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Abstract

Let G be a 2-connected graph of order n. For any u ∈ V (G) and l ∈
{m, m + 1, . . . , n}, if G has a cycle of length l, then G is called [m, n]-
pancyclic, and if G has a cycle of length l which contains u, then G is
called [m, n]-vertex pancyclic. Let δ(G) be a minimum degree of G and let
NG(x) be the neighborhood of a vertex x in G. In [Australas. J. Combin.

12 (1995), 81–91] Liu, Lou and Zhao proved that if |NG(u) ∪ NG(v)| +
δ(G) ≥ n+1 for any nonadjacent vertices u, v of G, then G is [3, n]-vertex
pancyclic. In this paper, we prove if n ≥ 6 and |NG(u)∪NG(v)|+dG(w) ≥
n for every triple independent vertices u, v, w of G, then (i) G is [3, n]-
pancyclic or isomorphic to the complete bipartite graph Kn/2,n/2, and (ii)
G is [5, n]-vertex pancyclic or isomorphic to the complete bipartite graph
Kn/2,n/2.

1 Introduction

In this paper, we consider only finite graphs without loops or multiple edges. For
standard graph-theoretic terminology not explained in this paper, we refer the reader
to [3]. We denote by NG(x) the neighborhood of a vertex x in a graph G. For a
subgraph H of G and a vertex x ∈ V (G), we also denote NH(x) := NG(x) ∩ V (H)
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and dH(x) := |NH(x)|. For X ⊂ V (G), NG(X) denote the set of vertices in G\X
which are adjacent to some vertex in X. If there is no fear of confusion, then we
often identify a subgraph H of a graph G with its vertex set V (H). Let G be a
graph of order n and a, b be two integers with 3 ≤ a ≤ b ≤ n. Then G is said to
be [a, b]-pancyclic if for every l ∈ {a, a + 1, . . . , b}, it contains a cycle of length l.
Especially, [3, n]-pancyclic is called pancyclic.

The study of pancyclic graphs was initiated by Bondy [1] in 1971. In [1], he proved
that if G is a graph of order n with dG(x) + dG(y) ≥ n for each pair of nonadjacent
vertices x, y of G, then G is either pancyclic or isomorphic to the complete bipartite
graph Kn/2,n/2. In particular, a pancyclic graph is hamiltonian. Therefore this shows
that Ore’s condition for a graph to be hamiltonian also implies that it is pancyclic
except for some exceptional graphs. He proposed in [2] his famous “metaconjecture”.
It says that almost all nontrivial sufficient conditions for a graph to be hamiltonian
also imply that it is pancyclic except for maybe a simple family of exceptional graphs.

The following proposition concerning hamiltonian graphs is obtained easily.

Proposition 1. Let G be a 2-connected graph of order n. Suppose that |NG(x) ∪
NG(y)| + dG(z) ≥ n for every triple independent vertices x, y, z of G. Then G is

hamiltonian.

The condition of Proposition 1 is weaker than Ore’s condition. In this paper,
motivated by Proposition 1 and Bondy’s metaconjecture, we prove the following.

Theorem 2. Let G be a 2-connected graph of order n ≥ 6. Suppose that |NG(x) ∪
NG(y)| + dG(z) ≥ n for every triple independent vertices x, y, z of G. Then G is

pancyclic or isomorphic to the complete bipartite graph Kn/2,n/2.

Let G be a 2-connected graph of order n. For any u ∈ V (G) and l ∈ {m, m +
1, · · · , n}, if G has a cycle of length l which contains u, then G is called [m, n]-
vertex pancyclic. Especially, [3, n]-vertex pancyclic is called vertex pancyclic. Let
κ(G) and δ(G) be the connectivity and the minimum degree of a graph G. In [4],
Faudree, Gould, Jacobson and Lesniak conjectured that if a connected graph G
of order n with δ(G) ≥ κ(G) + 1 satisfies |NG(u) ∪ NG(v)| ≥ n − κ(G) for any
nonadjacent vertices u, v of G, then G is vertex pancyclic. Song, in [6], refomulated
this conjecture. He conjectured that if a 2-connected graph G of order n satisfies
|NG(u) ∪ NG(v)| ≥ n − δ(G) + 1 for any nonadjacent vertices u, v of G, then G is
vertex pancyclic. Obviously, Song’s conjecture implies the conjecture by Faudree et
al. In [5], Liu, Lou and Zhao settled Song’s conjecture.

Theorem 3 (Liu, Lou and Zhao [5]). Let G be a 2-connected graph of order n.

Suppose that |NG(u)∪NG(v)|+ δ(G) ≥ n+1 for any nonadjacent vertices u, v of G.

Then G is vertex pancyclic.

By observing Theorems 2 and 3, one might expect the condition of Theorem 2
can yield vertex pancyclic. However, there exist graphs which satisfy the conditions
of Theorem 2 but do not have a cycle of length 3 and 4 containing some u ∈ V (G).
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We define a graph G0 of order 3m + 3 as follows: let Hi(1 ≤ i ≤ 3) be complete
graphs of order m ≥ 3, and let

V (G0) =
⋃

1≤i≤3

V (Hi) ∪ {a1, a2} ∪ {u},

E(G0) =
⋃

1≤i≤3

(E(Hi) ∪ {vw : v ∈ V (Hi), w ∈ V (Hi+1)})

∪{a1v : v ∈ V (H1)} ∪ {a2w : w ∈ V (H2)} ∪ {a1u, a2u},

where H4 = H1. Then G0 is not isomorphic to a complete bipartite graph and does
not have a cycle of length 3 and 4 containing u, and |NG0

(a1)∪NG0
(w)|+ dG0

(a2) =
4m + 1 ≥ 3m + 4 = |V (G0)| + 1, where w ∈ V (H3).

Therefore, we prove the following theorem.

Theorem 4. Let G be a 2-connected graph of order n ≥ 6. Suppose that |NG(x) ∪
NG(y)| + dG(z) ≥ n for every triple independent vertices x, y, z of G. Then G is

[5, n]-vertex pancyclic or isomorphic to the complete bipartite graph Kn/2,n/2.

By Theorem 4, we can obtain the following corollary. Again, by considering
G0, we cannot replace the conclusion “[5, n]-vertex pancyclic” with “[4, n]-vertex
pancyclic”.

Corollary 5. Let G be a 2-connected graph of order n ≥ 6. Suppose that |NG(x) ∪
NG(y)|+ dG(z) ≥ n + 1 for every triple independent vertices x, y, z of G. Then G is

[5, n]-vertex pancyclic.

In [7], Wei and Zhu considered similar conditions for [a, b]-panconnected graphs.
A graph G is called [a, b]-panconnected, if for any two distinct vertices u, v, there
exists a path joining u and v with l vertices, for each a ≤ l ≤ b.

Theorem 6 (Wei and Zhu [7]). Let G be a 3-connected graph of order n. Suppose

that |NG(x) ∪ NG(y)| + dG(z) ≥ n + 1 for every triple independent vertices x, y, z of

G. Then G is [7, n]-panconnected.

We write a cycle C with a given orientation by
−→
C . For x ∈ V (C), we denote the

successor and the predecessor of x on
−→
C by x+(C) and x−(C), respectively. If there is

no fear of confusion, we write v+ and v− in stead of v+(C) and v−(C), respectively. For

a cycle
−→
C and X ⊂ V (C), we define X+ := {x+ : x ∈ X} and X− := {x− : x ∈ X}.

For x, y ∈ V (C), we denote by C[x, y] a path from x to y on
−→
C . The reverse sequence

of C[x, y] is denoted by C−[y, x]. For x, y ∈ V (G), we let dG(x, y) denote the length
of the shortest path connecting x and y. For a subset S of V (G), we let G[S] denote
the subgraph induced by S in G.

2 Proof of Theorem 4

Suppose that G satisfies the assumptions of Theorem 4. Then we can obtain the
following fact.
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Fact 2.1. If G is a bipartite graph, then G is balanced and complete.

Let u ∈ V (G) and let Cm be the set of cycles of length m which contains u.

Lemma 2.2. At least one of the following statements hold:

(i) C3 6= ∅ and C4 6= ∅.

(ii) C4 6= ∅ and C5 6= ∅.

(iii) C5 6= ∅ and C6 6= ∅.

(iv) G = Kn/2,n/2.

Proof. Suppose that (i)–(iv) do not hold. Let

A1 = {v ∈ V (G) : dG(u, v) = 1},

A2 = {v ∈ V (G) : dG(u, v) = 2} and

A3 = {v ∈ V (G) : dG(u, v) ≥ 3}.

Claim 1. dG(u) ≥ 3

Proof. Suppose that dG(u) = 2. Let NG(u) = {v1, v2}. Further assume that there
exist x, y ∈ A2 ∪A3 such that xy /∈ E(G). Then {u, x, y} is an independent set, and
we obtain

|NG(x) ∪ NG(y)| + dG(u) ≤ |V (G)| − |{u, x, y}| + |{v1, v2}| = n − 1,

a contradiction. Therefore G[A2 ∪ A3] is complete. Since |A2 ∪ A3| ≥ n − 3 ≥ 3
and G is 2-connected, there exist w1, w2 ∈ A2 such that v1w1, v2w2 ∈ E(G). Then
uv1w1w2v1u ∈ C5. Let w3 ∈ (A2 ∪ A3)\{w1, w2}. Then uv1w1w3w2v2u ∈ C6 because
w1w3, w2w3 ∈ E(G). This contradicts that (iii) does not hold.

CASE 1. C6 = ∅.

Claim 2. Let x, y, z ∈ A1. If (NG(x) ∩ NG(y))\{u} 6= ∅, then |(NG(x) ∪ NG(y)) ∩
NG(z)| ≤ 2.

Proof. Suppose that there exist x, y, z ∈ A1 such that (NG(x)∩NG(y))\{u} 6= ∅ and
|((NG(x) ∪ NG(y)) ∩ NG(z))\{u}| ≥ 2. We may assume there exist a ∈ (NG(x) ∩
NG(y))\{u} and b ∈ (NG(x) ∩ NG(z))\{u} such that a 6= b. Then uyaxbzu ∈ C6.
This contradicts the assumption of CASE 1.

Claim 3. The independence number of A1 is at most two.

Proof. Suppose that there exists an independent set {x, y, z} ⊆ A1. By Claim 2, we
may assume |(NG(x) ∪ NG(y)) ∩ NG(z)| ≤ 2. Therefore we have

|NG(x) ∪ NG(y)| ≤ |V (G)| − |{x, y, z}| − (|NG(z)| − 2)

= n − dG(z) − 1,

a contradiction.
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Since (i) does not hold, we obtain the following claim.

Claim 4. The order of a component of G[A1] is at most two.

By Claims 1, 3 and 4, G[A1] consists of two components H1 and H2 with |H1| = 2
and |H2| ≤ 2. Then note that dG(u) ≤ 4. Since G is 2-connected, NG(H1) ∩ A2 6= ∅
and NG(H2)∩A2 6= ∅ hold. Let x ∈ NG(H1)∩A2 and y ∈ NG(H2)∩A2. By Claims 1
and 3, C3 6= ∅. Since (i) does not hold, we obtain x 6= y and |(NG(x)∪NG(y))∩A1| =
2. Since C6 = ∅, we have xy /∈ E(G). Thus, {x, y, u} is an independent set, and we
obtain

|NG(x) ∪ NG(y)| + dG(u) ≤ (2 + |A2 ∪ A3| − |{x, y}|) + 4

= n − 1,

a contradiction.

CASE 2. C6 6= ∅.

Then C5 = ∅ holds. Hence we can easily obtain the following claim.

Claim 5. For C = u1u2u3u4u5u6u1 ∈ C6 with u1 = u, {u1, u3, u5} is an independent

set.

Claim 6. For C ∈ C6, |V (C) ∩ A1| = |V (C) ∩ A2| = 2.

Proof. Let C = v1v2v3v4v5v6v1 ∈ C6 and v1 = u. By Claim 5, v3, v5 6∈ A1, that is,
v3, v5 ∈ A2. Therefore it suffices to show v4 6∈ A1 ∪ A2. Assume v4 ∈ A2. Since
C5 = ∅, NG(v4) ∩ A1 = ∅. This contradicts the definition of A2. Hence assume
v4 ∈ A1. First, suppose that |A1| ≤ |A2|. Since C5 = ∅, (NG(v3) ∪ NG(v5)) ∩ A2 = ∅.
Therefore {v3, v5, u} is an independent set by Claim 5, and we obtain

|NG(v3) ∪ NG(v5)| + dG(u) ≤ |A1| + |A3| + |A1|

≤ |A1| + |A2| + |A3|

= n − 1,

a contradiction. Next, suppose that |A2| ≤ |A1|−1. Since uv2v3v4u ∈ C4 and (i) does
not hold, A1 is an independent set. Especially, we see NG(vi)∩A1 = ∅ for i = 2, 4, 6
and {v2, v4, v6} is an independent set. Therefore we obtain

|NG(v2) ∪ NG(v6)| + dG(v4) ≤ 1 + |A2| + |A2| + 1

= |A2| + |A2| + 2.

If |A2| ≤ |A1|−2 or A3 6= ∅, then |NG(v2)∪NG(v6)|+dG(v4) ≤ n−1, a contradiction.
Hence |A2| = |A1|−1, A3 = ∅ and NG(v2)∪NG(v6) = NG(v4) = A2 ∪{u}. Therefore
A2 is an independent set, because C5 = ∅. By Fact 2.1, G is a balanced complete
bipartite graph, which contradicts that (iv) does not hold.
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Let C = v1v2v3v4v5v6v1 ∈ C6 with v1 = u. By Claim 6, we see v2, v6 ∈ A1,v3, v5 ∈
A2 and v4 ∈ A3. By Claim 1, A1\{v2, v6} 6= ∅, say x ∈ A1\{v2, v6}. Assume
v3, v5 /∈ NG(x). Then {x, v3, v5} is an independent set by Claim 5. Since C5 = ∅,
NG(x) ∩ NG(v3) ⊆ {v2} and NG(x) ∩ NG(v5) ⊆ {v6}. Thus we have

|NG(v3) ∪ NG(v5)| ≤ |V (G)| − |{x, v3, v5}| − |NG(x)\{v2, v6}|

= n − dG(x) − 1,

a contradiction. Hence v3 ∈ NG(x) or v5 ∈ NG(x) holds. By symmetry, we may
assume that v5 ∈ NG(x). By Claim 6, v6v3, xv3 /∈ E(G). Since uxv5v6 ∈ C4 and (i)
dose not hold, it follows that v6 /∈ NG(x). Hence {v3, v6, x} is an independent set.
Since C5 = ∅, we see NG(v3)∩NG(v6) = ∅ and NG(v3)∩NG(x) = ∅. Thus, we obtain

|NG(v6) ∪ NG(x)| ≤ |V (G)| − |{v3, v6, x}| − |NG(v3)|

= n − dG(v3) − 3,

a contradiction.

Lemma 2.3. If Cm 6= ∅ for 3 ≤ m ≤ n − 2, then Cm+2 6= ∅ holds.

Proof. Suppose that there exists 3 ≤ m ≤ n − 2 such that Cm 6= ∅ and Cm+2 = ∅.
Since Cm+2 = ∅, we obtain the following two claims.

Claim 7. NG\C(x) ∩ NG\C(y+) = ∅ holds for C ∈ Cm, x ∈ V (G\C) and y ∈ NC(x).

Claim 8. For C ∈ Cm+1, x ∈ V (G\C) and y, z ∈ NC(x), the followings hold.

(i) y+ 6∈ NC(x).

(ii) {x, y+, z+} is an independent set.

(iii) NC(x)+ ∩ (NC(y+) ∪ NC(z+)) = ∅.

Claim 9. Suppose that C is a cycle and {x, y, z} is an independent set such that

(C1) x ∈ V (G\C) and y, z ∈ V (C) or (C2) x ∈ V (C) and y, z ∈ V (G\C). Then

one of the following holds.

(i) If (C1) holds, then |NC(x)+ ∩ (NC(y) ∪ NC(z))| ≥ 1. If (C2) holds, then

|NC(x)− ∩ (NC(y) ∪ NC(z))| ≥ 2 and |NC(x)+ ∩ (NC(y) ∪ NC(z))| ≥ 2.

(ii) NG\C(x) ∩ (NG\C(y) ∪ NG\C(z)) 6= ∅.

Proof. Suppose that neither (i) nor (ii) holds. Since (i) does not hold, we have

|NC(y) ∪ NC(z)| + dC(x) = |NC(y) ∪ NC(z)| + |NC(x)+|

≤ |V (C)| + |NC(x)+ ∩ (NC(y) ∪ NC(z))|

≤ |V (C)|
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if (C1) holds; otherwise similarly |NC(y) ∪ NC(z)| + dC(x) ≤ |V (C)| + 1. In either
case, we obtain

|NC(y) ∪ NC(z)| + dC(x) ≤ |V (C)| + |V (G\C) ∩ {x, y, z}| − 1.

Since (ii) does not hold, we now obtain

|NG\C(y) ∪ NG\C(z)| + dG\C(x) = |(NG\C(y) ∪ NG\C(z)) ∪ NG\C(x)|

≤ |V (G\C)| − |V (G\C) ∩ {x, y, z}|.

Therefore we deduce |NG(y) ∪ NG(z)| + dG(x) ≤ n − 1, a contradiction.

CASE 1. |{v ∈ V (G\C) : |NC(v)| ≥ 2}| ≥ 2 for some C ∈ Cm.

Let C ∈ Cm with |{v ∈ V (G\C) : |NC(v)| ≥ 2}| ≥ 2, say x1, x2 ∈ {v ∈ V (G\C) :
|NC(v)| ≥ 2}.

CASE 1.1. |NC(x1) ∪ NC(x2)| = 2.

Let NC(x1) = NC(x2) = {v1, v2}. We may assume that v+
1 6= v2. Suppose

that x1x2 /∈ E(G). Then {x1, x2, v
+
1 } is an independent set. By the assumption

of CASE 1.1, NC(v+
1 )− ∩ (NC(x1) ∪ NC(x2)) ⊆ {v2}. By Claim 7, NG\C(v+

1 ) ∩
(NG\C(x1) ∪ NG\C(x2)) = ∅. This contradicts Claim 9. Hence x1x2 ∈ E(G) holds.
By Claim 7, we obtain v+

2 6= v1 and so v+
1 , v+

2 6∈ NG(x1). If v+
1 v+

2 ∈ E(G), then
C[v+

2 , v1]x1x2C
−[v2, v

+
1 ]v+

2 ∈ Cm+2, a contradiction. Thus {v+
1 , v+

2 , x1} is an indepen-
dent set. Hence, by the assumption of CASE 1.1, NC(x1)

+∩(NC(v+
1 )∪NC(v+

2 )) = ∅.
By Claim 7, NG\C(x1) ∩ (NG\C(v+

1 ) ∪ NG\C(v+
2 )) = ∅. These contradict Claim 9.

CASE 1.2. |NC(x1) ∪ NC(x2)| ≥ 3.

Let Bi = {v ∈ V (C) : v, v− ∈ NG(xi)} for i = 1, 2.

Claim 10. For some 1 ≤ i ≤ 2, Bi = ∅.

Proof. Suppose that B1 6= ∅ and B2 6= ∅. Since Cm+2 = ∅, it follows that B1 =
B2, |B1| = |B2| = 1 and x1x2 6∈ E(G). Let B1 = {v1}. Then {x1, x2, v

+
1 } is an

independent set. By Claim 7, NG\C(v+
1 ) ∩ (NG\C(x1) ∪ NG\C(x2)) = ∅. By Claim 9,

(NC(v+
1 )−∩(NC(x1)∪NC(x2)))\{v

−
1 } 6= ∅. Without loss of generality, we may assume

that v2 ∈ (NC(v+
1 )−∩NC(x1))\{v

−
1 }. Note that v2 6= v1 because v1 6∈ NC(v+

1 )−. Then
x1C

−[v2, v
+
1 ]C[v+

2 , v−
1 ]x2v1x1 ∈ Cm+2, a contradiction.

Claim 11. For some 1 ≤ i ≤ 2, there exist v1, v2 ∈ NC(xi) such that (i) v+
1 , v+

2 6∈
NC(xi), (ii) v+

1 v+
2 ∈ E(G) and (iii) NG(x3−i)\{v1, v2} 6= ∅.

Proof. If B1 = B2 = ∅, then |NC(xi)| ≥ 3 for some i by the assumption of CASE
1.2. If Bi 6= ∅ for some 1 ≤ i ≤ 2, then B3−i = ∅ by Claim 10. Let v ∈
Bi. Then {v, v−} 6⊆ NC(x3−i) because B3−i = ∅. Therefore we may assume
that there exist v1, v2 ∈ NC(x1) such that {v+

1 , v+
2 , v−

1 , v−
2 } ∩ NC(x1) = ∅ and

NG(x2)\{v1, v2} 6= ∅. If v+
1 v+

2 ∈ E(G), then v1, v2 ∈ NC(x1) are desired vertices.
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Hence we may assume that {x1, v
+
1 , v+

2 } is an independent set. By Claims 7 and 9,
we have (NC(x1)

+ ∩ (NC(v+
1 )∪NC(v+

2 ))\{v1, v2} 6= ∅. By symmetry, we may assume
that v+

3 ∈ (NC(x1)
+ ∩ NC(v+

1 ))\{v1, v2}. If NC(x2) 6= {v1, v3}, then v1, v3 ∈ NC(x1)
are desired vertices; otherwise v1, v3 ∈ NC(x2) are desired vertices.

By Claim 11, we may assume that there exist v1, v2 ∈ NC(x1) such that v+
1 , v+

2 6∈
NC(x1), v+

1 v+
2 ∈ E(G) and NG(x2)\{v1, v2} 6= ∅. Let C1 = x1C

−[v1, v
+
2 ]C[v+

1 , v2]x1

and w1, w2 ∈ NC(x2) such that {w1, w2} 6= {v1, v2}. By Claims 8 (ii),(iii) and 9,

NG\C1
(x2)∩(NG\C1

(w
+(C1)
1 )∪NG\C1

(w
+(C1)
2 )) 6= ∅. Without loss of generality, we may

assume that NG\C1
(x2)∩NG\C1

(w
+(C1)
1 ) 6= ∅, say x3 ∈ NG\C1

(x2)∩NG\C1
(w

+(C1)
1 ). By

Claim 7, w1 and w
+(C1)
1 are not consecutive vertices on C. Therefore w1 ∈ {v2, v

+
2 }.

By considering C2 = x1C
−[v2, v

+
1 ]C[v+

2 , v1]x1, it follows from Claim 11 (i) that w2 ∈
{v1, v

+
1 }. By Claim 8 (i) we have {w1, w2} 6= {v+

2 , v+
1 }. Therefore we may assume

{w1, w2} = {v+
2 , v1} by symmetry. Then x3C[v+

1 , v1]x2x3 ∈ Cm+2, a contradiction.

CASE 2. |{v ∈ V (G\C) : |NC(v)| ≥ 2}| ≤ 1 for any C ∈ Cm.

Let C ∈ Cm be a cycle and P = xy1 · · · ykz be a path such that x, z ∈ V (C) and
yi ∈ V (G\C) for 1 ≤ i ≤ k. Since m ≤ n − 2, it follows that |V (G\C)| ≥ 2. By the
assumption of CASE 2, we may assume that NC(y1) = {x} and k ≥ 2. Take such a
cycle C and a path P as (a-i) |V (P )| is as small as possible, and (a-ii) |V (C[z, x])|
is as small as possible subject to (a-i).

CASE 2.1. k = 2.

Since Cm+2 = ∅, it follows that z+ 6= x and x+ 6= z. Since NC(y1) = {x}, we
obtain x+, z+ 6∈ NC(y1). If x+z+ ∈ E(G), then y1y2C

−[z, x+]C[z+, x]y1 ∈ Cm+2,
a contradiction. Thus x+z+ /∈ E(G). Hence {y1, x

+, z+} is an independent set.
Since NC(y1) = {x}, NC(y1)

+ ∩ (NC(x+) ∪ NC(z+)) = ∅. By Claim 7, NG\C(x+) ∩
NG\C(y1) = ∅. By (a-ii), NG\C(z+) ∩ NG\C(y1) = ∅. These contradict Claim 9.

CASE 2.2. k = 3.

Suppose that m ≥ 4. Since Cm+2 = ∅, either |V (C[x, z])| ≥ 4 or |V (C[z, x])| ≥ 4
holds. Therefore |V (C[x, z])| ≥ 4 holds by (a-ii). Then note that x++ ∈ C[x, z−].
By (a-i), y1y3 /∈ E(G). First, assume x+ 6= u. Since Cm+2 = ∅, y3x

++ /∈ E(G). Thus
{y1, y3, x

++} is an independent set. Since NC(y1) = {x}, NC(x++)−∩NC(y1) = {x}.
Since Cm+2 = ∅, NC(x++)− ∩ NC(y3) ⊆ {x}. By (a-i) and the assumption of
CASE 2, NG\C(x++) ∩ (NG\C(y1) ∪ NG\C(y3)) = ∅. These contradict Claim 9.
Next, assume x+ = u. Then note that z−− ∈ C[u, z]. Since NC(y1) = {x}
and Cm+2 = ∅, NC(z−−)+ ∩ NC(y1) = ∅. If v ∈ (NC(z−−)+ ∩ NC(y3))\{z}, then
C ′ = y3C[v, z−−]C−[v−, z]y3 ∈ Cm and xy1y2y3 is a path such that x, y3 ∈ V (C ′)
and y1, y2 ∈ V (G\C ′). This contradicts (a-i). Hence NC(z−−)+ ∩ NC(y3) = {z}.
This implies y3z

−− /∈ E(G). Hence {y1, y3, z
−−} is an independent set. By (a-i),

NG\C(z−−) ∩ (NG\C(y1) ∪ NG\C(y3)) = ∅. These contradict Claim 9.

Suppose that m = 3. Since C5 = ∅, we see that C = uxzu, N(u) ∩ (NG(y1) ∪
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NG(y3)) = {x, z} and {u, y1, y3} is an independent set. Then we obtain |N(y1) ∪
N(y3)| + dG(u) = |V (G)| − |{y1, y3, u}| + |{x, z}| ≤ n − 1, a contradiction.

CASE 2.3. k ≥ 4.

Let v ∈ V (C\{x}). By (a-i), we obtain y1y3, vy3 /∈ E(G) and NC(v)−∩NC(y3) =
∅. Hence {y1, y3, v} is an independent set. Since NC(y1) = {x}, NC(v)− ∩ NC(y1) ⊆
{x}. By (a-i), NG\C(v)∩ (NG\C(y1)∪NG\C(y3)) = ∅. These contradict Claim 9.

By Lemmas 2.2 and 2.3, Theorem 4 holds immediately.

3 Proof of Theorem 2

Proof. Suppose that G satisfies the assumption of Theorem 2. By Theorem 4, we
have only to show that G has cycles of length 3 and 4 or G is isomorphic to the
complete bipartite graph Kn/2,n/2.

First, we shall show that G has a cycle of length 4. Suppose not. Assume
dG(v) = 2 holds for any v ∈ V (G). If n = 6, then |NG(x) ∪ NG(y)| + dG(z) ≤ 5
hold for every triple independent vertices x, y, z of G, a contradiction. If n ≥ 7,
then |NG(x) ∪ NG(y)| + dG(z) ≤ 6 holds for every triple independent vertices x, y, z
of G, a contradiction. Therefore there exists u ∈ V (G) such that dG(u) ≥ 3. Let
U1 = {v ∈ V (G) : dG(u, v) = 1}, U2 = {v ∈ V (G) : dG(u, v) = 2} and U3 = {v ∈
V (G) : dG(u, v) ≥ 3}. Let x, y, z ∈ U1. Then (NG(x) ∪ NG(y)) ∩ NG(z) = {u}. If
{x, y, z} is an independent set, then we obtain

|NG(x) ∪ NG(y)| + dG(z) ≤ |V (G)| − |{x, y, z}| + |{u}| ≤ n − 2,

a contradiction. Therefore we may assume that xy ∈ E(G). Note that ((NG(x) ∪
NG(y)) ∩ U1)\{x, y} = ∅. Since G is 2-connected, we may assume that there exists
w ∈ U2 such that xw ∈ E(G). Since G does not have a cycle of length 4, {y, z, w} is
an independent set and (NG(z) ∪ NG(w)) ∩ NG(y) = {x, u}. Hence we obtain

|NG(z) ∪ NG(w)| + dG(y) ≤ |V (G)| − |{y, z, w}| + |{x, u}| ≤ n − 1,

a contradiction. Therefore G has a cycle of length 4.

Next, suppose that G has no cycle of length 3. Let C = u1u2u3u4u1 be a cycle
of length 4. Since n ≥ 6, we may assume that there exists w ∈ V (G) such that
wu1 ∈ E(G). Let W1 = {v ∈ V (G) : dG(w, v) = 1}, W2 = {v ∈ V (G) : dG(w, v) = 2}
and W3 = {v ∈ V (G) : dG(w, v) ≥ 3}. Then W1 and {w, u2, u4} are independent sets,
u2, u4 ∈ W2 and V (C) ∩ W1 ⊂ {u1, u3}. If ((NG(u2) ∪ NG(u4)) ∩ W1)\{u1, u3} = ∅,
then we obtain

|NG(u2) ∪ NG(u4)| + dG(w) ≤ (2 + |W2\{u2, u4}| + |W3|) + |W1| ≤ n − 1,

a contradiction. Therefore we may assume that there exists u5 ∈ (NG(u2)∩W1)\{u1,
u3}. Since G does not have a cycle of length 3, we see that (NG(u1) ∪ NG(u3)) ∩
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(NG(u2) ∪ NG(u4)) = ∅ and {u1, u3, u5} is an independent set. Hence we obtain

2n ≤ (|NG(u1) ∪ NG(u3)| + dG(u5)) + (|NG(u2) ∪ NG(u4)| + dG(w))

= (|NG(u1) ∪ NG(u3)| + |NG(u2) ∪ NG(u4)|) + dG(u5) + dG(w)

≤ (1 + |W1| + |W2| + |W3|) + (1 + |W2|) + |W1| ≤ 2n − |W3|.

This yields W3 = ∅ and NG(u5) = W2 ∪{w}. Hence W2 ∪{w} is an independent set,
because G has no cycle of length 3. Thus G is a bipartite graph. By Fact 2.1, G is
balanced and complete. This completes the proof of Theorem 2.

4 Further results

We consider the graph G0, again. Since dG0
(u) = 2, one might expect that the

conditions of Theorem 4 guarantee the existence of a cycle of length l, 3 ≤ l ≤ |V (G)|
containing any vertex u ∈ V (G) with dG(u) ≥ 3. However, there exist examples
which satisfy the conditions of Theorem 4 but have no cycle of length 3 or 4 containing
some vertex u of degree three. We first construct a graph G1 which has no cycle of
length 3 containing for some u ∈ V (G1). We define a graph G1 of order m + 4 as
follows: Let H be a complete graph of order m ≥ 2, and let

V (G1) = V (H) ∪ {a1, a2, a3} ∪ {u},

E(G1) = E(H) ∪ {aiv, aiu : 1 ≤ i ≤ 3, v ∈ V (H)}.

Then G1 has no cycle of length 3 containing u, and |NG1
(a1)∪NG1

(a2)|+ dG1
(a3) =

2m + 2 ≥ m + 4 = |V (G1)|.

Next, we construct a graph G2 which does not have a cycle of length 4 containing
for some u ∈ V (G2). We define a graph G2 of order 3m + 4 as follows: let Hi(1 ≤
i ≤ 3) be complete graphs of order m ≥ 1, and let

V (G2) =
⋃

1≤i≤3

(V (Hi) ∪ {ai}) ∪ {u},

E(G2) =
⋃

1≤i≤3

(E(Hi) ∪ {aiv, aiu, vw : v ∈ V (Hi), w ∈ V (Hi+1)}) ∪ {a2a3},

where H4 = H1. Then G2 does not have a cycle of length 4 containing u, and
|NG2

(a1) ∪ NG2
(w)| + dG2

(a2) = 4m + 3 ≥ 3m + 4 = |V (G2)|, where w ∈ V (H3).

Therefore we prove the following two theorems.

Theorem 7. Let G be a 2-connected graph of order n ≥ 6 and u ∈ V (G) with

dG(u) ≥ 3. Suppose that |NG(x) ∪ NG(y)| + dG(z) ≥ n for every triple independent

vertices x, y, z of G. Then G has a cycle containing u of length l, l = 3, 5, 6, . . . , n or

a cycle containing u of length m, m = 4, 5, 6, . . . , n or is isomorphic to the complete

bipartite graph Kn/2,n/2.
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Theorem 8. Let G be a 2-connected graph of order n ≥ 6 and u ∈ V (G) with

dG(u) ≥ 5. Suppose that |NG(x) ∪ NG(y)| + dG(z) ≥ n for every triple independent

vertices x, y, z of G. Then G has a cycle containing u of length l, l = 4, 5, 6, . . . , n
or is isomorphic to the complete bipartite graph Kn/2,n/2.

Proof. For u ∈ V (G), let Ci and Ai be as in the proof of Theorem 4. Suppose that
dG(u) ≥ 3 and C3 = C4 = ∅. Then A1 is an independent set such that |A1| ≥ 3. Let
x, y, z ∈ A1. Since C4 = ∅, NG(x) ∩ NG(z) = {u} and NG(y) ∩ NG(z) = {u}. These
imply

|NG(x) ∪ NG(y)| ≤ |V (G)| − |{x, y, z}| − |NG(z)\{u}|

= n − 2 − dG(z),

a contradiction. Next, suppose that dG(u) ≥ 5 and C4 = ∅. Then the independence
number of A1 is at least 3. Therefore we obtain a same contradiction as above. Hence
Theorem 4 implies Theorems 7 and 8.
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