}, v_{1}\right] x_{2} x_{3} \in \mathcal{C}_{m+2}$, a contradiction.

CASE 2. $\left|\left\{v \in V(G \backslash C):\left|N_{C}(v)\right| \geq 2\right\}\right| \leq 1$ for any $C \in \mathcal{C}_{m}$.
Let $C \in \mathcal{C}_{m}$ be a cycle and $P=x y_{1} \cdots y_{k} z$ be a path such that $x, z \in V(C)$ and $y_{i} \in V(G \backslash C)$ for $1 \leq i \leq k$. Since $m \leq n-2$, it follows that $|V(G \backslash C)| \geq 2$. By the assumption of CASE 2, we may assume that $N_{C}\left(y_{1}\right)=\{x\}$ and $k \geq 2$. Take such a cycle C and a path P as (a-i) $|V(P)|$ is as small as possible, and (a-ii) $|V(C[z, x])|$ is as small as possible subject to (a-i).

CASE 2.1. $k=2$.
Since $\mathcal{C}_{m+2}=\emptyset$, it follows that $z^{+} \neq x$ and $x^{+} \neq z$. Since $N_{C}\left(y_{1}\right)=\{x\}$, we obtain $x^{+}, z^{+} \notin N_{C}\left(y_{1}\right)$. If $x^{+} z^{+} \in E(G)$, then $y_{1} y_{2} C^{-}\left[z, x^{+}\right] C\left[z^{+}, x\right] y_{1} \in \mathcal{C}_{m+2}$, a contradiction. Thus $x^{+} z^{+} \notin E(G)$. Hence $\left\{y_{1}, x^{+}, z^{+}\right\}$is an independent set. Since $N_{C}\left(y_{1}\right)=\{x\}, N_{C}\left(y_{1}\right)^{+} \cap\left(N_{C}\left(x^{+}\right) \cup N_{C}\left(z^{+}\right)\right)=\emptyset$. By Claim 7, $N_{G \backslash C}\left(x^{+}\right) \cap$ $N_{G \backslash C}\left(y_{1}\right)=\emptyset$. By (a-ii), $N_{G \backslash C}\left(z^{+}\right) \cap N_{G \backslash C}\left(y_{1}\right)=\emptyset$. These contradict Claim 9.

CASE 2.2. $k=3$.
Suppose that $m \geq 4$. Since $\mathcal{C}_{m+2}=\emptyset$, either $|V(C[x, z])| \geq 4$ or $|V(C[z, x])| \geq 4$ holds. Therefore $|V(C[x, z])| \geq 4$ holds by (a-ii). Then note that $x^{++} \in C\left[x, z^{-}\right]$. By (a-i), $y_{1} y_{3} \notin E(G)$. First, assume $x^{+} \neq u$. Since $\mathcal{C}_{m+2}=\emptyset, y_{3} x^{++} \notin E(G)$. Thus $\left\{y_{1}, y_{3}, x^{++}\right\}$is an independent set. Since $N_{C}\left(y_{1}\right)=\{x\}, N_{C}\left(x^{++}\right)^{-} \cap N_{C}\left(y_{1}\right)=\{x\}$. Since $\mathcal{C}_{m+2}=\emptyset, N_{C}\left(x^{++}\right)^{-} \cap N_{C}\left(y_{3}\right) \subseteq\{x\}$. By (a-i) and the assumption of CASE 2, $N_{G \backslash C}\left(x^{++}\right) \cap\left(N_{G \backslash C}\left(y_{1}\right) \cup N_{G \backslash C}\left(y_{3}\right)\right)=\emptyset$. These contradict Claim 9. Next, assume $x^{+}=u$. Then note that $z^{--} \in C[u, z]$. Since $N_{C}\left(y_{1}\right)=\{x\}$ and $\mathcal{C}_{m+2}=\emptyset, N_{C}\left(z^{--}\right)^{+} \cap N_{C}\left(y_{1}\right)=\emptyset$. If $v \in\left(N_{C}\left(z^{--}\right)^{+} \cap N_{C}\left(y_{3}\right)\right) \backslash\{z\}$, then $C^{\prime}=y_{3} C\left[v, z^{--}\right] C^{-}\left[v^{-}, z\right] y_{3} \in \mathcal{C}_{m}$ and $x y_{1} y_{2} y_{3}$ is a path such that $x, y_{3} \in V\left(C^{\prime}\right)$ and $y_{1}, y_{2} \in V\left(G \backslash C^{\prime}\right)$. This contradicts (a-i). Hence $N_{C}\left(z^{--}\right)^{+} \cap N_{C}\left(y_{3}\right)=\{z\}$. This implies $y_{3} z^{--} \notin E(G)$. Hence $\left\{y_{1}, y_{3}, z^{--}\right\}$is an independent set. By (a-i), $N_{G \backslash C}\left(z^{--}\right) \cap\left(N_{G \backslash C}\left(y_{1}\right) \cup N_{G \backslash C}\left(y_{3}\right)\right)=\emptyset$. These contradict Claim 9.

Suppose that $m=3$. Since $\mathcal{C}_{5}=\emptyset$, we see that $C=u x z u, N(u) \cap\left(N_{G}\left(y_{1}\right) \cup\right.$
$\left.N_{G}\left(y_{3}\right)\right)=\{x, z\}$ and $\left\{u, y_{1}, y_{3}\right\}$ is an independent set. Then we obtain $\mid N\left(y_{1}\right) \cup$ $N\left(y_{3}\right)\left|+d_{G}(u)=|V(G)|-\left|\left\{y_{1}, y_{3}, u\right\}\right|+|\{x, z\}| \leq n-1\right.$, a contradiction.

CASE 2.3. $k \geq 4$.
Let $v \in V(C \backslash\{x\})$. By (a-i), we obtain $y_{1} y_{3}, v y_{3} \notin E(G)$ and $N_{C}(v)^{-} \cap N_{C}\left(y_{3}\right)=$ \emptyset. Hence $\left\{y_{1}, y_{3}, v\right\}$ is an independent set. Since $N_{C}\left(y_{1}\right)=\{x\}, N_{C}(v)^{-} \cap N_{C}\left(y_{1}\right) \subseteq$ $\{x\}$. By $(\mathrm{a}-\mathrm{i}), N_{G \backslash C}(v) \cap\left(N_{G \backslash C}\left(y_{1}\right) \cup N_{G \backslash C}\left(y_{3}\right)\right)=\emptyset$. These contradict Claim 9.

By Lemmas 2.2 and 2.3, Theorem 4 holds immediately.

3 Proof of Theorem 2

Proof. Suppose that G satisfies the assumption of Theorem 2. By Theorem 4, we have only to show that G has cycles of length 3 and 4 or G is isomorphic to the complete bipartite graph $K_{n / 2, n / 2}$.

First, we shall show that G has a cycle of length 4. Suppose not. Assume $d_{G}(v)=2$ holds for any $v \in V(G)$. If $n=6$, then $\left|N_{G}(x) \cup N_{G}(y)\right|+d_{G}(z) \leq 5$ hold for every triple independent vertices x, y, z of G, a contradiction. If $n \geq 7$, then $\left|N_{G}(x) \cup N_{G}(y)\right|+d_{G}(z) \leq 6$ holds for every triple independent vertices x, y, z of G, a contradiction. Therefore there exists $u \in V(G)$ such that $d_{G}(u) \geq 3$. Let $U_{1}=\left\{v \in V(G): d_{G}(u, v)=1\right\}, U_{2}=\left\{v \in V(G): d_{G}(u, v)=2\right\}$ and $U_{3}=\{v \in$ $\left.V(G): d_{G}(u, v) \geq 3\right\}$. Let $x, y, z \in U_{1}$. Then $\left(N_{G}(x) \cup N_{G}(y)\right) \cap N_{G}(z)=\{u\}$. If $\{x, y, z\}$ is an independent set, then we obtain

$$
\left|N_{G}(x) \cup N_{G}(y)\right|+d_{G}(z) \leq|V(G)|-|\{x, y, z\}|+|\{u\}| \leq n-2,
$$

a contradiction. Therefore we may assume that $x y \in E(G)$. Note that $\left(\left(N_{G}(x) \cup\right.\right.$ $\left.\left.N_{G}(y)\right) \cap U_{1}\right) \backslash\{x, y\}=\emptyset$. Since G is 2-connected, we may assume that there exists $w \in U_{2}$ such that $x w \in E(G)$. Since G does not have a cycle of length $4,\{y, z, w\}$ is an independent set and $\left(N_{G}(z) \cup N_{G}(w)\right) \cap N_{G}(y)=\{x, u\}$. Hence we obtain

$$
\left|N_{G}(z) \cup N_{G}(w)\right|+d_{G}(y) \leq|V(G)|-|\{y, z, w\}|+|\{x, u\}| \leq n-1
$$

a contradiction. Therefore G has a cycle of length 4 .
Next, suppose that G has no cycle of length 3 . Let $C=u_{1} u_{2} u_{3} u_{4} u_{1}$ be a cycle of length 4 . Since $n \geq 6$, we may assume that there exists $w \in V(G)$ such that $w u_{1} \in E(G)$. Let $W_{1}=\left\{v \in V(G): d_{G}(w, v)=1\right\}, W_{2}=\left\{v \in V(G): d_{G}(w, v)=2\right\}$ and $W_{3}=\left\{v \in V(G): d_{G}(w, v) \geq 3\right\}$. Then W_{1} and $\left\{w, u_{2}, u_{4}\right\}$ are independent sets, $u_{2}, u_{4} \in W_{2}$ and $V(C) \cap W_{1} \subset\left\{u_{1}, u_{3}\right\}$. If $\left(\left(N_{G}\left(u_{2}\right) \cup N_{G}\left(u_{4}\right)\right) \cap W_{1}\right) \backslash\left\{u_{1}, u_{3}\right\}=\emptyset$, then we obtain

$$
\left|N_{G}\left(u_{2}\right) \cup N_{G}\left(u_{4}\right)\right|+d_{G}(w) \leq\left(2+\left|W_{2} \backslash\left\{u_{2}, u_{4}\right\}\right|+\left|W_{3}\right|\right)+\left|W_{1}\right| \leq n-1
$$

a contradiction. Therefore we may assume that there exists $u_{5} \in\left(N_{G}\left(u_{2}\right) \cap W_{1}\right) \backslash\left\{u_{1}\right.$, $\left.u_{3}\right\}$. Since G does not have a cycle of length 3 , we see that $\left(N_{G}\left(u_{1}\right) \cup N_{G}\left(u_{3}\right)\right) \cap$
$\left(N_{G}\left(u_{2}\right) \cup N_{G}\left(u_{4}\right)\right)=\emptyset$ and $\left\{u_{1}, u_{3}, u_{5}\right\}$ is an independent set. Hence we obtain

$$
\begin{aligned}
2 n & \leq\left(\left|N_{G}\left(u_{1}\right) \cup N_{G}\left(u_{3}\right)\right|+d_{G}\left(u_{5}\right)\right)+\left(\left|N_{G}\left(u_{2}\right) \cup N_{G}\left(u_{4}\right)\right|+d_{G}(w)\right) \\
& =\left(\left|N_{G}\left(u_{1}\right) \cup N_{G}\left(u_{3}\right)\right|+\left|N_{G}\left(u_{2}\right) \cup N_{G}\left(u_{4}\right)\right|\right)+d_{G}\left(u_{5}\right)+d_{G}(w) \\
& \leq\left(1+\left|W_{1}\right|+\left|W_{2}\right|+\left|W_{3}\right|\right)+\left(1+\left|W_{2}\right|\right)+\left|W_{1}\right| \leq 2 n-\left|W_{3}\right| .
\end{aligned}
$$

This yields $W_{3}=\emptyset$ and $N_{G}\left(u_{5}\right)=W_{2} \cup\{w\}$. Hence $W_{2} \cup\{w\}$ is an independent set, because G has no cycle of length 3 . Thus G is a bipartite graph. By Fact 2.1, G is balanced and complete. This completes the proof of Theorem 2.

4 Further results

We consider the graph G_{0}, again. Since $d_{G_{0}}(u)=2$, one might expect that the conditions of Theorem 4 guarantee the existence of a cycle of length $l, 3 \leq l \leq|V(G)|$ containing any vertex $u \in V(G)$ with $d_{G}(u) \geq 3$. However, there exist examples which satisfy the conditions of Theorem 4 but have no cycle of length 3 or 4 containing some vertex u of degree three. We first construct a graph G_{1} which has no cycle of length 3 containing for some $u \in V\left(G_{1}\right)$. We define a graph G_{1} of order $m+4$ as follows: Let H be a complete graph of order $m \geq 2$, and let

$$
\begin{aligned}
& V\left(G_{1}\right)=V(H) \cup\left\{a_{1}, a_{2}, a_{3}\right\} \cup\{u\}, \\
& E\left(G_{1}\right)=E(H) \cup\left\{a_{i} v, a_{i} u: 1 \leq i \leq 3, v \in V(H)\right\} .
\end{aligned}
$$

Then G_{1} has no cycle of length 3 containing u, and $\left|N_{G_{1}}\left(a_{1}\right) \cup N_{G_{1}}\left(a_{2}\right)\right|+d_{G_{1}}\left(a_{3}\right)=$ $2 m+2 \geq m+4=\left|V\left(G_{1}\right)\right|$.

Next, we construct a graph G_{2} which does not have a cycle of length 4 containing for some $u \in V\left(G_{2}\right)$. We define a graph G_{2} of order $3 m+4$ as follows: let $H_{i}(1 \leq$ $i \leq 3$) be complete graphs of order $m \geq 1$, and let

$$
\begin{aligned}
& V\left(G_{2}\right)=\bigcup_{1 \leq i \leq 3}\left(V\left(H_{i}\right) \cup\left\{a_{i}\right\}\right) \cup\{u\} \\
& E\left(G_{2}\right)=\bigcup_{1 \leq i \leq 3}\left(E\left(H_{i}\right) \cup\left\{a_{i} v, a_{i} u, v w: v \in V\left(H_{i}\right), w \in V\left(H_{i+1}\right)\right\}\right) \cup\left\{a_{2} a_{3}\right\},
\end{aligned}
$$

where $H_{4}=H_{1}$. Then G_{2} does not have a cycle of length 4 containing u, and $\left|N_{G_{2}}\left(a_{1}\right) \cup N_{G_{2}}(w)\right|+d_{G_{2}}\left(a_{2}\right)=4 m+3 \geq 3 m+4=\left|V\left(G_{2}\right)\right|$, where $w \in V\left(H_{3}\right)$.

Therefore we prove the following two theorems.
Theorem 7. Let G be a 2-connected graph of order $n \geq 6$ and $u \in V(G)$ with $d_{G}(u) \geq 3$. Suppose that $\left|N_{G}(x) \cup N_{G}(y)\right|+d_{G}(z) \geq n$ for every triple independent vertices x, y, z of G. Then G has a cycle containing u of length $l, l=3,5,6, \ldots, n$ or a cycle containing u of length $m, m=4,5,6, \ldots, n$ or is isomorphic to the complete bipartite graph $K_{n / 2, n / 2}$.

Theorem 8. Let G be a 2-connected graph of order $n \geq 6$ and $u \in V(G)$ with $d_{G}(u) \geq 5$. Suppose that $\left|N_{G}(x) \cup N_{G}(y)\right|+d_{G}(z) \geq n$ for every triple independent vertices x, y, z of G. Then G has a cycle containing u of length $l, l=4,5,6, \ldots, n$ or is isomorphic to the complete bipartite graph $K_{n / 2, n / 2}$.

Proof. For $u \in V(G)$, let \mathcal{C}_{i} and A_{i} be as in the proof of Theorem 4. Suppose that $d_{G}(u) \geq 3$ and $\mathcal{C}_{3}=\mathcal{C}_{4}=\emptyset$. Then A_{1} is an independent set such that $\left|A_{1}\right| \geq 3$. Let $x, y, z \in A_{1}$. Since $\mathcal{C}_{4}=\emptyset, N_{G}(x) \cap N_{G}(z)=\{u\}$ and $N_{G}(y) \cap N_{G}(z)=\{u\}$. These imply

$$
\begin{aligned}
\left|N_{G}(x) \cup N_{G}(y)\right| & \leq|V(G)|-|\{x, y, z\}|-\left|N_{G}(z) \backslash\{u\}\right| \\
& =n-2-d_{G}(z),
\end{aligned}
$$

a contradiction. Next, suppose that $d_{G}(u) \geq 5$ and $\mathcal{C}_{4}=\emptyset$. Then the independence number of A_{1} is at least 3 . Therefore we obtain a same contradiction as above. Hence Theorem 4 implies Theorems 7 and 8.

References

[1] J.A. Bondy, Pancyclic graphs I, J. Combin Theory 11 (1971), 80-84.
[2] J.A. Bondy, Pancyclic graphs, Proc. Second Louisiana Conf. Combinatorics, Graph Theory and Computing, 1971, pp. 167-172.
[3] J.A. Bondy, "Basic graph theory-paths and cycles," Handbook of Combinatorics, Vol. I, Elsevier, Amsterdam (1995), 5-110.
[4] R.J. Faudree, R.J. Gould, M.S Jacobson and L. Lesniak, Neighbourhood unions and highly hamilton graphs, Ars Combin. 31 (1991), 139-148.
[5] Bolian Liu, Dingjun Lou and Kewen Zhao, A Neighbourhood Union Condition for Pancyclicity, Australas. J. Combin. 12 (1995), 81-91.
[6] Zeng Min Song, Conjecture 5.1, Proc. Chinese Symposium on Cycle Problems in Graph Theory, Journal of Nanjing University, 27 (1991), 234.
[7] B. Wei and Y. Zhu, On the panconnectivity of graphs with large degrees and neighborhood unions, Graphs Combin. 14 (1998), 263-274.

