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Ciudad Universitaria, 04510
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Abstract

In this paper, we consider the following problem due to Erdős: for each
m ∈ N, is there a (least) positive integer f(m) so that every finite m-
colored tournament contains an absorbent set S by monochromatic di-
rected paths of f(m) vertices? In particular, is f(3) = 3? We prove
several bounds for absorbent sets of m-colored tournaments under cer-
tain conditions on the number of colors of the arcs incident to every
vertex from its in-neighborhood (respectively, ex-neighborhood). In par-
ticular, we establish the validity of Erdős’ problem for 3-colored tourna-
ments with this condition. It is also proven that a 3-colored tournament
containing no heterochromatic directed triangles with at most bichro-
matic ex-neighborhoods (respectively, in-neighborhoods) has a kernel by
monochromatic directed paths. Previous results are generalized.
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1 Introduction

Let D = (V, A) be a finite digraph, where V and A denote the sets of vertices and
arcs of D respectively. The in- and ex-neighborhood of a vertex v of D are denoted
by N−(v, D) and N+(v, D), and define d−(v) = |N−(v, D)| and d+(v) = |N+(v, D)| .
For ∅ 6= S ⊆ V (D), we denote by D[S] the subdigraph of D induced by the subset
S.

A digraph D is said to be m-colored if the arcs of D are colored with m colors. Given
u, v ∈ V (D), a directed path from u to v of D is monochromatic if all its arcs have the
same color and it is denoted by u m v. A nonempty set S ⊆ V (D) is an absorbent
set by monochromatic directed paths (m.d.p.) if for every vertex u ∈ V (D)−S there
exists v ∈ S such that u m v. A kernel K of D is an independent set of vertices so
that for every u ∈ V (D)−K there exists (u, v) ∈ A(D), where v ∈ K. A digraph D
is called kernel-perfect if every induced subdigraph of D has a kernel.

Let D be an m-colored digraph. A set K ⊆ V (D) is called a kernel by m.d.p. if

(i) for every u, v ∈ K there is no m.d.p between u and v, and

(ii) for every x ∈ V (D) − K there exists y ∈ K such that x m y.

A tournament T with n vertices is an orientation of the complete graph Kn.

The study of absorbent sets by m.d.p. in m-colored tournaments goes back to the
statement of a classical problem due to Erdős.

Problem 1. For each m ∈ N, is there a (least) positive integer f(m) so that every
finite m-colored tournament contains an absorbent set S by m.d.p of f(m) vertices?
In particular, is f(3) = 3?

In [8], Sands et al. proved that f(2) = 1, that is,

Theorem 1 ([8], Corollary 1). Let T be a finite tournament whose arcs are colored
with two colors. Then there is a vertex v of T such that for every other vertex x of
T there exists x m v.

More generally, they showed that a 2-colored digraph has a kernel by m.d.p. and
posed the following

Problem 2. Let T be a 3-colored (in general, m-colored) tournament not containing
3-colored directed triangles. Must T contain a vertex v such that for every other
vertex x of T there exists x  m v ? (Or equivalently, must T have a kernel by
m.d.p.?)

In 1988, Shen [9] proved that

Theorem 2 ([9]). If an m-colored tournament T does not contain 3-colored directed

triangles (
−→
C 3) or transitive tournaments of order 3 (TT3) then f(m) = 1, that is, T

has a kernel by m.d.p.
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Moreover, for m ≥ 4 the condition on T not containing 3-colored
−→
C 3 or TT3 cannot

be improved. The case of 4-colored tournaments is solved in [4], where it is proved
that for every n ≥ 6, there exists a 4-colored tournament T of n vertices satisfying
that T does not contain 3-colored directed triangles and T does not have a kernel
by m.d.p. Counterexamples for the case of m-colored tournaments with m ≥ 5
were constructed in [9]. For m = 3 the problem is still open. Similar results for
tournaments and digraphs in general were obtained in [2] and [3].

Recently, Galeana-Sánchez and Rojas-Monroy [5] showed that if a 3-colored tour-
nament T does not contain 3-colored directed triangles and the number of colors
assigned to the arcs incident to every vertex of T is at most 2, then T has a kernel
by m.d.p. Further, it is proven that if an m-colored (m ≥ 4) tournament T does not
contain 3-colored directed triangles and the number of colors assigned to all the arcs
incident to every vertex of T is at most 2, then T has a kernel by m.d.p.

Extensions of known results and new approaches to this kind of questions (multi-
tournaments and underlying digraphs) are studied in [6].

In Section 2 of this paper, we prove several bounds for absorbent sets of m-colored
tournaments under weaker conditions on the number of colors of the arcs incident
to every vertex from its in-neighborhood (resp. ex-neighborhood). In particular, we
establish the validity of Erdős’ problem for 3-colored tournaments with this condition.
In Section 3, we generalize the results of [5].

Throughout this paper, we will use the following definitions and notations.

We say that a digraph D is monochromatic kernel perfect (m.k.p.) if every induced
subdigraph of D has a kernel by m.d.p. An arc (u, v) ∈ A(D) is asymmetrical (resp.
symmetrical) if (v, u) /∈ A(D) (resp. (v, u) ∈ A(D)). A directed cycle γ of D is
said to be asymmetrical (resp. symmetrical) if every arc of γ is asymmetrical (resp.
symmetrical). A semicomplete digraph is a digraph with no non-adjacent vertices
and thus, tournaments are asymmetrical semicomplete digraphs.

Theorem 3 ([1], Théorème 4.2). If every directed cycle of a digraph D has a sym-
metrical arc, then D is kernel-perfect.

If D = (V, A) is an m-colored digraph, then the closure of D, denoted by C(D), is
the m-colored digraph defined by

V (C(D)) = V (D) and

A(C(D)) = A(D) ∪ {(u, v) of color i : ∃u m v of color i in D} .

Remark 1. (i) For every digraph D, C(D) is isomorphic to C(C(D)).

(ii) D has a kernel by m.d.p. if and only if C(D) has a kernel.

Let T be an m-colored tournament, {1, 2, ..., m} the set of colors and z ∈ V (T ). We
define

A+(z) = {(z, v) ∈ A(D) : v ∈ V (T )} (resp. A−(z) = {(v, z) ∈ A(D) : v ∈ V (T )} ),
(△)
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C+(z) (resp, C−(z)) the set of colors appearing in A+(z) (resp. in A−(z)) and
ξ+(z) = |C+(z)| (resp. ξ−(z) = |C−(z)|). When ξ+(z) ≤ 2 (resp. ξ−(z) ≤ 2), we will
refer to the at most bichromatic ex-neighborhood (resp. in-neighborhood) of vertex z.

2 Absorbent sets by m.d.p. in m-colored tournaments

Theorem 4. Let T be an m-colored tournament and suppose that ξ+(z) ≤ 2 for
every vertex z ∈ V (T ). Then there exists an absorbent set by m.d.p. S ⊆ V (T ) such
that |S| ≤

(

m

2

)

.

Proof. For all pair of colors i, j ∈ {1, 2, ..., m} (i 6= j), we define Tij to be the
subtournament of T induced by the set

{

z ∈ V (T ) : C+(z) ⊆ {i, j}
}

.

Clearly, Tij is a 2-colored subtournament of T (every arc of Tij is colored i or j). By
Theorem 1, there exists a vertex xij ∈ V (Tij) which absorbs every other vertex of
Tij by m.d.p. Since

V (T ) =
⋃

{i,j}⊆{1,2,...,m}

V (Tij),

the set
S = {xij : i, j ∈ {1, 2, ..., m}, i 6= j}

is an absorbent set by m.d.p. such that |S| ≤
(

m

2

)

.

Corollary 1. Let T be a 3-colored tournament and suppose that ξ+(z) ≤ 2 for every
vertex z ∈ V (T ). Then there exists an absorbent set by m.d.p. S ⊆ V (T ) such that
|S| ≤ 3.

Observe that the analogous results of Theorem 4 and Corollary 1 wtih ξ−(z) ≤ 2 are
also true.

So, we have proved that Erdős’ conjecture (Problem 1) is true for all 3-colored
tournaments with at most bichromatic ex-neighborhoods (resp. in-neighborhoods).

Theorem 5. Let T be an m-colored tournament so that for every vertex z ∈ V (T ),
at least one of the following properties holds: ξ+(z) ≤ 2 or ξ−(z) ≤ 2. Then there
exists an absorbent set by m.d.p. S ⊆ V (T ) such that |S| ≤ 2

(

m

2

)

.

Proof. Let T+
ij (resp. T−

ij ) be the subtournament of T induced by the set

{

z ∈ V (T ) : C+(z) ⊆ {i, j}
}

(resp.
{

z ∈ V (T ) : C−(z) ⊆ {i, j}
}

).

Clearly, T+
ij (resp. T−

ij ) is an at most 2-colored tournament. By Theorem 1, there
exists a vertex x+

ij (resp. x−
ij) which absorbs every other vertex of T+

ij (resp. T−
ij ) by

m.d.p. Since

V (T ) =
⋃

{i,j}⊆{1,2,...,m}

(

V (T+
ij ) ∪ V (T−

ij )
)

,
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the set

S = {x+
ij : i, j ∈ {1, 2, ..., m}, i 6= j} ∪ {x−

ij : i, j ∈ {1, 2, ..., m}, i 6= j}

is an absorbent set by m.d.p. such that |S| ≤ 2
(

m

2

)

.

Theorem 6. Let T be an m-colored tournament and suppose that ξ+(z) ≤ 2 for
every vertex z ∈ V (T ). If T contains no 3-colored directed triangles, then there exists
an absorbent set by m.d.p. S ⊆ V (T ) such that |S| ≤ m−1 if m is even and |S| ≤ m
if m is odd.

Proof. For every pair of colors i, j ∈ {1, 2, ..., m} (i 6= j), we define Tij to be the
subtournament of T induced by the set {z ∈ V (T ) : C+(z) ⊆ {i, j}} . Clearly, Tij is
a 2-colored subtournament of T (every arc of Tij is colored i or j). By Theorem 1,
there exists a vertex xij ∈ V (Tij) which absorbs every other vertex of Tij by m.d.p.

Claim 1. Let i, j, k and l be distinct integers such that {i, j} ⊆ {1, 2, ..., m},
{k, l} ∈ {1, 2, ..., m}. If (xkl, xij) ∈ A(T ), then xij absorbs every vertex of Tkl by
m.d.p. (and every other vertex of Tij as observed before).

We know that xkl absorbs every other vertex of Tkl by m.d.p. and Tkl is at most 2-
colored with color k and l. Since xkl ∈ V (Tkl) and C+(xkl) ⊆ {k, l}, the arc (xkl, xij)
is colored k or l. Without loss of generality, we can suppose that (xkl, xij) is colored
k. It follows that xij absorbs by m.d.p of color k all those vertices of Tkl that xkl

absorbs by m.d.p of color k. Consider a vertex z ∈ V (Tkl) such that there exists
z  m xkl of color l. Let (z0, z1, ..., zr) be such a path, where z0 = z and zr = xkl.

(1) If (z, xij) ∈ A(T ), then xij absorbs z by a m.d.p.

(2) If (z, xij) /∈ A(T ), then (xij, z) ∈ A(T ) (note that T is a tournament). Since
(zr, xij) ∈ A(T ) and (xij, z0) ∈ A(T ), there exists t ∈ {0, 1, ..., r} such that
(xij, zt) ∈ A(T ) and (zt+1, xij) ∈ A(T ).

(2.1) If (zt+1, xij) is colored l, then (z0, z1, ..., zt+1) ∪ (zt+1, xij) is a z  m xij.

(2.2) If (zt+1, xij) is colored k, then
−→
C 3 = (zt+1, xij, zt, zt+1) is 3-colored con-

tradicting the hypothesis of the theorem (observe that (zt+1, xij) and
(zt, zt+1) are colored k and l respectively, and (xij, zt) is colored i or j,
where {i, j} ∩ {k, l} = ∅).

This concludes the proof of the claim.

Let P = {M1, M2, ..., Mn(m)} be a partition of E(Km) (the set of edges of the complete
graph with m vertices) of minimum cardinality into maximal matchings. When m is
even, these matchings are perfect and n(m) = m− 1. When m is odd, the matchings

are of cardinality m−1
2

and n(m) = m. Define Mi = {e1
i , e

2
i , ..., e

g(m)
i }, where g(m) = m

2

if m is even and g(m) = m−1
2

if m is odd. We denote xst by x(ej
i ), where ej

i = st
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(that is, s and t are the ends of edge ej
i and recall that xst is a selected vertex of Tst

absorbing every other vertex of Tst). Let Ti be the subtournament generated by the
set {x(ej

i ) : 1 ≤ j ≤ g(m)}.

Claim 2. Ti has a kernel.

Since Ti is a tournament, it is enough to prove that Ti does not contain directed

triangles. By contradiction, suppose that Ti contains a directed triangle, say
−→
C 3 =

(u, v, w, u). Therefore,

u = x(er
i ), v = x(ep

i ) and w = x(eq
i ),

where r, p and q are all different and {p, q, r} ⊆ {1, 2, ..., g(m)}. Since er
i , ep

i and eq
i

are three distinct edges of a same matching of Km, it follows that

u = x(er
i ) = xab, v = x(ep

i ) = xcd and w = x(eq
i ) = xef ,

where {a, b, c, d, e, f} ⊆ {1, 2, ..., m},

{a, b} ∩ {c, d} = ∅, {a, b} ∩ {e, f} = ∅ and {c, d} ∩ {e, f} = ∅.

Moreover,
−→
C 3 = (u, v, w, u) = (xab, xcd, xef , xab). So, (xab, xcd) is an arc of T colored

a or b, (xcd, xef ) is an arc of T colored c or d and (xef , xab) is an arc of T colored

e or f (recall that arcs of type (xij, z) are colored i or j). We conclude that
−→
C 3 =

(xab, xcd, xef , xab) is a 3-colored directed triangle contained in T, a contradiction to
the theorem hypothesis. Thus Ti does not contain directed triangles which implies
that Ti is a transitive tournament and therefore Ti has a kernel.

Let zi ∈ V (Ti) such that zi is a kernel of Ti and therefore (w, zi) ∈ A(T ) for every
w ∈ V (Ti). Let u(ej

i ) and v(ej
i ) be the ends of the edge ej

i . So, zi = x(ej
i ) = x

u(ej
i )v(ej

i )

for some j ∈ {1, 2, ..., g(m)} and we have that (x(ek
i ), x(ej

i )) ∈ A(T ) for every k ∈
{1, 2, ..., m} − {j}. By Claim 1, zi absorbs every vertex of

⋃

Tx(ek
i ) for every k ∈

{1, 2, ..., g(m)} and i ∈ {1, 2, ..., n(m)}. Since P = {M1, M2, ..., Mn(m)} is a partition
of E(Km) into maximal matchings, we conclude that S = {zi : i ∈ {1, 2, ..., n(m)}} ⊆
V (T ) is an absorbent set by m.d.p.

Theorem 7. Let T be an m-colored tournament and suppose that ξ−(z) ≤ 2 for
every vertex z ∈ V (T ). If T contains no 3-colored directed triangles, then there exists
an absorbent set by m.d.p. S ⊆ V (T ) such that |S| ≤ m−1 if m is even and |S| ≤ m
if m is odd.

Proof. Analogous to the proof of Theorem 6.

Theorem 8. Let T be an m-colored tournament so that for every vertex z ∈ V (T ),
at least one of the following properties holds: ξ+(z) ≤ 2 or ξ−(z) ≤ 2. If T contains
no 3-colored directed triangles, then there exists an absorbent set by m.d.p. S ⊆ V (T )
such that |S| ≤ 2m − 2 if m is even and |S| ≤ 2m if m is odd.
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Proof. Let T+ and T− be the subtournaments of T generated by the sets {z ∈ V (T ) :
ξ+(z) ≤ 2} and {z ∈ V (T ) : ξ−(z) ≤ 2} respectively. By Theorem 6, there exists an
absorbent set by m.d.p. S+ ⊆ V (T+) such that |S+| ≤ m − 1 if m is even and
|S+| ≤ m if m is odd. By Theorem 7, there exists an absorbent set by m.d.p.
S− ⊆ V (T−) such that |S−| ≤ m− 1 if m is even and |S−| ≤ m if m is odd. Clearly,
the set S = S+ ∪ S− satisfies the required properties.

3 Kernels by m.d.p. in m-colored tournaments

Denote by [z, w] the arc (z, w) or (w, z) in a tournament T. For the subsequent
results, we need the following

Lemma 1. Let T be an m-colored tournament, M = {1, 2, ..., m} the set of colors,

M ′ ⊆ M2 = {S ⊆ M : |S| = 2}

and Z = {Vij : {i, j} ∈ M ′} a family of (not necessarily distinct) nonempty subsets
of V (T ) such that for every Vij ∈ Z:

(1) Vij  V (T ),

(2) T [Vij] is m.k.p. and

(3) for every z ∈ Vij and w ∈ V (T ) − Vij, the arc [z, w] is colored i or j.

Then for every Vij, Vkl ∈ Z at least one of the following properties holds:

(i) Vij = Vkl.

(ii) There exists xij ∈ Vij which absorbs every other vertex of Vij by m.d.p. and
such that (y, xij) ∈ A(T ) for every y ∈ Vkl.

(iii) There exists xkl ∈ Vkl which absorbs every other vertex of Vkl by m.d.p. and
such that (x, xkl) ∈ A(T ) for every x ∈ Vij.

(iv) {i} = {i, j} ∩ {k, l} and there exist x ∈ Vij and y ∈ Vkl such that x (resp. y)
absorbs every vertex of Vij ∪ Vkl by m.d.p. of color i and alternating between
vertices of Vij and Vkl. Moreover {z ∈ Vkl : (z, x) ∈ A(T )} 6= ∅ and {z ∈ Vij :
(z, y) ∈ A(T )} 6= ∅.

Proof. It is based on the following two claims.

Claim 1. If {i, j} ∩ {k, l} = ∅, then Vij = Vkl.

First we prove that Vij ⊆ Vkl. By contradiction, suppose that there exists x ∈ Vij−Vkl.
In this case, we will show that Vkl ⊆ Vij. If there exists y ∈ Vkl−Vij, then by property
(3), the arc [x, y] is colored k or l in Vkl and colored i or j in Vij, a contradiction since
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{i, j} ∩ {k, l} = ∅. So, Vkl ⊆ Vij. We prove now that Vij = V (T ). Let z ∈ Vkl ⊆ Vij.
If there exists w ∈ V (T ) − Vij, then by property (3), the arc [z, w] is colored k or l
in Vkl and colored i or j in Vij, a contradiction again since {i, j} ∩ {k, l} = ∅. So,
Vij = V (T ), contradicting property (1). Therefore Vij ⊆ Vkl. Analogously, Vkl ⊆ Vij.

Claim 1 is proved.

Suppose now that {i, j} ∩ {k, l} 6= ∅ and, without loss of generality, that {i} =
{i, j}∩ {k, l} (observe that in this case, every arc between Vij and Vkl is colored i by
means of property (3)). If either (ii) or (iii) holds, we are done. So, we assume that
(ii) and (iii) do not hold and prove that (iv) is satisfied. For this purpose, we first

show the following claim.

Claim 2. There exists z ∈ Vij ∪ Vkl such that

(i) z is a kernel by m.d.p. in Vij if z ∈ Vij, or in Vkl if z ∈ Vkl and

(ii) z absorbs every vertex of Vij ∪Vkl by m.d.p. of color i and alternating between
vertices of Vij and Vkl.

Let

N = {z ∈ Vij : z is a kernel by m.d.p. in T [Vij]}

∪ {z ∈ Tkl : z is a kernel by m.d.p. in T [Vkl]}.

For some w ∈ N, we define

M(w) = {x ∈ Vij ∪ Vkl : ∃x m w of color i alternating between Vij and Vkl}

and A(w) = |M(w)| . Let n ∈ N be such that A(n) = max{A(z) : z ∈ N}. Without
loss of generality, we can assume that n ∈ Vij. We will prove that n absorbs every
vertex of Vij ∪Vkl by m.d.p. of color i and alternating between vertices of Vij and Vkl.
By contradiction, suppose that there exists w ∈ Vij ∪Vkl so that there is no w  m n
of color i alternating between Vij and Vkl. We have two cases:

Case 1. w ∈ Vkl.

Observe that by property (3) of the hypothesis and since {i} = {i, j} ∩ {k, l}, every
arc between Vij and Vkl is colored i. Since n does not absorb w by m.d.p. of color i
alternating between Vij and Vkl, we have that (n, w) ∈ A(T ) when w is a kernel by
m.d.p. in Vkl and we obtain that A(w) > A(n), a contradiction to the maximality
of A(n). So, there exists w1 ∈ Vkl such that there is no w1  m w contained in T.
Therefore (n, w1) ∈ A(T ) (otherwise, the path from w1 through n to w is a w1  m w
in T which is a contradiction).

If w1 is a kernel by m.d.p in T [Vkl], then w1 ∈ N and since A(w1) > A(n), we have
a contradiction. So, w1 is not a kernel by m.d.p. in T [Vkl] and there exists w2 ∈ Vkl

such that there is no w2  m w1 in T. Moreover, (n, w2) ∈ A(T ) (otherwise, the path
from w2 through n to w1 is a w2  m w1 in T which is a contradiction).
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If w2 is a kernel by m.d.p in T [Vkl], then w2 ∈ N and since A(w2) > A(n), we have
a contradiction. So, w2 is not a kernel by m.d.p. in T [Vkl] and there exists w3 ∈ Vkl

such that there is no w3  m w2 in T. Moreover, (n, w3) ∈ A(T ) (otherwise, the path
from w3 through n to w2 is a w3  m w2 in T which is a contradiction).

Continuing this procedure, we obtain a sequence of vertices w = w0, w1, w2, w3, . . .
such that there is no wi+1  m wi in T. Since T is finite, there exist indices r and s
(r < s) such that wr = ws and (wr, wr+1, . . . , ws) is an asymmetrical directed cycle
in C(T [Vkl]), contradicting that T [Vkl] is m.k.p. (see Theorem 3 and Remark 1(ii)).

Case 2. w ∈ Vij.

First, observe that there exists z ∈ Vkl such that (n, z) ∈ A(T ), otherwise, we have
that (z, n) ∈ A(T ) for every z ∈ Vkl, and option (ii) of the Lemma would be satisfied
(recall that previous to this claim, it was supposed that (ii) and (iii) do not hold).

Subcase 2.1. (w, z) ∈ A(T ).

Since A(z) > A(n) (note that w ∈ M(z)�M(n)), z is not a kernel by m.d.p. in
T [Vkl]. Hence there exists z1 ∈ Vkl such that there is no z1  m z in T. Observe that
(n, z1) ∈ A(T ) (resp. (w, z1) ∈ A(T )), because otherwise, the path from z1 through
n to z (resp. the path from z1 through w to z) is a z1  m z in T, a contradiction.

If z1 is a kernel by m.d.p. in T [Vkl], we have a contradiction since A(z1) > A(n).
So, z1 is not a kernel by m.d.p. in T [Vkl] and there exists z2 ∈ Vkl such that there is
no z2  m z1 in T. Recall again that (n, z2) ∈ A(T ) (resp. (w, z2) ∈ A(T )), because
otherwise, the path from z2 through n to z1 (resp. the path from z2 through w to
z1) is a z2  m z1 in T, a contradiction.

If z2 is a kernel by m.d.p. in T [Vkl], we have a contradiction since A(z2) > A(n).
So, z2 is not a kernel by m.d.p. in T [Vkl] and there exists z3 ∈ Vkl such that there is
no z3  m z2 in T. Recall again that (n, z3) ∈ A(T ) (resp. (w, z3) ∈ A(T )), because
otherwise, the path from z3 through n to z2 (resp. the path from z3 through w to
z2) is a z3  m z2 in T, a contradiction.

Continuing this procedure, we obtain a sequence of vertices z = z0, z1, z2, z3, . . .
such that there is no zi+1  m zi in T. Since T is finite, there exist indices r and s
(r < s) such that zr = zs and (zr, zr+1, . . . , zs) is an asymmetrical directed cycle in
C(T [Vkl]), contradicting that T [Vkl] is m.k.p. (see Theorem 3 and Remark 1(ii)).

Therefore this subcase is impossible.

Subcase 2.2. (z, w) ∈ A(T ).

This subcase is impossible too, the proof is analogous to the subcase before (take w
and Vij instead of z and Vkl).

Claim 2 is proved.

By Claim 1, we can suppose without loss of generality that z ∈ Vij is a kernel by
m.d.p. in T [Vij] and z absorbs every vertex of Vij∪Vkl by m.d.p. of color i alternating
between vertices of Vij and Vkl. Recall that part (ii) of the lemma does not hold, so
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there exists y ∈ Vkl such that (y, z) /∈ A(T ) and therefore (z, y) ∈ A(T ). Clearly, z
and y are the vertices satisfying (iv). This concludes the proof of the lemma.

Theorem 9. Let T be an m-colored tournament, M = {1, 2, ..., m} the set of colors,

M ′ ⊆ M2 = {S ⊆ M : |S| = 2}

and Z = {Vij : {i, j} ∈ M ′} a family of (not necessarily distinct) nonempty subsets
of V (T ) such that:

(1) V (T ) =
⋃

Vij∈Z
Vij,

(2) T [Vij] is m.k.p. and

(3) for every z ∈ Vij and w ∈ V (T ) − Vij, the arc [z, w] is colored i or j.

If T contains no 3-colored directed triangles, then T has a kernel by m.d.p.

Proof. Clearly, we can suppose that Vij 6= V (T ) for every {i, j} ∈ M ′, otherwise the
theorem is true by property (2). So, the conditions (1), (2) and (3) of Lemma 1 are
satisfied. We define a digraph DZ as follows: V (DZ) = Z (take a vertex for each
element of Z without repetition) and

(Vkl, Vij) ∈ A(DZ) of color i if (ii) of Lemma 1 holds and {k, l} ∩ {i, j} = {i},

(Vij, Vkl) ∈ A(DZ) of color i if (iii) of Lemma 1 holds and {k, l} ∩ {i, j} = {i}

and

{(Vij, Vkl); (Vkl, Vij)} ⊆ A(DZ) of color i if (iv) of Lemma 1 holds

and {k, l} ∩ {i, j} = {i}.

Claim 1. Every directed triangle in DZ is either monochromatic or symmetrical.

Let
−→
C 3 = (Vkl, Vij, Vmn, Vkl) be a non symmetrical directed triangle in DZ . We will

prove that
−→
C 3 is monochromatic. Then

−→
C 3 has at least one arc, say (Vkl, Vij),

satisfying (ii) of Lemma 1, that is, there exists xij ∈ Vij which absorbs every ver-
tex of T [Vij] by m.d.p. and such that (y, xij) ∈ A(T ) for every y ∈ Vkl. Since
(Vij, Vmn) ∈ A(DZ) and (Vmn, Vkl) ∈ A(DZ), there exist xmn ∈ Vmn and xkl ∈ Vkl

such that (xij, xmn) ∈ A(T ) and (xmn, xkl) ∈ A(T ). So, we have a directed triangle
γ = (xkl, xij, xmn, xkl) contained in T. By hypothesis, γ is not 3-colored, hence γ has
at least two arcs of the same color. Without loss of generality, suppose that (xkl, xij)
and (xij, xmn) are colored i. By condition (3) of the Theorem, {k, l} ∩ {i, j} = {i}
and {i, j} ∩ {m, n} = {i}, therefore {k, l} ∩ {m, n} = {i}. So, every arc between
Vkl and Vmn is colored i, in particular, (xmn, xkl) is colored i. We conclude that
−→
C 3 = (Vkl, Vij, Vmn, Vkl) is monochromatic.
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Claim 2. If D is a semicomplete m-colored digraph such that every directed triangle
is monochromatic or symmetrical, then D has a kernel by m.d.p.

Since D is semicomplete, then C(D) is semicomplete. Moreover, since every directed
triangle in D is monochromatic or symmetrical, it follows that every directed triangle
in C(D) is symmetrical. Thus, C(D) has a kernel and therefore D has a kernel by
m.d.p.

Let Vij ∈ Z. For every Vkl ∈ N−(Vij, DZ), we denote by xij,kl a chosen vertex in Vij

such that:

(i) If (ii) of Lemma 1 holds, then (y, xij,kl) ∈ A(T ) for every y ∈ Vkl and xij,kl is a
kernel by m.d.p. of T [Vij].

(ii) If (iv) of Lemma 1 holds, then xij,kl absorbs every vertex of Vij ∪ Vkl by m.d.p.
of color i.

Claim 3. There exists zij ∈ Vij such that there is a y  m zij of color i in T, for
every Vkl ∈ N−(Vij, DZ) and all y ∈ Vkl for which (y, xij,kl) ∈ A(T ) of color i.

For every w ∈ Vij, define

B(w) =| {Vkl ∈ N−(Vij, DZ) : ∀ y ∈ Vkl with (y, xij,kl) ∈ A(T ) of color i

∃ y  m w of color i in T} | .

Let zij ∈ Vij such that B(zij) = max{B(w) : w ∈ Vij}. We will prove that zij satisfies
the conditions of the claim. If B(w) = d−(Vij, DZ), the claim holds. If it is not the
case, there exists Vkl ∈ N−(Vij, DZ) such that for some y ∈ Vkl with (y, xij,kl) ∈ A(T )
of color i there is no y  m zij in T. So, (zij, y) ∈ A(T ). Moreover, there exists
x ∈ Vmn (Vmn ∈ N−(Vij, DZ)) such that (x, zij) ∈ A(T ) and there is no x  m xij,kl

in T . If this m.d.p. exists, it is colored the same color of arc (x, zij), since every arc
between Vmn and Vij are of the same color, and we have that B(xij,kl) > B(zij), a
contradiction. Therefore (x, zij, y) and (y, xij,kl, x) are two directed paths of length
2 in T. We have two possibilities:

(1) If (x, y) ∈ A(T ), then
−→
C 3 = (y, xij,kl, x, y) is a directed triangle. Since T does

not contain 3-colored directed triangles,
−→
C 3 has at least two arcs of the same

color. By property (3) of the theorem,
−→
C 3 is monochromatic and we have that

(x, y, xij,kl) is a x m xij,kl in T, a contradiction.

(2) If (y, x) ∈ A(T ), then
−→
C 3 = (x, zij, y, x) is a directed triangle in T. Following

the argument of (1),
−→
C 3 is monochromatic and we have that (y, x, zij) is a

y  m zij in T, a contradiction.
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Claim 3 is proved.

Claim 4. There exists zij ∈ Vij such that zij absorbs every vertex of Vij and there
is a y  m zij of color i in T, for every Vkl ∈ N−(Vij, DZ) and all y ∈ Vkl for which
(y, xij,kl) ∈ A(T ) of color i.

By Claim 3, there exists zij ∈ Vij such that there is a y  m zij of color i in T, for
every Vkl ∈ N−(Vij, DZ) and all y ∈ Vkl for which (y, xij,kl) ∈ A(T ) of color i. Let
S be the subset of vertices of Vij which satisfy the property above and n a kernel
by m.d.p. of T [S]. It remains to prove that n absorbs every vertex of Vij − S by
m.d.p. Let w ∈ Vij − S and by contradiction, suppose that there is no w  m n
in T. Thus (n, w) ∈ A(T ). Observe that if (x, n) ∈ A(T ) and (x, n) is colored r,
for example, then (x, w) ∈ A(T ) and (x, w) is colored r. Otherwise, we would have
that (w, x) ∈ A(T ) and (w, x) is colored r (recall that every arc between x and the
vertices of Vij is of the same color by property (3)) and hence (w, x, n) is a w  m n
in T, a contradiction. So, (x, w) ∈ A(T ) for every x ∈ Vij for which (x, n) ∈ A(T ).
Clearly, it follows that w ∈ S, a contradiction. This concludes the proof of the claim.

Finally, by Claims 1 and 2, we have that DZ has a kernel by m.d.p. and by Lemma
1, the definition of DZ and Claim 4, T has a kernel by m.d.p.

The following corollary positively answers Problem 2 for all m-colored tournaments
with bichromatic ex-neighborhoods (resp. in-neighborhoods) and generalizes Theo-
rem 6 and 9 of [5] and Corollary 1 of [9]

Corollary 2. Let T be an 3-colored tournament and suppose that ξ+(z) ≤ 2 (resp.
ξ−(z) ≤ 2) for every vertex z ∈ V (T ). If T contains no 3-colored directed triangles,
then T has a kernel by m.d.p.

We define A(z) = A+(z)∪A−(z) (see (△)), C(z) the set of colors appearing in A(z)
and ξ(z) = |C(z)| . As a consequence of Theorem 9, we have Corollary 1 of [9] and
Theorem 6 and 9 of [5]:

Corollary 3 ([9], Corollary 1). Let T be a 2-colored tournament. Then T has a
kernel by m.d.p.

Corollary 4 ([5], Theorem 6). Let T be an 3-colored tournament and suppose that
ξ(z) ≤ 2 for every vertex z ∈ V (T ). If T contains no 3-colored directed triangles,
then T has a kernel by m.d.p.

Corollary 5 ([5], Theorem 9). If T is an m-colored tournament with m ≥ 4 and
suppose that ξ(z) ≤ 2 for every vertex z ∈ V (T ). Then T has a kernel by m.d.p.
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