Some V(12,t) vectors and designs from difference and quasi-difference matrices

R. Julian R. Abel
School of Mathematics and Statistics
University of New South Wales
Sydney, 2052
Australia
rjabel@unsw.edu.au

Abstract

In this paper we provide examples of $\mathrm{V}(12, t)$ vectors for $800 \leq 12 t+1 \leq$ 5000 , and the 3 unknown $\mathrm{V}(m, t)$ vectors with $m=8,9$. We also provide other examples of transversal and incomplete designs, coming from difference and quasi-difference matrices. These include a $\operatorname{TD}(6,34)$, a $\operatorname{TD}(7, v)$ for $v=28,42,44,52,54,62$, an updated list of unknown $T D_{\lambda}(9, v)$ for $\lambda>1$ and 2 ITDs which give $(v, 6,1)$ BIBDs for $v \in\{496,526\}$.

1 Introduction

A transversal design $T D_{\lambda}(k, v)$ consists of a set V of $k v$ elements partitioned into groups of size v plus a collection of k-element subsets of V called blocks such that (1) each block contains exactly one element from each group and (2) any two elements in different groups appear in exactly λ blocks. The parameter λ can be omitted if it equals 1.

An ITD or incomplete transversal design, $T D_{\lambda}(k, v)-T D_{\lambda}(k, u)$ is a $T D_{\lambda}(k, v)$ missing a subdesign $T D_{\lambda}(k, u)$. Such a design can exist even if the missing $T D_{\lambda}(k, u)$ does not; however, if it does, it can be used in conjunction with the incomplete TD to obtain a $T D_{\lambda}(k, v)$.

Let $v, k, h, \lambda_{1}, \lambda_{2}$ be integers with $v, k>0$ and $h, \lambda_{1}, \lambda_{2} \geq 0$. A $\left(v-h, h, \lambda_{1}, \lambda_{2} ; k\right)$ quasi-difference matrix (or QDM) over an abelian group G of size $v-h$ is an array A with k rows, $c=\lambda_{1}(v+h-1)+\lambda_{2}$ columns such that (1) each entry of A is either an element of G or blank; (2) no column of A has more than one blank entry (3) for any two rows i, j of A, each non-zero element of G occurs λ_{1} times and zero occurs λ_{2} among the differences $A_{i, t}-A_{j, t}: t=1 \ldots c, A_{i, t}, A_{j, t}$ not blank. If $h=0$ and $\lambda_{1}=\lambda_{2}$, then the simpler notation (v, k, λ_{1}) difference matrix (or DM) can be
is used. Also, it is well known that if $\lambda_{2} \leq \lambda_{1}$, then existence of a $\left(v-h, h, \lambda_{1}, \lambda_{2} ; k\right)$ QDM implies existence of a $T D_{\lambda_{1}}(k, v)-T D_{\lambda_{1}}(k, h)$.

In this paper, we obtain a number of TDs and ITDs using difference or quasidifference matrices. Two of them also give GDDs which were used to obtain $(v, 6,1)$ BIBDs for $v=496,526$ in [6].

Our first new QDMs will come from $\mathrm{V}(m, t)$ vectors. Let $q=m t+1$ be a prime power, and let x be a primitive element in $\mathrm{GF}(q)$. One can define multiplicative cosets C_{s} in $\operatorname{GF}(q)$ by $C_{s}=\left(y: y\right.$ is of the form x^{n} with $\left.n \equiv s \bmod m\right)$.

In [23], Wilson defined a vector $V=\left(v_{1}, v_{2}, \ldots, v_{m+1}\right)$ with entries from $\operatorname{GF}(m t+$ 1) to be a $V(m, t)$ vector if for every $s, 1 \leq s \leq(m+2) / 2$, the set of m differences $\left\{v_{i}-v_{j}: 1 \leq i, j \leq m+1, i-j \equiv s(\bmod m+2)\right\}$ contains exactly one element from each of the cosets C_{s}. For instance, $(0,1,3,6)$ is a $\mathrm{V}(3,2)$ vector over $\mathrm{GF}(7)$. Here, using $x=5$ as a primitive element in GF(7), the sets $\left\{1-0 \in C_{0}, 3-1 \in C_{1}\right.$, $\left.6-3 \in C_{2}\right\}$ and $\left\{3-0 \in C_{2}, 6-1 \in C_{1}, 0-6 \in C_{0}\right\}$ both contain 1 element from each C_{s}.

If such a vector exists, then a $(q, m+2 ; 1,0 ; t)$-QDM can be obtained as follows: Start with a single column whose first entry is blank, and whose other entries are $v_{1}, v_{2}, \ldots, v_{m+1}$ (in that order). Multiply this column by the m 'th roots of unity in $\mathrm{GF}(q)$ (i.e., the elements of C_{0}) and form $m(m+2)$ columns by taking the $m+2$ cyclic shifts of each of these columns.

2 QDMs from $\mathrm{V}(12, \mathrm{t})$ vectors

Recent results ([1], [12], [15], [14], [17], [18], [24]) have established that a $\mathrm{V}(m, t)$ vector exists when m, t are not both even in the following two cases:

1. $2 \leq m \leq 8, q=m t+1$ is a prime power, except for $(m, t) \in\{(2,1),(3,5),(7,9)\}$ and possibly for $m=8, m t+1 \in\left\{3^{6}, 3^{10}\right\}$ or $m=9, m t+1=5^{6}$;
2. $10 \leq m \leq 11, q=m t+1$ is prime, $t \geq m-1, q<5000$ and $(m, t) \notin$ $\{(9,8),(11,18)\}$.

However increasing m by even 1 considerably increases the amount of computer time required to obtain $\mathrm{V}(m, t)$ vectors. In addition for fixed m, provided t is not too large, the amount of time required to find $\mathrm{V}(m, t)$ vectors increases considerably as t decreases; for several values of $t<140$ in the table below, the given $\mathrm{V}(12, t)$ s took more than 20, 000 hours of CPU time to produce. By contrast, none of the $\mathrm{V}(11, t) \mathrm{s}$ in [1] for $t \geq 30$ took more than 2, 000 hours of CPU.

Below, we give $\mathrm{V}(12, t)$ vectors for odd t such that $q=12 t+1$ is a prime in the range $[800,5000$] (i.e. for $66<t<416$). We have also managed to establish that there is no $\mathrm{V}(12, t)$ vector for all odd values of $t \leq 15$ such that $12 t+1$ is prime, i.e.
$t=1,3,5,9,13$ or 15 . The existence of $\mathrm{V}(12, t)$ vectors for t odd and $15<t<66$ remains an open problem.

These vectors are given in the table below. In each case, x is a primitive element in $\mathrm{GF}(q)$.

	x	q	$\mathrm{V}(12, t)$ vector
69	2	829	(0 15274494714976772077888366721753)
71	2	853	(0 1 645446813543413755177468503 646)
73	2	877	(01607 719837496240645184829451830 770)
83	7	997	(0 1 627898836939742 42847531173607 361)
85	10	1021	(017781000 913819961456507186509495 300)
89	6	1069	(0 1 602894827661 35064730447430533 550)
91	5	1093	(0 17771054855892792134224740240898 631)
93	2	1117	(016011004 8725575998193812482701091 49)
10	2	1213	(017871049 81810642883464649581188340 1192)
103	2	1237	(0 17701027806108251543610961060571135 1144)
115	2	1381	(017471179 87348496969267915312371110 616)
119	6	1429	(017011225 83451536772713494078911189 153)
121	2	1453	(0 1 7131265 848421998698741126693467 1164)
129	2	1549	(0 1 62311708244501099418948177207797 59)
133	11	1597	(0 1 64811578223714071801120898342548 117)
135	2	1621	(0 1 712 12538446239439921918452991381 611)
139	2	1669	(0 1 627 12167114896429047331246961617 12)
141	2	1693	(01447522 9677631035344935611137523 828)
145	2	1741	(01426582 93753415381606114814361911406 823)
149	6	1789	(01420 5099575938351031150231915521047 993)
155	2	1861	(01300 4829626381207168288521118381244 531)
161	5	1933	(0 1 455 31895240047058413682926781138 383)
169	2	2029	(0 1 425 3269511211188110631631136315546651600$)$
171	2	2053	(01432 31993368854963200217026531081 1813)
185	2	2221	(0 1 404 3249356053663601782215331940 30)
9	2	2269	(01303 3299578662180189959722091186994 1301)
191	2	2293	(0 1 491527 93937716851735196711763912192 681)
195	7	2341	(01331313 93438421054791546861841127 1822)
199	2	2389	(01377 5249465603161591203627318412091 713)
203	2	2437	(01324 312933341547683910085611372 1300)
213	2	2557	(01343 3129333782296011791781196066 536)
223	2	2677	(0 1 463 3169334139701083232249112261809 560)
229	6	2749	(01338 312933380401239861212791514268 528)
233	5	2797	(01405 31493439810533102254225026521300 1079)
243	7	2917	(01486314 9333756971511964162315901756 1152)
253	2	3037	(01322 31293339510471217618598811220 2465)
255	2	3061	(01463 3169383453602537264822707892959 2796)

t	x	q	$\mathrm{V}(12, t)$ vector
259	11	3109	(0 1 486314933 3505751962234775030542719 1841)
265	7	3181	(0 1 333 31293334375917542650163324792718 1164)
269	6	3229	(01432 3129383455672441966193547021053043)
271	2	3253	(0 1 463 313933356453286979374821163126 2839)
275	6	3301	(0 1 477 313943 358474231212585214522370 260)
281	5	3373	(0 1 483 31393338741896115867662937275 2569)
289	2	3469	(0 1 474 313943 36796331472157238121610 2189)
293	2	3517	(0 1 423 33594539723528781793248424405031609)
295	7	3541	(0 1 428 3379314063601978683757212390 2465)
301	2	3613	(0 1 436 35192436711962652527720664105 250)
303	2	3637	(0 1 487572 946 4622646261612493143212537 2128)
309	2	3709	(0 1 417327944 341192419752308123416581829 1606)
311	2	3733	(0 1 435 557 937 3712674281289335529483030 861)
321	2	3853	(0 1 319 325 95236467421286433931025619 868)
323	2	3877	(0 1 445 3449203655673483336412403442683 3070)
335	2	4021	(0 1 478 557 969 46215871457255225752420168924$)$
341	2	4093	(0 1 498362 95444058442138673964404664 2233)
355	2	4261	(0 1 415 3299275126152336127224522502272 1888)
363	2	4357	(0 1 541 368971370297555148419511971527 211)
379	6	4549	(01424 545 948 41537811812984345832883888 74)
383	5	4597	(0 1 477 534 9644412469722504395731014366 2168)
385	2	4621	(0 1 543 334943531793185253842314492580 3816)
399	2	4789	(0 1 487571 96439130045152211306327712586 1056)
401	2	4813	(0 1 442 543 9645145677633816362121241092 1456)
405	11	4861	(0 1 433 552 963385684634243349435005604611)
409	6	4909	(0 1 426 541 954411708187520582443191329243673$)$
411	2	4933	(0 1 430 558 96339737249225023948181191 3761)
413	2	4957	(0 1 436546 977467242369568248330264611334$)$

We conclude this section by giving examples of the unknown $\mathrm{V}(m, t)$ s mentioned at the start of this section for $m=8,9$. For $m=8,8 t+1=3^{6}$, if we take x to be a primitive element of $\operatorname{GF}\left(3^{6}\right)$ satisfying $x^{6}=2 x+1$, then we have $V(8,91)=$ $\left(0,1, x^{163}, x^{376}, x^{53}, x^{140}, x^{122}, x^{553}, x^{378}\right)$. For $m=8,8 t+1=3^{10}$, if we take x to be a primitive element of $\mathrm{GF}\left(3^{10}\right)$ satisfying $x^{10}=x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+2 x+1$, then we have $V(8,7381)=\left(0,1, x^{255}, x^{619}, x^{51}, x^{52}, x^{197}, x^{1290}, x^{2383}\right)$. For $m=9,9 t+1=5^{6}$, if we take x to be a primitive element of $\mathrm{GF}\left(5^{6}\right)$ satisfying $x^{6}=4 x^{4}+4 x^{3}+4 x^{2}+4 x+2$, then we have $V(9,1736)=\left(0,1, x^{202}, x^{123}, x^{22}, x^{21}, x^{47}, x^{4181}, x^{607}, x^{9408}\right)$. So we now have:

Theorem 2.1 If $2 \leq m \leq 9$, $m t+1$ is a prime power, $t \geq m-1$ and m, t are not both even, then a $V(m, t)$ vector exists, except for $(m, t) \in\{(3,5),(7,9)\}$.

3 Other QDMs which cyclically permute the rows

ITDs that come from $\mathrm{V}(m, t)$ vectors have a very large automorphism group. For most other known ITDs the automorphism group is notably smaller, but finding such ITDs is often still feasible when this automorphism group is large enough. The next lemma provides some examples of ITDs with $k=7$ and an automorphism that cyclically permutes the groups of the ITD. Other examples of this can be found in [2].

Lemma 3.1 There exists a $(v-h, h, 1,1 ; 7)-Q D M$ and hence also a $T D(7, v)-$ $T D(7, h)$ in the following cases:

1. $(v, h) \in\{(45,5),(50,6),(52,4),(55,8),(55,9),(59,5),(62,8)\}$.
2. $v=6 h$ and $5 \leq h \leq 15$.

These QDMs are over Z_{v-h}. For $(v, h) \neq(90,15)$ or $(30,5)$, we give two matrices A_{1}, A_{2}; the required QDMs are obtained by replacing each column of $\left[A_{1}\left|-A_{1}\right| A_{2}\right]$ by its 7 cyclic shifts. Also, in 3 cases $((v, h)=(45,5),(55,9)$ and $(59,5))$ a column of zeros should be added.

$$
\begin{array}{ll}
(v, h)=(45,5): A_{1}=\left(\begin{array}{ccc}
0 & - & - \\
22 & 0 & 0 \\
7 & 26 & 2 \\
34 & 17 & 38 \\
18 & 29 & 33 \\
21 & 35 & 32 \\
32 & 5 & 25
\end{array}\right) \quad A_{2}=\left(\begin{array}{c}
- \\
0 \\
23 \\
4 \\
24 \\
3 \\
20
\end{array}\right) . \\
(v, h)=(50,6): A_{1}=\left(\begin{array}{ccc}
0 & - & - \\
3 & 0 & 0 \\
36 & 1 & 23 \\
28 & 17 & 35 \\
4 & 35 & 37 \\
39 & 20 & 12 \\
5 & 7 & 6
\end{array}\right) \quad A_{2}=\left(\begin{array}{ccc}
- & - \\
0 & 0 \\
17 & 14 \\
24 & 18 \\
2 & 18 \\
39 & 14 \\
22 & 0
\end{array}\right) . \\
(v, h)=(52,4): A_{1}=\left(\begin{array}{ccc}
0 & 0 & - \\
41 & 12 & 0 \\
39 & 26 & 45 \\
6 & 9 & 18 \\
1 & 25 & 29 \\
43 & 29 & 30 \\
18 & 19 & 2
\end{array}\right)
\end{array}
$$

$$
\left.\begin{array}{c}
(v, h)=(55,8): A_{1}=\left(\begin{array}{cccc}
- & - & - & - \\
0 & 0 & 0 & 0 \\
1 & 7 & 12 & 18 \\
3 & 45 & 18 & 4 \\
6 & 17 & 3 & 31 \\
43 & 9 & 46 & 10 \\
26 & 25 & 33 & 32
\end{array}\right) \quad A_{2}=\left(\begin{array}{c}
0 \\
5 \\
16 \\
40 \\
40 \\
16 \\
5
\end{array}\right) . \\
(v, h)=(55,9): A_{1}=\left(\begin{array}{cccc}
- & - & - & - \\
0 & 0 & 0 & 0 \\
21 & 28 & 44 & 38 \\
22 & 17 & 15 & 12 \\
37 & 39 & 12 & 18 \\
41 & 25 & 2 & 30 \\
36 & 41 & 9 & 39
\end{array}\right) \quad A_{2}=\left(\begin{array}{ccc}
- \\
0 \\
33 \\
6 \\
29 \\
10 \\
23
\end{array}\right) \\
(v, h)=(59,5): A_{1}=\left(\begin{array}{cccc}
0 & 0 & - & - \\
36 & 48 & 0 & 0 \\
2 & 45 & 47 & 39 \\
48 & 40 & 21 & 20 \\
38 & 28 & 12 & 45 \\
1 & 15 & 10 & 7 \\
33 & 4 & 50 & 31
\end{array}\right) \quad A_{2}=\left(\begin{array}{c}
\\
(v, h)=(62,8): A_{1}=\left(\begin{array}{ccc}
- \\
0 \\
23 \\
22 \\
49 \\
31 & 2 & 43 \\
16 & 47 & 44
\end{array}\right) \\
41 \\
11
\end{array} 1-17\right.
\end{array}\right) .
$$

$$
\begin{aligned}
& (v, h)=(42,7): A_{1}=\left(\begin{array}{ccc}
- & - & - \\
0 & 0 & 0 \\
18 & 11 & 5 \\
26 & 10 & 30 \\
20 & 3 & 33 \\
5 & 25 & 24 \\
17 & 4 & 22
\end{array}\right) \quad A_{2}=\left(\begin{array}{c}
- \\
0 \\
4 \\
23 \\
23 \\
4 \\
0
\end{array}\right) . \\
& (v, h)=(48,8): \quad A_{1}=\left(\begin{array}{ccc}
- & - & - \\
0 & 0 & 0 \\
22 & 29 & 31 \\
10 & 37 & 18 \\
34 & 38 & 12 \\
9 & 8 & 5 \\
32 & 4 & 7
\end{array}\right) \quad A_{2}=\left(\begin{array}{cc}
- & - \\
0 & 0 \\
19 & 3 \\
24 & 17 \\
4 & 17 \\
39 & 3 \\
20 & 0
\end{array}\right) . \\
& (v, h)=(54,9): \quad A_{1}=\left(\begin{array}{cccc}
- & - & - & - \\
0 & 0 & 0 & 0 \\
1 & 27 & 16 & 7 \\
24 & 40 & 1 & 35 \\
10 & 30 & 22 & 44 \\
5 & 18 & 14 & 33 \\
30 & 16 & 33 & 27
\end{array}\right) \quad A_{2}=\left(\begin{array}{c}
- \\
0 \\
3 \\
7 \\
7 \\
3 \\
0
\end{array}\right) . \\
& (v, h)=(60,10): A_{1}=\left(\begin{array}{cccc}
- & - & - & - \\
0 & 0 & 0 & 0 \\
17 & 40 & 46 & 44 \\
48 & 5 & 47 & 32 \\
37 & 33 & 42 & 2 \\
11 & 31 & 28 & 20 \\
27 & 39 & 1 & 17
\end{array}\right) \quad A_{2}=\left(\begin{array}{cc}
- & - \\
0 & 0 \\
37 & 43 \\
28 & 14 \\
3 & 14 \\
12 & 43 \\
25 & 0
\end{array}\right) . \\
& (v, h)=(66,11): \quad A_{1}=\left(\begin{array}{ccccc}
- & - & - & - & - \\
0 & 0 & 0 & 0 & 0 \\
45 & 35 & 51 & 46 & 28 \\
30 & 17 & 34 & 3 & 9 \\
5 & 6 & 35 & 36 & 1 \\
11 & 22 & 12 & 38 & 53 \\
4 & 8 & 41 & 43 & 32
\end{array}\right) \quad A_{2}=\left(\begin{array}{c}
- \\
0 \\
24 \\
37 \\
37 \\
24 \\
0
\end{array}\right) .
\end{aligned}
$$

$$
\begin{gathered}
(v, h)=(72,12): A_{1}=\left(\begin{array}{ccccc}
- & - & - & - & - \\
0 & 0 & 0 & 0 & 0 \\
25 & 53 & 54 & 46 & 57 \\
4 & 15 & 18 & 44 & 25 \\
45 & 20 & 49 & 52 & 5 \\
35 & 16 & 32 & 34 & 6 \\
23 & 32 & 47 & 43 & 39
\end{array}\right) \quad A_{2}=\left(\begin{array}{cc}
- & - \\
0 & 0 \\
34 & 47 \\
57 & 36 \\
27 & 36 \\
4 & 47 \\
30 & 0
\end{array}\right) . \\
(v, h)=(78,13): A_{1}=\left(\begin{array}{cccccc}
- & - & - & - & - & - \\
0 & 0 & 0 & 0 & 0 & 0 \\
25 & 33 & 48 & 61 & 55 & 56 \\
1 & 15 & 63 & 58 & 11 & 49 \\
20 & 10 & 57 & 4 & 49 & 37 \\
40 & 12 & 29 & 26 & 62 & 2 \\
24 & 20 & 30 & 52 & 28 & 25
\end{array}\right) \quad A_{2}=\left(\begin{array}{c}
- \\
0 \\
14 \\
43 \\
43 \\
14 \\
0
\end{array}\right) . \\
(v, h)=(84,14): A_{1}=\left(\begin{array}{cccccc}
- & - & - & - & - \\
0 & 0 & 0 & 0 & 0 & 0 \\
15 & 44 & 45 & 40 & 65 & 68 \\
2 & 61 & 11 & 26 & 55 & 21 \\
39 & 2 & 42 & 34 & 5 & 49 \\
1 & 24 & 15 & 58 & 8 & 61 \\
5 & 18 & 22 & 7 & 17 & 62
\end{array}\right) \quad A_{2}=\left(\begin{array}{cc}
- \\
0 & - \\
18 & 16 \\
39 & 45 \\
4 & 45 \\
53 & 16 \\
35 & 0
\end{array}\right) .
\end{gathered}
$$

For $(v, h)=(90,15)$ our construction is similar, but here we cyclically permute the rows of $\left[A_{1}\left|49 \cdot A_{1}\right| A_{2}\right]$ (instead of $\left[A_{1}\left|-A_{1}\right| A_{2}\right]$). The reason for using 49 (instead of -1$)$ as a multiplier is that it equals $1(\bmod 3)$. These two arrays were found by computer after prespecifying the $(\bmod 3)$ values of their entries; when prespecifying values $(\bmod t)$, our experience suggests it is more efficient to use a multiplier $\equiv 1$ $(\bmod t)$ if possible. We also point out that each column of A_{2} remains invariant if we first multiply that column by -49 , and then reverse the order of the non blank entries in that column.

$$
A_{1}=\left(\begin{array}{cccccc}
- & - & - & - & - & - \\
0 & 0 & 0 & 0 & 0 & 0 \\
30 & 19 & 23 & 39 & 44 & 15 \\
19 & 28 & 5 & 47 & 15 & 74 \\
7 & 48 & 37 & 1 & 41 & 33 \\
20 & 51 & 9 & 59 & 47 & 44 \\
58 & 9 & 31 & 35 & 21 & 17
\end{array}\right) \quad A_{2}=\left(\begin{array}{ccc}
- & - & - \\
0 & 25 & 50 \\
54 & 5 & 10 \\
64 & 12 & 8 \\
14 & 12 & 58 \\
54 & 55 & 35 \\
0 & 50 & 25
\end{array}\right)
$$

Finally, for $(v, h)=(30,5)$, the required QDM is obtained by cyclically permuting the 7 rows of A where

$$
A=\left(\begin{array}{ccccc}
- & - & - & - & - \\
0 & 0 & 0 & 0 & 0 \\
0 & 16 & 22 & 11 & 13 \\
18 & 15 & 5 & 21 & 19 \\
0 & 7 & 14 & 8 & 24 \\
20 & 3 & 15 & 2 & 22 \\
24 & 5 & 18 & 17 & 11
\end{array}\right)
$$

Filling in the size h hole of a $\operatorname{TD}(k, v)-\operatorname{TD}(k, h)$ with a $\operatorname{TD}(k, h)$ gives a $\mathrm{TD}(k, v)$. A $\mathrm{TD}(7, h)$ exists for $h=7,8,9$; therefore applying this result to 3 of the ITDs in the previous lemma gives a $\operatorname{TD}(7, v)$ (or equivalently 5 mutually orthogonal Latin squares) of orders $v=42,54$ and 62 . For $v=42,54,62$ these are the best known results so far.

A $\mathrm{TD}(k, v)$ is called idempotent if it possesses at least one parallel class, i.e. a set of blocks containing each point exactly once. We note that deleting one group of the above $\mathrm{TD}(7,30)-\mathrm{TD}(7,5)$ gives a $\mathrm{TD}(6,30)-\mathrm{TD}(6,5)$ with 25 disjoint parallel classes; these correspond to the sets of blocks containing each of the 25 non-holey points in the deleted group. Filling in the size 5 hole with a $\operatorname{TD}(6,5)$ therefore gives an idempotent $\operatorname{TD}(6,30)$. In 1996, 30 and 60 were the only values ≥ 26 for which an idempotent $\operatorname{TD}(6, v)$ was unknown [7]; further, R.S. Rees [21] solved $v=60$. In addition, $v=15$ is solved later in Lemma 4.1; now $v=10,14,18,22,26$ remain the only unsolved cases.

The other $\operatorname{TD}(7, v)-\mathrm{TD}(7, h) \mathrm{s}$ in the previous lemma all appear to be new even though they do not yield new TDs. However those with $v=6 h$ have another application: Every block in a $\operatorname{TD}(7,6 h)-\mathrm{TD}(7, h)$ contains exactly one holey point, and therefore deleting all the holey points in this ITD gives a (frame resolvable) $(6,1)$ GDD of type $5 h^{7}$. (The blocks containing any holey point form a partial parallel class missing the $5 h$ non-holey points in the group containing it). In particular for $h=14$ and 15 , this gives $(6,1)$-GDDs of types 70^{7} and 75^{7}; as noted in [6], the groups of these GDDs can be filled (using 6 or 1 extra points and a $(76,6,1) \mathrm{BIBD}$) to produce new $(496,6,1)$ and $(526,6,1)$ BIBDs.

4 Some TDs from difference matrices and QDMs with $h=1$

A number of known general constructions for $\mathrm{TD}(k, v) \mathrm{s}$ are known; however for $v \leq 80$ and the largest known k, constructions for these TDs tend to be of a somewhat miscellaneous nature when they come from difference or quasi-difference matrices and v is not a prime power. In this section, we provide a few of these.

In [19], Mills gave a couple of $\operatorname{TD}(k, v) \mathrm{s}$ with $v=p q$ where p, q were prime powers and $q \equiv 1(\bmod p)$; these TDs all possessed an automorphhsm group of order p which interchanged the first p groups of the TD and mapped each other group onto itself. Other examples of incomplete TDs with a similar structure can be found in Lemma
3.18 of [8]. The TDs for $v=34,44$ in the next lemma both possess a similar property; although here and in [8], the order of this automorphism group is 5 , and does not divide v or $v-1$.

Lemma 4.1 The following TDs exist: an idempotent $T D(6,15)$, an idempotent $T D(6,34)$ and a $T D(7,44)$.

Proof: For $v=15,34$, these TDs are obtainable from a $(v-1,6 ; 1,0 ; 1)$ QDM. The first, for $v=15$ is obtainable from an orthogonal $\operatorname{BIBD}, \operatorname{OBIBD}(15,2,1 ; 3)$ found by by D.H. Rees [20]. For more information and the definition of OBIBDs see [16]. Not all OBIBDs give QDMs; D.H. Rees found $24 \operatorname{OBIBD}(15,2,1 ; 3) \mathrm{s}$, and fortunately in one of them we were able to rearrange the order of elements in each base block so that the rearranged base blocks could be taken as suitable generating columns for our QDM. Let A_{1}, A_{3} be the arrays below, and let A_{2} be the array obtained by interchanging rows $i, i+3$ in A_{1} (for $i=1,2,3$). Then $\left[A_{1}\left|A_{2}\right| A_{3}\right]$ is the required QDM.

$$
A_{1}=\left(\begin{array}{ccccccc}
- & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & - & 8 & 10 & 6 & 12 & 9 \\
8 & 8 & - & 4 & 10 & 9 & 11 \\
0 & 11 & 2 & 1 & 4 & 5 & 6 \\
5 & 13 & 5 & 12 & 11 & 4 & 10 \\
3 & 12 & 1 & 7 & 2 & 10 & 13
\end{array}\right) \quad A_{3}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1 \\
0 & 2 \\
0 & 7 \\
0 & 8 \\
0 & 9
\end{array}\right)
$$

For $v=34$, consider the following matrices over Z_{33} :

$$
A_{1}=\left(\begin{array}{cccccc}
- & 0 & 0 & 0 & 0 & 0 \\
30 & 17 & 10 & 25 & 23 & 8 \\
22 & 4 & 32 & 29 & 28 & 22 \\
25 & 10 & 20 & 15 & 21 & 16 \\
0 & 12 & 15 & 16 & 32 & 23 \\
6 & 11 & 18 & 14 & 9 & 20
\end{array}\right) \quad A_{2}=\left(\begin{array}{ccccc}
0 & 1 & 3 & 10 & 5 \\
0 & 4 & 12 & 7 & 20 \\
0 & 16 & 15 & 28 & 14 \\
0 & 31 & 27 & 13 & 23 \\
0 & 25 & 9 & 19 & 26 \\
0 & 11 & 11 & 0 & -
\end{array}\right)
$$

We replace each column $C=(a, b, c, d, e, f)^{T}$ of A_{1} by the five columns $t^{i}(C)$, $0 \leq i \leq 4$, where $t(C)=(4 e, 4 a, 4 b, 4 c, 4 d, 4 f)^{T}$. Then append the columns of A_{2}. We then have a $(33,6 ; 1,1 ; 1)$ quasi-difference matrix, and hence also an idempotent $\mathrm{TD}(6,34)$.

For $v=44$, let A_{1} and A_{2} be the folllowing arrays over $Z_{2} \times Z_{2} \times Z_{11}$:

$$
A_{1}=\left(\begin{array}{cccccccc}
(0,0,0) & (0,0,0) & (0,0,0) & (0,0,0) & (0,0,0) & (0,0,0) & (0,0,0) & (0,0,0) \\
(1,1,4) & (0,1,4) & (1,1,7) & (1,0,6) & (1,1,9) & (0,1,2) & (0,1,5) & (0,1,1) \\
(1,0,6) & (0,1,3) & (1,0,0) & (0,1,9) & (1,1,1) & (0,1,4) & (1,1,9) & (1,0,9) \\
(1,1,6) & (1,1,9) & (0,1,2) & (1,1,0) & (0,1,0) & (1,1,5) & (0,0,4) & (0,0,9) \\
(1,0,9) & (0,0,2) & (0,0,1) & (1,0,2) & (0,0,7) & (1,1,6) & (1,1,0) & (1,0,7) \\
(1,0,1) & (1,0,6) & (1,1,3) & (0,1,5) & (0,0,5) & (0,1,3) & (0,1,0) & (1,1,0)
\end{array}\right)
$$

$$
A_{2}=\left(\begin{array}{cccc}
(0,0,0) & (1,0,1) & (1,1,2) & (0,0,8) \\
(0,0,0) & (1,0,5) & (1,1,10) & (0,0,7) \\
(0,0,0) & (1,0,3) & (1,1,6) & (0,0,2) \\
(0,0,0) & (1,0,4) & (1,1,8) & (0,0,10) \\
(0,0,0) & (1,0,9) & (1,1,7) & (0,0,6) \\
(0,0,0) & (0,0,0) & (0,0,0) & (0,0,0)
\end{array}\right) .
$$

Here, we replace each column $C=\left[\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right), \ldots,\left(x_{5}, y_{5}, z_{5}\right),\left(x_{6}, y_{6}, z_{6}\right)\right]^{T}$ by the five columns $t^{i}(C)$, where $t(C)=\left[\left(x_{5}, y_{5}, 5 z_{5}\right),\left(x_{1}, y_{1}, 5 z_{1}\right),\left(x_{2}, y_{2}, 5 z_{2}\right)\right.$, $\left.\left(x_{3}, y_{3}, 5 z_{3}\right),\left(x_{4}, y_{4}, 5 z_{4}\right),\left(x_{6}, y_{6}, 5 z_{6}\right)\right]^{T}$. Then append the four columns of A_{2}, each of which remains invariant under t. This gives us a $(44,6,1)$ difference matrix over $Z_{2} \times Z_{2} \times Z_{11}$ and hence also a $\operatorname{TD}(7,44)$.

In [10] and [22], $\mathrm{TD}(6, v)$ s for $v=20,38,44$ were given; these TDs all had an automorphism group of order order $18(v-1)$. The two TDs in the next lemma possess a similar automorphism group of order $9 v$; one order 2 automorphism used in $[10]$ and $[22]$ is not present here.

Lemma 4.2 There exists a $T D(7, v)$ for $v \in\{28,52\}$.
Proof: For $v=52$, consider the following arrays over $G F\left(4, z^{2}=z+1\right) \times Z_{13}$:

$$
\begin{gathered}
A_{1}=\left(\begin{array}{ccccc}
(0,0) & (0,0) & (0,0) & (0,0) & (0,0) \\
\left(z^{2}, 10\right) & (0,7) & (1,10) & (z, 10) & \left(z^{2}, 3\right) \\
(z, 10) & \left(z^{2}, 2\right) & (1,11) & (z, 2) & \left(z^{2}, 7\right) \\
(z, 8) & \left(z^{2}, 12\right) & (0,10) & \left(z^{2}, 11\right) & \left(z^{2}, 6\right) \\
(1,2) & (0,2) & \left(z^{2}, 8\right) & (z, 3) & (z, 7) \\
(1,6) & (z, 12) & (0,7) & \left(z^{2}, 6\right) & (z, 2)
\end{array}\right) \\
A_{2}=\left(\begin{array}{ccc}
(1,1) & \left(z^{2}, 11\right) \\
(z, 3) & (1,7) \\
\left(z^{2}, 9\right) & (z, 8) \\
(1,4) & \left(z^{2}, 3\right) \\
(z, 12) & (1,9) \\
\left(z^{2}, 10\right) & (z, 1)
\end{array}\right) .
\end{gathered}
$$

For each column $C=\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \ldots\left(x_{6}, y_{6}\right)\right)^{T}$, let $t_{1}(C)=\left(\left(z \cdot x_{3}, 3 \cdot y_{3}\right)\right.$, $\left.\left(z \cdot x_{1}, 3 \cdot y_{1}\right),\left(z \cdot x_{2}, 3 \cdot y_{2}\right),\left(z \cdot x_{6}, 3 \cdot y_{6}\right),\left(z \cdot x_{4}, 3 \cdot y_{4}\right),\left(z \cdot x_{5}, 3 \cdot y_{5}\right)\right)^{T}$, and $t_{2}(C)=\left(\left(x_{3}, y_{3}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{5}, y_{5}\right),\left(x_{6}, y_{6}\right),\left(x_{4}, y_{4}\right)\right)^{T}$. Applying the group of order 9 generated by t_{1}, t_{2} to the columns of A_{1} give 45 columns. Six more columns are obtained by applying the group of order 3 generated by t_{2} to the two columns of A_{2}; these two columns both remain invariant under t_{1}. Finally add one extra column whose entries all equal $(0,0)$; the resulting 52 columns then give us a $(52,6,1)$ difference matrix and hence also a $\operatorname{TD}(7,52)$.

Similarly, for $v=28$ we use the array B below over $G F\left(4, z^{2}=z+1\right) \times Z_{7}$, and for each column $C=\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \ldots\left(x_{6}, y_{6}\right)\right)^{T}$, let $t_{1}(C)=\left(\left(z \cdot x_{3}, 2 \cdot y_{3}\right)\right.$,
$\left.\left(z \cdot x_{1}, 2 \cdot y_{1}\right),\left(z \cdot x_{2}, 2 \cdot y_{2}\right),\left(z \cdot x_{6}, 2 \cdot y_{6}\right),\left(z \cdot x_{4}, 2 \cdot y_{4}\right),\left(z \cdot x_{5}, 2 \cdot y_{5}\right)\right)^{T}$, and $t_{2}(C)=\left(\left(x_{3}, y_{3}\right)\right.$, $\left.\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{5}, y_{5}\right),\left(x_{6}, y_{6}\right),\left(x_{4}, y_{4}\right)\right)^{T}$. We apply the group of order 9 generated by t_{1}, t_{2} to the columns of B, and add one extra column whose entries all equal (0,0). This gives us a $(28,6,1)$ difference matrix and hence also a $\operatorname{TD}(7,28)$.

$$
B=\left(\begin{array}{ccc}
(0,0) & (1,1) & (0,0) \\
(z, 2) & (z, 1) & \left(z^{2}, 3\right) \\
(z, 3) & \left(z^{2}, 5\right) & \left(z^{2}, 2\right) \\
(0,5) & (0,6) & (0,4) \\
(0,3) & (0,0) & (1,1) \\
(1,3) & (1,5) & \left(z^{2}, 6\right)
\end{array}\right)
$$

5 More examples of Incomplete TDs

In Lemmas 3.5 and 2.4 of [8] and [9] respectively, a $T D(6, v)-T D(6,2)$ for $v=15$ and 19 was obtained by multiplying the columns of an initial array by 1 and -1 . The ITD in the next lemma is obtained in this manner.

Theorem 5.1 There exists a $T D(6,17)-T D(6,2)$.

Proof: A $(15,2 ; 1,0 ; 6)$-QDM is obtained by multiplying the columns of the following array by 1 and -1 :

$$
\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - \\
5 & 7 & 1 & 3 & 2 & 4 & 6 & - & 0 \\
12 & 10 & 6 & 7 & 1 & 2 & - & 4 & 6 \\
9 & 12 & 13 & 1 & 11 & - & 5 & 8 & 7 \\
10 & 4 & 9 & 14 & - & 13 & 8 & 3 & 1 \\
7 & 11 & 10 & - & 3 & 9 & 14 & 13 & 3
\end{array}\right) .
$$

Any $(v-h, h ; 1,0 ; k)$-QDM (but not a $(v-h, h ; 1,1 ; k)$-QDM) which is obtained by cyclically permuting the rows in an initial array gives an incomplete perfect Mendelsohn design, or more precisely, a $k-\operatorname{IPMD}(v, h)$. For more information on these designs, see for instance, [2] or [3]. The next lemma gives 3 new $6-\operatorname{IPMD}(v, 8) \mathrm{s}$, although in only one of these cases, $v=53$, was the corresponding $T D(6, v)-T D(6,8)$ previously unknown. Other $6-\operatorname{IPMD}(39+h, h)$ s with $1 \leq h \leq 7, h \neq 2$ can be found in [3].

Theorem 5.2 There exists a $T D(6, v)-T D(6,8)$ and a $6-\operatorname{IPMD}(v, 8)$ for $v=47$, 53 , and 59.

Proof: Cyclically permute the the 6 rows in the arrays below. In each case, this gives a $(v-8,8 ; 1,0 ; 6)$-QDM.

$$
\begin{aligned}
v=47:\left(\begin{array}{ccccccccc}
0 & - & - & - & - & - & - & - & - \\
24 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
25 & 4 & 31 & 10 & 20 & 27 & 17 & 26 & 25 \\
20 & 32 & 5 & 24 & 23 & 18 & 16 & 19 & 34 \\
27 & 14 & 13 & 4 & 34 & 33 & 18 & 16 & 28 \\
17 & 19 & 9 & 22 & 11 & 17 & 24 & 28 & 26
\end{array}\right) . \\
v=53:\left(\begin{array}{cccccccccc}
0 & 0 & - & - & - & - & - & - & - & - \\
37 & 28 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
3 & 34 & 4 & 22 & 1 & 23 & 21 & 41 & 35 & 10 \\
19 & 23 & 35 & 17 & 33 & 32 & 18 & 22 & 10 & 13 \\
1 & 30 & 29 & 31 & 7 & 37 & 42 & 15 & 40 & 1 \\
30 & 2 & 37 & 33 & 25 & 17 & 41 & 6 & 7 & 14
\end{array}\right) . \\
v=59:\left(\begin{array}{ccccccccccc}
0 & 0 & 0 & - & - & - & - & - & - & - & - \\
40 & 28 & 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
6 & 43 & 38 & 4 & 10 & 19 & 38 & 42 & 35 & 2 & 34 \\
19 & 41 & 26 & 34 & 35 & 18 & 8 & 45 & 16 & 10 & 28 \\
4 & 36 & 49 & 35 & 49 & 40 & 28 & 18 & 21 & 7 & 37 \\
45 & 14 & 25 & 31 & 9 & 22 & 44 & 11 & 39 & 19 & 29
\end{array}\right) .
\end{aligned}
$$

Theorem 5.3 There exists a $T D(7,43)-T D(7,7)$.

Proof: To obtain a $(36,7 ; 1,0 ; 7)$-QDM we cyclically permute the the first 6 rows in the array A_{1} below while leaving the 7th row unaltered. Then append one extra column from the array A_{2}.

$$
A_{1}=\left(\begin{array}{cccccccc}
- & - & - & - & - & - & - & 0 \\
28 & 24 & 9 & 17 & 12 & 14 & 30 & 15 \\
8 & 32 & 27 & 4 & 6 & 7 & 16 & 17 \\
34 & 23 & 19 & 15 & 26 & 2 & 25 & 20 \\
11 & 22 & 31 & 13 & 33 & 3 & 29 & 25 \\
21 & 5 & 20 & 1 & 18 & 35 & 10 & 22 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -
\end{array}\right) \quad A_{2}=\left(\begin{array}{c}
0 \\
6 \\
12 \\
18 \\
24 \\
30 \\
-
\end{array}\right) .
$$

The next theorem gives three new ITDs. Existence of the first two was mentioned in [11], but they appear to have not been published before.

Theorem 5.4 A TD (6,70) - TD (6, 3), a TD(6,77) - TD(6,4) and a TD(6,41) $T D(6,4)$ all exist.

Proof These are obtainable from $(67,3,1,0 ; 6),(73,4,1,1 ; 6)$ and $(37,4,1,1 ; 6)$ QDMs, (using the same method as in $[22,10]$ for $\operatorname{TD}(6, v)$ with $v \in\{20,38,44\})$. In
each case, let w be a given cube root of unity in Z_{v-h}; we take $w=29,8$ and 10 respectively for $v-h=67,73$ and 37 . Below we give some generating columns for these QDMs. We then define 3 automorphisms T_{1}, T_{2} and T_{3} (of orders 3, 3 and 2) on these columns as follows:
$T_{1}(a, b, c, d, e, f)^{T}=(w \cdot c, w \cdot a, w \cdot b, w \cdot f, w \cdot d, w \cdot e)^{T}$,
$T_{2}(a, b, c, d, e, f)^{T}=(b, c, a, f, d, e)^{T}, T_{3}(a, b, c, d, e, f)^{T}=(d, e, f, a, b, c)^{T}$.
We then apply the group of order 18 generated by T_{1}, T_{2}, T_{3} to the columns below. Each column of A_{1} generates 18 distinct columns in the required QDM. For the second ITD, the column of A_{2} remains invariant under $T_{2} T_{1}$ and generates 6 columns in the QDM. The column of A_{3} remains invariant under both T_{1} and T_{3} and generates 3 columns in the QDM.

$$
(67,3,1,0 ; 6)-Q D M: A_{1}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
18 & 54 & 52 & 42 & 15 \\
45 & 51 & 60 & 46 & 17 \\
11 & 8 & 42 & 18 & 20 \\
31 & 44 & 47 & 16 & 25 \\
- & 45 & 23 & 61 & 22
\end{array}\right)
$$

$(73,4,1,1 ; 6)-Q D M: A_{1}=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 18 & 60 & 58 & 50 \\ 59 & 61 & 60 & 24 \\ 7 & 10 & 32 & 44 \\ 53 & 44 & 57 & 36 \\ - & 3 & 27 & 69\end{array}\right) \quad A_{2}=\left(\begin{array}{c}0 \\ 0 \\ - \\ 1 \\ 64 \\ 8\end{array}\right) \quad A_{3}=\left(\begin{array}{c}3 \\ 24 \\ 46 \\ 3 \\ 24 \\ 46\end{array}\right)$.
$(37,4,1,1 ; 6)-Q D M: A_{1}=\left(\begin{array}{cc}0 & 0 \\ 19 & 1 \\ 22 & 25 \\ 35 & 21 \\ 5 & 7 \\ - & 29\end{array}\right) \quad A_{2}=\left(\begin{array}{c}0 \\ 0 \\ - \\ 1 \\ 26 \\ 10\end{array}\right) \quad A_{3}=\left(\begin{array}{c}3 \\ 30 \\ 4 \\ 3 \\ 30 \\ 4\end{array}\right)$.

6 A few resolvable TDs with index greater than 1

For $\lambda=1$, existence of a resolvable $T D_{\lambda}(k, v)$ is equivalent to that of a $T D_{\lambda}(k+$ $1, v)$; however for $\lambda>1$, having a resolvable $T D_{\lambda}(k, v)$ is a stronger result, since a $T D_{\lambda}(k+1, v)$ only gives a $T D_{\lambda}(k, v)$ with $v \lambda$-parallel classes, instead of λv parallel classes.

Any (v, k, λ) difference matrix gives a resolvable $T D_{\lambda}(k, v)$ (since the blocks of the TD corresponding to any column in the DM form a parallel class). We now give two new resolvable TDs using difference matrices:

Theorem 6.1 There exists a resolvable $T D_{2}(8,22)$ and a resolvable $T D_{2}(7,34)$.
Proof: For $v=34$, consider the following arrays over Z_{34} :

$$
A_{1}=\left(\begin{array}{ccccccccccc}
0 & 0 & 10 & 7 & 11 & 30 & 19 & 15 & 13 & 9 & 20 \\
1 & 15 & 32 & 14 & 21 & 31 & 22 & 17 & 27 & 13 & 28 \\
33 & 10 & 22 & 23 & 32 & 20 & 6 & 26 & 25 & 3 & 27 \\
2 & 7 & 6 & 17 & 23 & 16 & 11 & 33 & 12 & 30 & 9 \\
4 & 21 & 19 & 3 & 16 & 28 & 5 & 5 & 29 & 8 & 24 \\
8 & 29 & 4 & 24 & 12 & 14 & 31 & 2 & 18 & 18 & 1
\end{array}\right) \quad A_{2}=\left(\begin{array}{cc}
25 & 26 \\
25 & 26 \\
25 & 26 \\
25 & 26 \\
25 & 26 \\
25 & 26
\end{array}\right) .
$$

Cyclically permute the six rows of the array of the array A_{1}, then append the two columns of A_{2} plus an extra row of zeros. This gives a $(34,7,2)$ difference matrix and hence also a resolvable $T D_{2}(7,34)$ and a $T D_{2}(8,34)$.

Similarlarly for a $(22,8,2)$ difference matrix, we cyclically permute the seven rows of the array A_{1} below, and again add 2 extra columns from A_{2} plus a column of zeros. This gives a $(22,8,2)$ difference matrix and a new resolvable $T D_{2}(8,22)$; however we point out that a $T D_{2}(9,22)$ is already known [4].

$$
A_{1}=\left(\begin{array}{cccccc}
1 & 14 & 10 & 16 & 1 & 11 \\
19 & 6 & 4 & 0 & 18 & 5 \\
9 & 20 & 15 & 8 & 17 & 12 \\
17 & 0 & 2 & 4 & 7 & 16 \\
5 & 7 & 21 & 13 & 20 & 15 \\
10 & 13 & 14 & 6 & 21 & 3 \\
12 & 11 & 9 & 3 & 19 & 8
\end{array}\right) \quad A_{2}=\left(\begin{array}{ll}
2 & 18 \\
2 & 18 \\
2 & 18 \\
2 & 18 \\
2 & 18 \\
2 & 18
\end{array}\right) .
$$

In [13], the existence of $T D_{\lambda}(k, v)$ with $\lambda>1$ and $k=8,9$ was investigated; later a few improvements on these results were given in [4, 5] as well as some results for $k=10$. For completeness, we summarize these results (together with the new $T D_{2}(8,34)$ above) in the 3 theorems below.

Theorem 6.2 If $\lambda>1$, then a $T D_{\lambda}(8, n)$ exists except for $\lambda=2, v \in\{2,3\}$ and possibly for $\lambda=2, v=6$.

Theorem 6.3 If $\lambda>1$, then a $T D_{\lambda}(9, n)$ exists except for $\lambda=2, v \in\{2,3\}$ and possibly in the following cases:

1. $\lambda=2$ and $v \in\{6,14,34,38,39,50,51,54,62\}$;
2. $\lambda=3$ and $v \in\{5,45,60\}$;
3. $\lambda=5$ and $v \in\{6,14\}$.

Theorem 6.4 $A T D_{3}(10, v)$ exists except possibly for $v \in\{5,6,14,20,35,45,55$, $56,60,78,84,85,102\}$. Also a $T D_{9}(10, v)$ exists, except possibly for $v=35$.

References

[1] R.J.R. Abel, Some new matrix-minus-diagonal V $(11, t)$ vectors, J. Combin. Des. 11 (2003), 304-306.
[2] R.J. R. Abel and F.E.Bennett, Perfect Mendelsohn designs with block size 7, Discrete Math. 190 (1998), 1-14.
[3] R.J.R. Abel, F.E. Bennett and H. Zhang: Perfect Mendelsohn Designs with block size 6, J. Statist. Plann. Inference 86 (2000), 287-319.
[4] R.J.R. Abel, I. Bluskov and M. Greig, Balanced incomplete block designs with block size 9: part II, Discrete Math. 279 (2004), 5-32.
[5] R.J.R. Abel, I. Bluskov and M. Greig, Balanced incomplete block designs with block size 9: part III, Australas. J. Combin. 30 (2004), 57-73.
[6] R.J.R. Abel, I. Bluskov, M. Greig and J. de Heer, Pair covering and other designs with block size 6, J. Combin. Des. 15 (2007), 511-533.
[7] R.J.R. Abel, C.J. Colbourn and J.H. Dinitz, Mutually orthogonal Latin squares, in: The CRC Handbook of Combinatorial Designs, 2nd ed. (eds. C.J. Colbourn and J.H. Dinitz), CRC Press, Boca Raton, FL, 2006, 160-193.
[8] R.J.R. Abel, C.J. Colbourn, J.Yin and H. Zhang, Existence of incomplete transversal designs with block size 5 and any index λ, Des. Codes Cryptogr. 10 (1997), 275-307.
[9] R.J.R. Abel and B. Du, The existence of three idempotent IMOLS, Discrete Math. 262 (2003), 1-16.
[10] R.J.R. Abel and D.T. Todorov, Four MOLS of orders 20, 30, 38 and 44, Discrete Math. 64 (1993), 144-148.
[11] F.E. Bennett, Y. Chang, G. Ge and M. Greig, Existence of ($\left.v,\left\{5, w^{*}\right\}, 1\right)$-PBDs, Discrete Math. 279 (2004), 61-105.
[12] A.E. Brouwer and G.H.J. van Rees, More mutually orthogonal Latin squares, Discrete Math. 39 (1982), 263-281.
[13] C.J. Colbourn, Transversal designs of block size eight and nine, European J. Combin. 17 (1996), 1-14.
[14] K. Chen and L. Zhu, Existence of V (m, t) vectors, J. Statist. Plann. Inference 106 (2002), 461-471.
[15] C.J. Colbourn, Some direct constructions for incomplete transversal designs, J. Statist. Plann. Inference 51 (1996), 93-104.
[16] M. Greig and D.H. Rees, Existence of balanced incomplete block designs for many sets of treatments, Discrete Math. 266 (2003), 3-36.
[17] C.H.A. Ling, Y. Lu, G.H.J. van Rees and L. $\mathrm{Zhu}, \mathrm{V}(m, t)$'s for $m=4,5,6, J$. Statist. Plann. Inference 86 (2000), 515-525.
[18] Y. Miao and S. Yang, Concerning the vector V (m, t), J. Statist. Plann. Inference 51 (2000), 223-227.
[19] W.H. Mills, Some mutually orthogonal Latin squares, Congr. Numer. 19 (1977), 473-487.
[20] D.H. Rees, private communication.
[21] R.S. Rees, Truncated transversal designs: A new bound on the number of idempotent MOLS of side n, J. Combin. Theory Ser. A 90 (2000), 257-266.
[22] D.T. Todorov, Four mutially orthogonal Latin squares of order 20, Ars. Combin. 27 (1989), 63-65.
[23] R.M. Wilson, A few more squares, Congr. Numer. 10 (1974), 675-680.
[24] M. Wojtas, Some new matrices-minus-diagonal and MOLS, Discrete Math. 76 (1989), 291-292.

