On (k, l)-radii of wheels

M. Horváthová
Department of Mathematics
Faculty of Civil Engineering
Slovak University of Technology Bratislava
Radlinského11
81368 Bratislava
Slovakia
mhorvath@math.sk

Abstract

To determine the (k, l)-radius of a graph we have to find a set L of l vertices, such that the maximum k-distance of a set K, where $|K|=k$ and $L \subseteq K$, attains the minimum value in a graph. This notion generalizes the radius, diameter and k-diameter. In this contribution the (k, l)-radius of the wheel W_{n} is determined for all possible values of parameters k and l.

1 Introduction

We consider connected, undirected graphs G of order n with the vertex set $V(G)$. By distance between two vertices in G we mean the minimum length of a path connecting them. The eccentricity $e(v)$ of v is the distance to a vertex farthest from v, $e(v)=\max _{u \in V(G)}(d(u, v))$. Then the radius $r(G)$ of the graph G is the minimum eccentricity, $r(G)=\min _{v \in V(G)}(e(v))$, while the diameter $\operatorname{diam}(G)$ is the maximum eccentricity, $\operatorname{diam}(G)=\max _{v \in V(G)}(e(v))$. More information related to basic distance concepts can be found in [2].

Definition 1 Let G be a graph on n vertices and let k be an integer, $k \leq n$. The distance of k vertices (k-distance), $d_{k}\left(v_{1}, v_{2}, \ldots, v_{k}\right)$, is the sum of distances between all pairs of vertices from $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$.

We remark that the n-distance is called the transmission of the graph (see [7]), while the maximum k-distance in a graph is known as a k-diameter (see [1]).

Definition 2 Let G be a connected graph with the vertex set $V(G),|V(G)|=n$, and let k, l be integers, $0 \leq l \leq k \leq n$ and $k>0$. The (k, l)-eccentricity of the set
$L \subseteq V(G)$ of l vertices, $e_{k, l}(L)$, is the maximum distance of k vertices $u_{1}, u_{2}, \ldots, u_{k}$, such that $L \subseteq\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$. That is,

$$
e_{k, l}(L)=\max _{K}\left\{d_{k}(K) ;|K|=k, L \subseteq K \subseteq V(G)\right\}
$$

Observe that $(2,1)$-eccentricity is the usual eccentricity of a vertex.
Definition 3 The (k, l)-radius, $\operatorname{rad}_{k, l}(G)$, is the minimum (k, l)-eccentricity in G,

$$
\operatorname{rad}_{k, l}(G)=\min _{L}\left(e_{k, l}(L)\right)=\min _{L}\left(\max _{L \subseteq K \subseteq V(G)} d_{k}(K)\right),
$$

where $|L|=l$ and $|K|=k$.

Thus the usual radius of a graph G equals its $(2,1)$-radius, while the diameter is its $(2,0)$-radius. Moreover, the k-diameter is the ($k, 0$)-radius in our notation.

Definition 4 Let k, l be integers, $1 \leq l \leq k \leq n$, where $|V(G)|=n$. A set $C=$ $\left\{u_{1}, u_{2}, \ldots, u_{l}\right\} \subseteq V(G)$ is a (k, l)-central set of the graph G if $e_{k, l}(C)=\operatorname{rad}_{k, l}(G)$.

The determination of the $(3, l)$-radius for some classes of graphs can be found in [4]. To find the (k, l)-radius for all values of k and l is not an easy task even for very simple classes of graphs. Up to now this problem has been succesfully solved only for complete graphs K_{n} (which is trivial, see [3]), the Petersen graph [6] and complete bipartite graphs $K_{n_{1}, n_{2}}$ [5]. In this paper we present a complete solution for wheels W_{n}.

Definition 5 The wheel W_{n} is a graph on n vertices with the vertex set $V\left(W_{n}\right)=$ $\left\{s, u_{0}, u_{1}, \ldots, u_{n-2}\right\}$ and with $n-1$ edges sui, $0 \leq i \leq n-2$ and $n-1$ edges $u_{i} u_{(i+1)} \bmod (n-1), 0 \leq i \leq n-2$.

In the following statements we assume $n \geq 5$, because for $n<5$ the wheel W_{n} is a complete graph K_{n} for which $\operatorname{rad}_{k, l}\left(K_{n}\right)=k \cdot(k-1) / 2$ for each $l \leq k$ (see [3]).

Theorem 1 Let k, l and n be integers, $2 \leq l \leq k \leq n$ and $n \geq 5$. Then for the (k, l)-radius of the wheel W_{n} we have:

1. If $k-l \leq\left\lfloor\frac{n-l-1}{2}\right\rfloor$ then $\operatorname{rad}_{k, l}\left(W_{n}\right)=k^{2}-2 \cdot k-l+3$.
2. If $k-l>\left\lfloor\frac{n-l-1}{2}\right\rfloor$ then $\operatorname{rad}_{k, l}\left(W_{n}\right)=k^{2}-4 \cdot k+n+2$.

Observe that if $k-l>\left\lfloor\frac{n-l-1}{2}\right\rfloor$ then the (k, l)-radius of a wheel does not depend on the parameter l.
The cases $l=1$ and $l=0$ are considered separately.

Assertion 1 Let k and n be integers, $1 \leq k \leq n, n \geq 5$. Then for the ($k, 1$)-radius of the wheel W_{n} the following hold:

1. If $k-2 \leq\left\lfloor\frac{n-3}{2}\right\rfloor$ then $\operatorname{rad}_{k, 1}\left(W_{n}\right)=k^{2}-2 \cdot k+1$.
2. If $k-2>\left\lfloor\frac{n-3}{2}\right\rfloor$ then $\operatorname{rad}_{k, 1}\left(W_{n}\right)=k^{2}-4 \cdot k+n+2$.

Assertion 2 Let k and n be integers, $1 \leq k \leq n, n \geq 5$. Then for the ($k, 0$)-radius of the wheel W_{n} we have:

1. If $k \leq\left\lfloor\frac{n-1}{2}\right\rfloor$ then $\operatorname{rad}_{k, 0}\left(W_{n}\right)=k^{2}-k$.
2. If $n>k \geq\left\lfloor\frac{n-1}{2}\right\rfloor$ then $\operatorname{rad}_{k, 0}\left(W_{n}\right)=k^{2}-3 \cdot k+n-1$.
3. If $k=n$ then $\operatorname{rad}_{k, 0}\left(W_{n}\right)=n^{2}-3 \cdot n+2$.

Proofs of Theorem 1 and Assertions 1 and 2 are postponed to the next section.

2 Proofs

Proof of Theorem 1. By the definition of a wheel, the vertex set $V\left(W_{n}\right)$ contains one vertex s of degree $n-1$ and $n-1$ vertices u_{0}, \ldots, u_{n-2} of degree 3 . We have $d_{2}\left(u_{i}, s\right)=1$ and $d_{2}\left(u_{i}, u_{(i+1)} \bmod (n-1)\right)=1$, for $i=0,1, \ldots, n-2$. Thus the mutual distance of two vertices is at most 2 .
The proof is done in two steps:

1. We find a (k, l)-central set of W_{n}.
2. For the (k, l)-central set we determine the value of its eccentricity, i.e., the (k, l)-radius of W_{n}.

We prove that for $l>0$ the l-set $L=\left\{s, u_{0}, u_{1}, \ldots u_{l-2}\right\}$ is the (k, l)-central set of W_{n}. We do not say that it is the only (k, l)-central set.
At first we prove that there is a (k, l)-central set containing the vertex s. Suppose that there is a (k, l)-central set L^{\prime} such that $s \notin L^{\prime}$. Let $u_{i} \in L^{\prime}$. Denote $L=L^{\prime} \backslash\left\{u_{i}\right\} \cup\{s\}$. We show that $e_{k, l}(L) \leq e_{k, l}\left(L^{\prime}\right)$. Let K be a set, $L \subset K$, on which $d_{k}(K)$ attains its maximum. If $u_{i} \in K$ then $L^{\prime} \subseteq K$, so that

$$
e_{k, l}\left(L^{\prime}\right) \geq d_{k}(K)=e_{k, l}(L)
$$

On the other hand if $u_{i} \notin K$, then

$$
e_{k, l}\left(L^{\prime}\right) \geq d_{k}\left(K \backslash\{s\} \cup\left\{u_{i}\right\}\right) \geq d_{k}(K)=e_{k, l}(L)
$$

Hence there is a (k, l)-central set containing s.

Now we prove that if $L=\left\{s, u_{0}, u_{1}, \ldots u_{l-2}\right\}$, then for any l-set $L^{\prime}=\left\{s, u_{i_{0}}, u_{i_{1}}, \ldots\right.$, $\left.u_{i_{l-2}}\right\} \subset V\left(W_{n}\right)$, the following holds:

$$
\begin{equation*}
e_{k, l}(L) \leq e_{k, l}\left(L^{\prime}\right) \tag{1}
\end{equation*}
$$

To determine $e_{k, l}(L)\left(e_{k, l}\left(L^{\prime}\right)\right)$ we find the set $U\left(U^{\prime}\right)$ of $(k-l)$ vertices such that $d_{k}(L \cup U)\left(d_{k}\left(L^{\prime} \cup U^{\prime}\right)\right)$ has the maximum possible value. It means we find a set of $(k-l)$ vertices such that $L \cup U\left(L^{\prime} \cup U^{\prime}\right)$ contains the minimum possible number of pairs of adjacent vertices (p.a.v.). In what follows the number of p.a.v. does not involve pairs containing the vertex s.
Using the term "p.a.v." inequality (1) can be rewritten as

$$
\mid \text { p.a.v. of }(L \cup U)|\geq| \text { p.a.v. of }\left(L^{\prime} \cup U^{\prime}\right) \mid \text {. }
$$

By the construction of the set L there are $(l-2)$ p.a.v. in L and all vertices of $W_{n} \backslash L$ are on a path P_{n-l} on $n-l$ vertices (recall that $\left|V\left(W_{n}\right)\right|=n$ and $|L|=l$).
Let p^{\prime} denote the number of p.a.v. in the set L^{\prime}. As $p^{\prime} \leq l-2$, vertices of $W_{n} \backslash L^{\prime}$ are on $\left(l-p^{\prime}-1\right)$ paths. Sorting the paths of $W_{n} \backslash L^{\prime}$ according to their lengths we get

$$
\begin{align*}
& n-l= \\
& \left(l-p^{\prime}-1\right)+d_{2}+3 \cdot d_{4}+\cdots+\left(n_{e}-1\right) \cdot d_{n_{e}}+2 \cdot d_{3}+4 \cdot d_{5}+\cdots+\left(n_{o}-1\right) \cdot d_{n_{o}}, \tag{2}
\end{align*}
$$

where d_{i} is the number of paths P_{i} in $W_{n} \backslash L^{\prime}$ and $n_{e}\left(n_{o}\right)$ is the maximum order of a path in $W_{n} \backslash L^{\prime}$ on an even (odd) number of vertices. Let $x_{e}\left(x_{o}\right)$ denote the total number of these paths of even (odd) order. Then $x_{e}=d_{2}+d_{4}+\cdots+d_{n_{e}}$, $x_{o}=d_{1}+d_{3}+\cdots+d_{n_{o}}$ and

$$
\begin{equation*}
x_{e}+x_{o}=l-p^{\prime}-1 . \tag{3}
\end{equation*}
$$

Now we define a set $M\left(M^{\prime}\right)$ of maximum cardinality, such that $M \subset V\left(W_{n}\right) \backslash L$ $\left(M^{\prime} \subset V\left(W_{n}\right) \backslash L^{\prime}\right)$ and the vertices of $M\left(M^{\prime}\right)$ are mutually nonadjacent and are adjacent to no vertex of $L \backslash\{s\}\left(L^{\prime} \backslash\{s\}\right)$. Vertices of such sets do not increase the number of p.a.v..
At first we determine the maximum possible cardinality of the set M^{\prime}. Consider the set $M_{q}^{\prime}=M^{\prime} \cap V\left(P_{q}\right)$, where P_{q} is one of the paths of $W_{n} \backslash L^{\prime}$. Since M_{q}^{\prime} is an independent set of vertices of a path, obtained from P_{q} by deleting the terminal vertices, we have

$$
\begin{equation*}
\left|M_{q}^{\prime}\right|=\frac{q-1}{2} \tag{4}
\end{equation*}
$$

if q is odd and

$$
\begin{equation*}
\left|M_{q}^{\prime}\right|=\frac{q-2}{2} \tag{5}
\end{equation*}
$$

if q is even. The set M^{\prime} is a union of M_{q}^{\prime} determined for each of $l-1-p^{\prime}$ paths in $W_{n} \backslash L^{\prime}$. Analogously, the maximum possible cardinality of the set M is $|M|=\frac{n-l-2}{2}$ if $n-l$ is even and $|M|=\frac{n-l-1}{2}$ otherwise.
By the construction of sets M and M^{\prime}, the vertices $V\left(W_{n}\right) \backslash(L \cup M)\left(V\left(W_{n}\right) \backslash\right.$ $\left(L^{\prime} \cup M^{\prime}\right)$) induce paths of lengths 1 or 2 . Furthermore, the number of paths P_{2} in $W_{n} \backslash\left(L^{\prime} \cup M^{\prime}\right)$ equals the number of even paths in $W_{n} \backslash L^{\prime}$. If $n-l$ is even then vertices of $V\left(W_{n}\right) \backslash(L \cup M)$ induce $\frac{n-l-2}{2}$ paths P_{1} and one path P_{2}. If $n-l$ is odd then there are $\frac{n-l+1}{2}$ paths P_{1} in $V\left(W_{n}\right) \backslash(L \cup M)$.
Our requirement that $d_{k}(U \cup L)\left(d_{k}\left(U^{\prime} \cup L^{\prime}\right)\right)$ is maximum implies that, depending on the value of $k-l$, the following hold:

1. If $k-l \leq|M|$ then $U \subseteq M$, analogously if $k-l \leq\left|M^{\prime}\right|$ then $U^{\prime} \subseteq M^{\prime}$.
2. If $k-l>|M|$ then $M \subset U$ (if $k-l>\left|M^{\prime}\right|$ we have $M^{\prime} \subset U^{\prime}$). It means that, besides vertices of $M\left(M^{\prime}\right), U\left(U^{\prime}\right)$ contains also vertices increasing the number of p.a.v. by 1 (vertices of paths P_{2}) or by 2 (vertices of paths P_{1}).

Now we focus on these cases in detail. As $\left|M^{\prime}\right| \leq|M|$ and $p^{\prime} \leq l-2$, the case

$$
k-l \leq\left|M^{\prime}\right|
$$

is trivial because then $U^{\prime} \subseteq M^{\prime}(U \subseteq M)$ and the number of p.a.v. in $\left(L^{\prime} \cup U^{\prime}\right)$ is p^{\prime}. The number of p.a.v. in $(L \cup U)$ remains $l-2$, so that $e_{k, l}(L) \leq e_{k, l}\left(L^{\prime}\right)$ as we require.
Now we consider the other case, namely

$$
k-l>\left|M^{\prime}\right|
$$

Then the set U^{\prime} contains also vertices increasing the number of p.a.v..
In what follows we use a set U_{0}^{\prime} which has the following properties:

1. $M^{\prime} \subset U_{0}^{\prime}$.
2. The set $L^{\prime} \cup U_{0}^{\prime}$ attains the maximum possible distance.
3. In $L^{\prime} \cup U_{0}^{\prime}$ the number of p.a.v. is $l-2$ (as in the set L) or $l-1$ (a special case explained below).

To prove (1) these situations have to be solved:

1. $\left|M^{\prime}\right|<k-l<\left|U_{0}^{\prime}\right|$. Then $U^{\prime} \subset U_{0}^{\prime}$ and the number of p.a.v. in $L^{\prime} \cup U^{\prime}$ is at most $l-2$, which implies (1).
2. $k-l \geq\left|U_{0}^{\prime}\right|$. Then $\left|U_{0}^{\prime}\right| \leq\left|U^{\prime}\right|$. In the following part we show that $\left|U_{0}^{\prime}\right|=|M|$ which means that we have $\left|U_{0}^{\prime}\right|$ vertices in $V\left(W_{n}\right) \backslash L$ that do not increase the number of p.a.v.. Furthermore, we show that remaining vertices are on the
paths of order 1 and at most one path of order 2. As vertices of $V\left(W_{n}\right) \backslash\left(L^{\prime} \cup U_{0}^{\prime}\right)$ induce paths of the same types, adding of vertices to form U^{\prime} (from the set $\left.U_{0}^{\prime}\right)$ and U causes the same increasing of the number of p.a.v.. These imply $e_{k, l}(L)=e_{k . l}\left(L^{\prime}\right)$, which is a special case of (1).
Since in the set L^{\prime} there are p^{\prime} p.a.v., to form the set U_{0}^{\prime} we must increase the number of p.a.v. by $l-2-p^{\prime}$. We have to consider the following cases:
(a)

$$
l-2-p^{\prime} \leq x_{e}
$$

which means that $l-2-p^{\prime}$ is less than or equal to the number of even paths in $W_{n} \backslash L^{\prime}$.
Then the set U_{0}^{\prime} involves, besides vertices of M^{\prime}, only vertices from paths P_{2}. As each vertex from P_{2} increases the number of p.a.v. by 1 we have $\left|U_{0}^{\prime}\right|=\left|M^{\prime}\right|+l-2-p^{\prime}$. The number of paths P_{2} in $W_{n} \backslash\left(L^{\prime} \cup U_{0}^{\prime}\right)$ is $x_{e}-\left(l-2-p^{\prime}\right)$. This means that if $x_{e}=l-2-p^{\prime}$ then there remains no path P_{2}. Else $x_{e}>l-2-p^{\prime}$ and using equality $x_{e}+x_{o}=l-1-p^{\prime}$, see (3), we have

$$
l-2-p^{\prime}<x_{e} \leq l-1-p^{\prime}
$$

which implies that $x_{e}-\left(l-2-p^{\prime}\right)=1$.
Now we focus on the set L. We know that vertices of $W_{n} \backslash L$ are on the path P_{n-l}. We show that in $V\left(W_{n}\right) \backslash L$ there are more than $2 \cdot\left(\left|M^{\prime}\right|+l-2-p^{\prime}\right)$ vertices, which means that there are $\left|M^{\prime}\right|+l-2-p^{\prime}$ vertices which do not increase the number of p.a.v.. Let U_{0} denote the hypothetical set of these vertices. Then $\left|U_{0}\right|=\left|U_{0}^{\prime}\right|$. Suppose that vertices of $V\left(W_{n}\right) \backslash\left(L \cup U_{0}\right)$ induce paths P_{1} and one path P_{z}. Our aim is to show that $1 \leq z \leq 2$. By equalities (2), (4) and (5) we have

$$
\begin{gather*}
z=n-l-2 \cdot\left|M^{\prime}\right|-2 \cdot\left(l-2-p^{\prime}\right)= \\
\underbrace{l-1-p^{\prime}+d_{2}+3 \cdot d_{4}+\cdots+\left(n_{e}-1\right) \cdot d_{n_{e}}+2 \cdot d_{3}+4 \cdot d_{5}+\cdots+\left(n_{o}-1\right) \cdot d_{n_{o}}}_{n-l \text {, see (2) }} \\
-2 \cdot \underbrace{\left(d_{4}+2 \cdot d_{6}+\cdots+\frac{n_{e}-2}{2} \cdot d_{n_{e}}+d_{3}+2 \cdot d_{5}+\cdots+\frac{n_{o}-1}{2} \cdot d_{n_{o}}\right)}_{\left|M^{\prime}\right| \text {, see (4) and (5) }} \\
\quad-2 \cdot\left(l-2-p^{\prime}\right) \\
=l-1-p^{\prime}+\underbrace{d_{2}+d_{4}+\cdots+d_{n_{e}}}_{x_{e}}-2 \cdot\left(l-2-p^{\prime}\right)=x_{e}+p^{\prime}-l+3 .
\end{gather*}
$$

By equalities $x_{e}+x_{o}=l-1-p^{\prime}$ and $l-2-p^{\prime} \leq x_{e}$ the following holds.

$$
l-2-p^{\prime} \leq x_{e} \leq\left(l-2-p^{\prime}\right)+1
$$

Then

$$
1 \leq x_{e}-\left(l-2-p^{\prime}\right)+1=x_{e}+p^{\prime}-l+3=z \leq 2
$$

Specially, if $x_{e}=l-2-p^{\prime}$ then $z=x_{e}+p^{\prime}-l+3=1$ and if $l-2-p^{\prime}<x_{e}$ then $1<z=x_{e}+p^{\prime}-l+3 \leq 2$ which implies $z=x_{e}+p^{\prime}-l+3=2$. Hence $|M|=\left|U_{0}\right|=\left|U_{0}^{\prime}\right|$, and all vertices in $W_{n} \backslash\left(L \cup U_{0}\right)$ and $W_{n} \backslash\left(L^{\prime} \cup U_{0}^{\prime}\right)$ are on paths of order 1 (if $x_{e}=l-2-p^{\prime}$) or on paths of order 1 and one path of order $2\left(x_{e}>l-2-p^{\prime}\right)$. Then any other adding of vertices to U_{0}^{\prime} and U_{0} implies the same increasing of the number of p.a.v. in $L^{\prime} \cup U_{0}^{\prime}$ and $L \cup U_{0}$, as we require.
(b) Otherwise

$$
l-2-p^{\prime}>x_{e}
$$

and two types of situation must be solved. We proceed similarly as in the previous case:
i. $\left(l-2-p^{\prime}-x_{e}\right)$ is even. Then $\left|U_{0}^{\prime}\right|=\left|M^{\prime}\right|+x_{e}+\left(\frac{l-2-p^{\prime}-x_{e}}{2}\right)$. (Recall that $\left|M^{\prime}\right|$ is the number of vertices that do not increase the number of p.a.v., x_{e} is the number of vertices that increase the number of p.a.v. by 1 and $\frac{l-2-p^{\prime}-x_{e}}{2}$ vertices increase it by 2.) Setting U_{0} so that $\left|U_{0}\right|=\left|U_{0}^{\prime}\right|$, the equality

$$
\begin{aligned}
z & =n-l-2 \cdot\left|M^{\prime}\right|-2 \cdot x_{e}-2 \cdot \frac{l-2-p^{\prime}-x_{e}}{2} \\
& =\underbrace{l-1-p^{\prime}+x_{e}}_{\text {see also (6) }}-2 \cdot x_{e}-\left(l-2-p^{\prime}-x_{e}\right) \\
& =1
\end{aligned}
$$

implies that $|M|=\left|U_{0}\right|$ and all vertices of $W_{n} \backslash\left(L \cup U_{0}\right)$ are on paths P_{1} as we require.
ii. $\left(l-2-p^{\prime}-x_{e}\right)$ is odd. Then $\frac{l-2-p^{\prime}-x_{e}}{2}$ is not an integer. This is the case when we cannot construct the set U_{0}^{\prime} such that in $L^{\prime} \cup U_{0}^{\prime}$ there are $l-2$ p.a.v. (see the definition of the set U_{0}^{\prime}). Let us stop the construction of U_{0}^{\prime} at the moment when the number of p.a.v. in $L^{\prime} \cup U_{0}^{\prime}$ is $l-3$. Then $\left|U_{0}^{\prime}\right|=\left|M^{\prime}\right|+x_{e}+\left(\frac{l-2-p^{\prime}-x_{e}-1}{2}\right)$. So for $\left|U_{0}\right|=\left|U_{0}^{\prime}\right|$ all vertices of $W_{n} \backslash\left(L \cup U_{0}\right)$ are on paths P_{1} and one path P_{z}, where

$$
\begin{aligned}
z & =n-l-2 \cdot\left|M^{\prime}\right|-2 \cdot x_{e}-2 \cdot \frac{l-2-p^{\prime}-x_{e}-1}{2}= \\
& =\underbrace{l-1-p^{\prime}+x_{e}}_{\text {see also (6) }}-2 \cdot x_{e}-\left(l-2-p^{\prime}-x_{e}-1\right)=2 .
\end{aligned}
$$

It means that in $W_{n} \backslash\left(L \cup U_{0}\right)$ there exists a path P_{2}. On the other hand all vertices of $W_{n} \backslash\left(L^{\prime} \cup U_{0}^{\prime}\right)$ are on paths P_{1}. So if we add a next vertex to the sets U_{0}^{\prime} and U_{0}, there will be $l-1$ p.a.v. in $L^{\prime} \cup U_{0}^{\prime}$ and $l-1$ p.a.v. in $L \cup U_{0}$, as we require.

We determined the (k, l)-central set L; now it remains to find the (k, l)-radius, $\operatorname{rad}_{k, l}\left(W_{n}\right)$. To do this we have to use $k-l$ vertices at maximum k-distance from the (k, l)-central set $L=\left\{s, u_{0}, u_{1}, \ldots, u_{l-2}\right\}$. As above let U denote the set of $k-l$ vertices on which $d_{k}(L \cup U)$ attains its maximum.

1. Suppose that $k-l \leq\left\lfloor\frac{n-l-1}{2}\right\rfloor$. Then the vertices in U are mutually nonadjacent; they are at distance 1 from s and at distance 2 from other vertices of the (k, l) central set. Then

$$
\begin{aligned}
& \operatorname{rad}_{k, l}\left(W_{n}\right)=d_{k}(L \cup U)=\underbrace{l^{2}-3 \cdot l+3}_{d_{l}(L)}+\underbrace{(k-l)}_{\begin{array}{c}
\text { distance of } s \\
\text { to vertices of } U
\end{array}} \\
& +\underbrace{\binom{k-l}{2} \cdot 2}_{(k-l) \text {-distance of } U}+\underbrace{(l-1) \cdot(k-l) \cdot 2}_{\begin{array}{c}
\text { from vertices of } U \\
\text { to those of } L \backslash\{s\}
\end{array}}=k^{2}-2 \cdot k-l+3 .
\end{aligned}
$$

2. Otherwise $k-l>\left\lfloor\frac{n-l-1}{2}\right\rfloor$. Then the set U contains $\left\lfloor\frac{n-l-1}{2}\right\rfloor$ vertices from $V\left(W_{n} \backslash L\right)$ that do not increase the number of p.a.v. in $d_{k}(L \cup U)$ and $k-l-$ $\left\lfloor\frac{n-l-1}{2}\right\rfloor$ vertices that increase it. The pattern of these vertices was explained above. Since

$$
\underbrace{n-l}_{\left|W_{n} \backslash L\right|}-\left\lfloor\frac{n-l-1}{2}\right\rfloor \cdot 2
$$

attains only the value 1 (if $n-l$ is odd) or 2 (if $n-l$ is even) it follows that besides $\left\lfloor\frac{n-l-1}{2}\right\rfloor$ vertices that do not increase the number of p.a.v., U contains also one vertex that increases the number of p.a.v. by 2 or 1 , respectively, and $k-l-\left\lfloor\frac{n-l-1}{2}\right\rfloor-1$ vertices that increase the number of p.a.v. by 2 .
Thus we have

$$
\begin{gathered}
\operatorname{rad}_{k, l}\left(W_{n}\right)=\underbrace{k^{2}-2 \cdot k-l+3}_{\begin{array}{c}
d_{k}(L \cup U) \text { if no vertex of } U \\
\text { increases the number of } \text { p.a.v. }
\end{array}} \\
-[\underbrace{\left\lceil\frac{n-l}{2}\right\rceil-\left\lfloor\frac{n-l}{2}\right\rfloor+1}_{\begin{array}{c}
\text { one vertex that increases } \\
\text { the number of } p . a . v . \text { by } 1 \text { or } 2
\end{array}}+2 \cdot \underbrace{\left(k-l-\left\lfloor\frac{n-l-1}{2}\right\rfloor-1\right)}_{\begin{array}{c}
\text { the number of vertices that } \\
\text { increase the number of } p \text {.a.v. by } 2
\end{array}} \\
=k^{2}-4 \cdot k+l+4+2 \cdot\left\lfloor\frac{n-l-1}{2}\right\rfloor-\left\lceil\frac{n-l}{2}\right\rceil+\left\lfloor\frac{n-l}{2}\right\rfloor .
\end{gathered}
$$

Since

$$
2 \cdot\left\lfloor\frac{n-l-1}{2}\right\rfloor-\left\lceil\frac{n-l}{2}\right\rceil+\left\lfloor\frac{n-l}{2}\right\rfloor=n-l-2
$$

for odd $n-l$ as well as for even $n-l$, the previous equality can be simplified to

$$
\operatorname{rad}_{k, l}\left(W_{n}\right)=k^{2}-4 \cdot k+n+2
$$

Proof of Assertion 1. Let $l=1$. Analogously as above it can be shown that there is a $(k, 1)$-central set containing the vertex s. For $k=1$ we have $\operatorname{rad}_{1,1}\left(W_{n}\right)=0$.

Now let $k>1$. By the construction used in the proof of Theorem 1, one ($k, 2$)-central set contains the vertex s and u_{0}. As all $u_{0}, u_{1}, \ldots, u_{n-2}$ belong to the same orbit of $\operatorname{out}\left(W_{n}\right)$, to determine the ($k, 1$)-radius we can choose the first vertex of the set U arbitrarily (recall that $U \subset V\left(W_{n} \backslash\{s\}\right)$. Hence, suppose that this vertex is u_{0}. Then the set U_{1} of $k-1$ vertices, such that $d_{k}\left(\{s\} \cup U_{1}\right)$ has the maximum possible value, coincides with the set $u_{0} \cup U_{2}\left(\left|U_{2}\right|=k-2\right)$, for which $d_{k}\left(\left\{s, u_{0}\right\} \cup U_{2}\right)$ has the maximum possible value. I.e., $\operatorname{rad}_{k, 1}\left(W_{n}\right)=\operatorname{rad}_{k, 2}\left(W_{n}\right)$. The rest follows from Theorem 1.

Proof of Assertion 2. If $k=n$ then the ($n, 0$)-radius is the transmission of the graph and by Theorem $1 \operatorname{rad}_{n, 0}\left(W_{n}\right)=n^{2}-3 \cdot n+2$. Now we consider $k<n$. Then the set K on which $\operatorname{rad}_{k, 0}\left(W_{n}\right)$ is attained does not contain the vertex s. Thus $\operatorname{rad}_{k, 0}\left(W_{n}\right)=\operatorname{rad}_{k+1,1}\left(W_{n}\right)-k$. Hence, by Assertion 1 we have:

1. If $k \leq\left\lfloor\frac{n-1}{2}\right\rfloor$ then

$$
\operatorname{rad}_{k, 0}\left(W_{n}\right)=(k+1)^{2}-2 \cdot(k+1)+1-k=k^{2}-k .
$$

2. If $n>k \geq\left\lfloor\frac{n-1}{2}\right\rfloor$ then

$$
\operatorname{rad}_{k, 0}\left(W_{n}\right)=(k+1)^{2}-4 \cdot(k+1)+n+2-k=k^{2}-3 \cdot k+n-1
$$

Acknowledgements

This paper was supported by grant VEGA/2004/05.

References

[1] W. Goddard, Ch.S. Swart and H.C. Swart, On the extremal graphs for distance and k-diameter, Math. Slovaca 55 (2005), 131-139.
[2] F. Harary and F. Buckley, Distance in graphs, Addison Wesley Publishing Company (1989).
[3] M. Horváthová, Some properties of the (k, l)-radius, J. Electrical Engineering 56 (2005), 26-28.
[4] M. Horváthová, The (3,l)-radius for basic classes of graphs, Mathematics, Geometry and their Applications (2005), 87-92.
[5] M. Horváthová, On (k, l)-radii of complete bipartite graphs $K_{n_{1}, n_{2}}$, submitted.
[6] M. Knor, (k, l)-radii of Petersen graph, Mathematics, Geometry and their Applications (2006), 11-16.
[7] Šoltés L', Transmission in graphs: a bound and vertex removing, Math. Slovaca 41 (1991), 1-16.
(Received 18 Dec 2006; revised 29 May 2007)

