Some operations of graphs that preserve the property of well-covered by monochromatic paths

Iwona WŁoch
Rzeszów University of Technology
Faculty of Mathematics and Applied Physics
ul.W.Pola 2,35-959 Rzeszów
Poland
iwloch@prz.edu.pl

Abstract

A graph is called well-covered if every maximal independent set of vertices of G is a maximum independent set; recall that S is independent if no two of its vertices are adjacent. In this paper we define the concept of well-covered by monochromatic paths graphs which is a variation of well-covered graphs. We consider some classical constructions of graphs: G-join of graphs and duplication of a subset of vertices. We also give necessary and sufficient conditions for well-coveredness by monochromatic paths of these graphs.

1 Introduction

For concepts not defined here see [2]. Let G be a finite connected graph where $V(G)$ is the set of vertices and $E(G)$ is the set of edges of G. By a path from a vertex x_{1} to a vertex $x_{n}, n \geq 2$ we mean a sequence of vertices x_{1}, \ldots, x_{n} and edges $\left\{x_{i}, x_{i+1}\right\} \in E(G)$, for $i=1, \ldots, n-1$ and for simplicity we denote it by $x_{1} \ldots x_{n}$. A graph G is said to be edge m-coloured if its edges are coloured with m colours. A path is called monochromatic if all its edges are coloured alike. A subset $S \subset V(G)$ is said to be independent by monochromatic paths of the edgecoloured graph G if for any two different vertices $x, y \in S$ there is no monochromatic path between them. In addition a subset containing only one vertex, and the empty set are called independent by monochromatic paths sets of G. Note that every subset of an independent by monochromatic paths set of G also is an independent by monochromatic paths set of G. For convenience throughout this paper we will write an imp-set of G instead of an independent by monochromatic paths set of G. For the proper edge colouring of the graph G an imp-set of G is an independent set of G in the classical sense.

The concept of independence in graphs has existed in literature for a long time. There are many generalizations of the independence in graphs. The concept of independence by monochromatic paths was introduced in [4], studied for instance in [5], [8], [12], [13] and generalizes independence in the classical sense. A graph G is called wellcovered by monochromatic paths if every maximal imp-set of G is a maximum imp-set of G. The concept of well-covered by monochromatic paths graphs is a variation of well-covered graphs. The well-covered graphs were introduced by Plummer in [7] and generalized on well- k-covered graphs by Favaron and Hartnell in [3]. Some interest in these graphs is motivated by the fact that a maximum independent set can be found efficiently in a well-covered graph whereas the independent set problem is $N P$-complete for general graphs.
Let G be an edge-coloured simple graph. By $\mathcal{Q}=\left\{Q_{1}, \ldots, Q_{t}\right\}, t \geq 1$ we denote the family of all connected, maximal (with respect to set inclusion) monochromatic subgraphs of G. In [12] an uncoloured simple graph $G(\mathcal{Q})$ was defined as follows: $V(G(\mathcal{Q}))=V(G)$ and $E(G(\mathcal{Q}))=\left\{\left\{x_{p}, x_{q}\right\} ; x_{p}, x_{q} \in V\left(Q_{i}\right), i=1, \ldots, t\right\}$ with replacing multiple edges by one edge. Relationships between imp-sets in G and independent sets in $G(\mathcal{Q})$ were studied in [12]. It is easy to observe that a subset S is a maximal imp-set of G if and only if S is a maximal independent set of $G(\mathcal{Q})$. Then the next result is obvious:

Proposition 1 An edge-coloured graph G is well-covered by monochromatic paths if and only if $G(\mathcal{Q})$ is well-covered.

Let G be an edge-coloured graph with $V(G)=\left\{x_{1}, \ldots, x_{n}\right\}, n \geq 2$, and $\alpha=$ $\left(G_{i}\right)_{i \in\{1, \ldots, n\}}$ be a sequence of vertex disjoint edge-coloured graphs on $V\left(G_{i}\right)=V=$ $\left\{y_{1}, \ldots, y_{p}\right\}, p \geq 1, i=1, \ldots, n$. Then the G-join of the graph G and the sequence α is the graph $G[\alpha]$ such that $V(G[\alpha])=V(G) \times V$ and $E(G[\alpha])=\left\{\left(\left(x_{s}, y_{j}\right),\left(x_{q}, y_{t}\right)\right)\right.$ coloured $\psi ;\left(x_{s}=x_{q}\right.$ and $\left(y_{j}, y_{t}\right) \in E\left(G_{s}\right)$ coloured $\left.\psi\right)$ or $\left(\left(x_{s}, x_{q}\right) \in E(G)\right.$ coloured $\psi)\}$. By G_{i}^{c} we mean a copy of the graph G_{i} in $G[\alpha]$. If all graphs from sequence α are isomorphic to the same graph H, then from the G-join we obtain the composition $G[H]$ of graphs G and H. Figure 1 contains a small example of $G[\alpha]$, for $\alpha=\left(G_{1}, G_{2}\right)$, where G_{1}, G_{2} are different.

Fig. 1. The graph $G[\alpha]$
Maximal k-independent sets (i.e. maximal independent sets generalized in the distance sense) in G-join graphs were also studied in [11]. The well-coveredness of $G[\alpha]$ was considered in [9]. Well-covered products of graphs were studied in [10].

Let G be an edge-coloured graph and X be an arbitrary nonempty subset of $V(G)$. Let H be a graph isomorphic to a subgraph of G induced by X. The vertex from $V(H)$ that corresponds to $x \in X$ we will denote by x^{c}. The duplication of X in G denoted by G^{X} is the graph such that $V\left(G^{X}\right)=V(G) \cup V(H)$ and $E\left(G^{X}\right)=$ $E(G) \cup E(H) \cup E$ where $E=\left\{\left\{x^{c}, y\right\}\right.$ coloured $\psi ; x^{c} \in V(H)$ and $\{x, y\} \in E(G)$ coloured $\psi\}$. A vertex $x^{c} \in V(H)$ (respectively a subset $S^{c} \subseteq V(H)$) we will call the copy of the vertex $x \in X$ (resp. the copy of the subset $S \subseteq X$). The vertex $x \in X$ (resp. the subset $S \subseteq X$) will be named the original of the vertex x^{c} (resp. of the subset S^{c}) and if it is necessary the original of the vertex x^{c} (resp. of the subset S^{c}) we will denote by $x^{o}\left(\right.$ resp. $\left.S^{o}\right)$. The duplication of a vertex of a graph was introduced in [1] and in [6] the definition of the duplication of a subset of vertices of a graph was given as a generalization. We have applied this definition to edge-coloured graphs. Figure 2 contains a small example of G^{X}, where $V(G) \supset X=\{x, y, z\}$.

Fig. 2. The graph G^{X}
In this paper we study the well-coveredness by monochromatic paths in G-join of graphs and in the duplication G^{X}.

2 The well-coveredness by monochromatic paths of G-join of graphs

In this section we give necessary and sufficient conditions for the well-coveredness by monochromatic paths of the G-join of graphs. Our first lemma describes maximal imp-sets in G-join.

Lemma 1 Let G be an edge-coloured graph on n vertices, $n \geq 2$ and α be a sequence of vertex disjoint edge-coloured graphs $G_{i}, i=1, \ldots, n$. A subset $S^{*} \subset V(G[\alpha])$ is a maximal imp-set of $G[\alpha]$ if and only if S is a maximal imp-set of G such that $S^{*}=\bigcup_{i \in \mathcal{I}} S_{i}$, where $\mathcal{I}=\left\{i, x_{i} \in S\right\}$ and S_{i} is 1 -element set containing an arbitrary vertex from $V\left(G_{i}^{c}\right)$, for every $i \in \mathcal{I}$.

Proof: 1. Let S^{*} be a maximal imp-set of $G[\alpha]$. Denote $S=\left\{x_{i} \in V(G) ; S^{*} \cap\right.$ $\left.V\left(G_{i}^{c}\right) \neq \emptyset\right\}$. At first we shall prove that S is an imp-set of G. We proceed by contradiction, suppose that S is not an imp-set of G. This means that there exist $x_{i}, x_{j} \in S$ such that there is a monochromatic path $x_{i} \ldots x_{j}$ in G. Hence by the definition of $G[\alpha]$ for each pair of vertices $\left(x_{i}, y_{r}\right) \in V\left(G_{i}^{c}\right)$ and $\left(x_{j}, y_{q}\right) \in V\left(G_{j}^{c}\right)$, where $1 \leq r, q \leq p$ there is a monochromatic path $\left(x_{i}, y_{r}\right) \ldots\left(x_{j}, y_{q}\right)$. By the definition of the set S we have that $S^{*} \cap V\left(G_{i}^{c}\right) \neq \emptyset$ and $S^{*} \cap V\left(G_{j}^{c}\right) \neq \emptyset$ so there exists
a monochromatic path between vertices from S^{*}, contradiction with independence by monochromatic paths of S^{*}. Now we will prove that S is maximal. Suppose on contrary that S is not a maximal imp-set of G. Then there is $x_{t} \in(V(G) \backslash S)$ such that the set $S \cup\left\{x_{t}\right\}$ is an imp-set of G. Hence for every $\left(x_{t}, y_{m}\right), 1 \leq m \leq p$ the set $S^{*} \cup\left\{\left(x_{t}, y_{m}\right)\right\}$ would be a greater imp-set of $G[\alpha]$, a contradiction that S^{*} is maximal. Evidently $S^{*}=\bigcup_{i \in \mathcal{I}} S_{i}$ where $\mathcal{I}=\left\{i ; x_{i} \in S\right\}$. The definition of $G[\alpha]$ implies that for every two vertices from each copy $G_{i}^{c}, i=1, \ldots, n$ there exists a monochromatic path between them in $G[\alpha]$. Hence at most one vertex from each copy $G_{i}^{c}, i \in \mathcal{I}$ can belong to the set S^{*}. So S_{i} is an 1-element set containing an arbitrary vertex from $V\left(G_{i}^{c}\right)$, for every $i \in \mathcal{I}$.
2. Let $S \subseteq V(G)$ be a maximal imp-set of G and let S_{i}, where $i \in \mathcal{I}$ and $\mathcal{I}=$ $\left\{i ; x_{i} \in S\right\}$ be an 1-element set containing an arbitrary vertex from $V\left(G_{i}^{c}\right)$. We will prove that $S^{*}=\bigcup_{i \in \mathcal{I}} S_{i}$ is a maximal imp-set of $G[\alpha]$. It is obvious from the definition of $G[\alpha]$ that S^{*} is an imp-set of $G[\alpha]$. Assume on the contrary that S^{*} is not a maximal imp-set of $G[\alpha]$. Then there is $\left(x_{t}, y_{m}\right) \in\left(V(G[\alpha]) \backslash S^{*}\right)$ such that the set $S^{*} \cup\left\{\left(x_{t}, y_{m}\right)\right\}$ is an imp-set of $G[\alpha]$. The definition of S^{*} implies that $x_{t} \notin S$ in otherwise contradiction with the assumption of $S_{t}, t \in \mathcal{I}$. Moreover the definition of $G[\alpha]$ implies that there does not exist a monochromatic path between x_{t} and x_{i}, for every $i \in \mathcal{I}$. So $S \cup\left\{x_{t}\right\}$ is an imp-set of G a contradiction with maximality of S.

Thus the lemma is proved.
Theorem 1 Let G be an edge-coloured graph on n vertices, $n \geq 2$ and α be a sequence of vertex disjoint edge-coloured graphs $G_{i}, i=1, \ldots, n$. Then $G[\alpha]$ is wellcovered by monochromatic paths if and only if G is well-covered by monochromatic paths.

Proof: We begin by assuming that $G[\alpha]$ is a well-covered by monochromatic paths graph. Assume on the contrary that G is not well-covered by monochromatic paths. This means that there are maximal imp-sets of G say, S_{1} and S_{2} such that $\left|S_{1}\right| \neq$ $\left|S_{2}\right|$. Let $\mathcal{I}_{1}=\left\{i ; x_{i} \in S_{1}\right\}$ and $\mathcal{I}_{2}=\left\{j ; x_{j} \in S_{2}\right\}$. By Lemma 1, it immediately follows that there exist maximal imp-sets $S_{1}^{*}=\bigcup_{i \in \mathcal{I}_{1}} S_{i}$ and $S_{2}^{*}=\bigcup_{j \in \mathcal{I}_{2}} S_{j}$ of $G[\alpha]$, where S_{i}, S_{j} are arbitrary 1-element sets of G_{i}^{c}, G_{j}^{c}, respectively. Consequently by assumptions of S_{1}, S_{2} we have that $\left|S_{1}^{*}\right| \neq\left|S_{2}^{*}\right|$, contradiction with well-coveredness by monochromatic paths of $G[\alpha]$.
For the converse assume that G is a well-covered by monochromatic paths graph. We shall prove that $G[\alpha]$ is a well-covered by monochromatic paths graph. For this purpose assume that S_{1}^{*} and S_{2}^{*} are two arbitrary maximal imp-sets of $G[\alpha]$. Then Lemma 1 gives that $S_{1}^{*}=\bigcup_{i \in \mathcal{I}_{1}} S_{i}$ where $\mathcal{I}_{1}=\left\{i ; x_{i} \in S_{1}\right\}$ and $S_{2}^{*}=\bigcup_{j \in \mathcal{I}_{2}} S_{j}$ where $\mathcal{I}_{2}=\left\{j ; x_{j} \in S_{2}\right\}$ and S_{1}, S_{2} are maximal imp-sets of G. Moreover $\left|S_{1}^{*}\right|=\left|S_{1}\right|$ and $\left|S_{2}^{*}\right|=\left|S_{2}\right|$. From well-coveredness by monochromatic paths of G every two maximal imp-sets of G has the same cardinality so it is obvious that $\left|S_{1}^{*}\right|=\left|S_{2}^{*}\right|$. Consequently $G[\alpha]$ is well covered by monochromatic paths, which completes the proof.

3 The well-coveredness by monochromatic paths duplication G^{X}

In this section we give necessary and sufficient conditions for the well-coveredness by monochromatic paths of a duplication of a subset of vertices of a graph.
These results follows directly from the definition of G^{X}.
(1) Let G be an edge-coloured graph and $X \subseteq V(G)$. Let $x, y \in X$ and $x^{c}, y^{c} \in X^{c}$. Then the following conditions are equivalent:
(1.1) there is a monochromatic path $x \ldots y$ in G
(1.2) there is a monochromatic path $x \ldots y$ in G^{X}
(1.3) there is a monochromatic path $x^{c} \ldots y^{c}$ in G^{X}
(1.4) there is a monochromatic path $x \ldots y^{c}$ in G^{X}.
(2) Let G be an edge-coloured graph and $X \subseteq G$. Let $x \in X, x^{c} \in X^{c}$ and $u \in V(G) \backslash X$. Then the following conditions are equivalent:
(2.1) there is a monochromatic path $u \ldots x$ in G
(2.2) there is a monochromatic path $u \ldots x$ in G^{X}
(2.3) there is a monochromatic path $u \ldots x^{c}$ in G^{X}.
(3) Let G be an edge-coloured graph and $X \subseteq G$. Let $u, v \in V(G) \backslash X$. There is a monochromatic path $u \ldots v$ in G if and only if there is a monochromatic path $u \ldots v$ in G^{X}.

The next corollary follows from the above facts:
Corollary 1 Let G be an edge-coloured graph and $X \subseteq G$. Let $u, v \in V(G)$. There is a monochromatic path $u \ldots v$ in G if and only if there is a monochromatic path $u \ldots v$ in G^{X}.

Lemma 2 Let G be an edge-coloured graph, $X \subseteq V(G)$ and $S \subset V\left(G^{X}\right)$ be an arbitrary imp-set of G^{X}. For an arbitrary $x \in X$ and $x^{c} \in V\left(G^{X}\right)$ exactly one condition is fulfilled:
(1) $x \notin S$ and $x^{c} \notin S$ or
(2) either $x \in S$ or $x^{c} \in S$, but not both.

Proof: Let $S \subset V\left(G^{X}\right)$ be an imp-set of G^{X} and assume on the contrary that there exists $x \in X$ such that $x \in S$ and $x^{c} \in S$. Because $x \in X \subseteq V(G)$ then there exists $y \in V(G)$ such that $\{x, y\} \in E(G)$ coloured ψ. From the definition of the duplication also $\left\{x^{c}, y\right\} \in E\left(G^{X}\right)$ coloured ψ. Hence there exists a monochromatic path $x y x^{c}$ coloured ψ, contradiction with independence by monochromatic paths of S.

Thus the lemma is proved.
Lemma 3 Let G be an edge-coloured graph and $X \subseteq V(G)$. If S is a maximal imp-set of G then S is a maximal imp-set of G^{X}.

Proof: Let S be a maximal imp-set of G. We shall show that S is a maximal imp-set of G^{X}. It is obvious that S is an imp-set of G^{X}. Assume on contrary that S is not maximal in G^{X}. This means that there is a vertex $x \in V\left(G^{X}\right)$ such that $S \cup\{x\}$ is an imp-set of G^{X}. We distinguish two possible cases:
(1) $x \in V(G)$.

From the maximality of the set S in G we deduce that there is a vertex $y \in S$ and a monochromatic path $x \ldots y$ in G. Hence using Corollary 1 we obtain that there exists a monochromatic path $x \ldots y$ in G^{X}, contradiction with the assumption.
(2) $x \in X^{c}$.

By Lemma 2 we obtain that the original x^{o} of x does not belong to S. Because S is a maximal imp-set of G there is a vertex $y \in S$ and a monochromatic path $x^{o} \ldots y$ in G. Consequently by (2) there is a monochromatic path $x \ldots y$ in G^{X} contradiction with the assumption.

Thus the lemma is proved.

Lemma 4 Let G be an edge-coloured graph and $X \subseteq V(G)$. If S^{*} is a maximal imp-set of G^{X} then there exists a maximal imp-set S of G such that $|S|=\left|S^{*}\right|$.

Proof: Assume that $S^{*} \subset V\left(G^{X}\right)$ is a maximal imp-set of G^{X}. We will prove that $S=\left(S^{*} \cap V(G)\right) \cup\left(S^{*} \cap X^{c}\right)^{o}$ is a maximal imp-set of G. Clearly $|S|=\left|S^{*}\right|$. Let $S_{1}=S^{*} \cap V(G)$ and $S_{2}=\left(S^{*} \cap X^{c}\right)^{o}$. Hence $S_{2}^{c}=S^{*} \cap X^{c}$. Of course S_{1} and S_{2}^{c} are imp-sets of G^{X}, so by the definition of the duplication S_{1} and S_{2} are imp-sets of G. Firstly we will prove that $S_{1} \cup S_{2}$ is an imp-set of G. It is enough to prove that there does not exist a monochromatic path between x and y in G, for every $x \in S_{1}$ and $y \in S_{2}$. Assume on contrary that there exist $x \in S_{1}$ and $y \in S_{2}$ and a monochromatic path between them in G. Clearly $x, y^{c} \in S^{*}$. Consequently by (2) there exists a monochromatic path $x \ldots y^{c}$ in G^{X}, a contradiction with the assumption of S^{*}. Now we shall show that $S_{1} \cup S_{2}$ is a maximal imp-set of G. We proceed by contradiction, suppose that $S_{1} \cup S_{2}$ is not maximal in G. This means that there exists $y \in V(G)$ such that $S_{1} \cup S_{2} \cup\{y\}$ is an imp-set of G. Of course $y \notin S^{*}$, hence from the maximality of the set S^{*} in G^{X} we obtain that there exists a vertex $x \in S^{*}$ such that a path $x \ldots y$ is monochromatic in G^{X}. If $x \in S_{1}$ then by Corollary 1 we have that a path $x \ldots y$ is monochromatic in G. Let $x \in S^{*} \cap X^{c}$. Evidently $x^{o} \in S_{2}$. Moreover if $y \in X$ then by (1) a path $x^{o} \ldots y$ is monochromatic in G. If $y \in(V(G) \backslash X)$ then by (2) a path $x^{o} \ldots y$ is monochromatic in G. All this together contradict that S is not maximal.

Thus the lemma is proved.

Theorem 2 Let G be an edge-coloured graph and $X \subseteq V(G)$. Then G^{X} is wellcovered by monochromatic paths if and only if G is well-covered by monochromatic paths.

Proof: Let \mathcal{S} be a family of maximal imp-sets of G and \mathcal{S}^{*} be a family of maximal imp-sets of G^{X}. Assume that G is a well-covered by monochromatic paths graph and $X \subseteq V(G)$. We shall prove that the duplication G^{X} is well-covered by monochromatic paths. Let $S_{1}^{*}, S_{2}^{*} \in \mathcal{S}^{*}$. Then by Lemma 4 there are maximal imp-sets, say $S_{1}, S_{2} \in \mathcal{S}$ such that $\left|S_{1}^{*}\right|=\left|S_{1}\right|$ and $\left|S_{2}^{*}\right|=\left|S_{2}\right|$. Because G is well-covered by monochromatic paths, $\left|S_{1}\right|=\left|S_{2}\right|$ so it immediately follows that $\left|S_{1}^{*}\right|=\left|S_{2}^{*}\right|$.
Let now G^{X} be a well-covered by monochromatic paths graph. We will prove that G is well-covered by monochromatic paths. Let $S_{1}, S_{2} \in \mathcal{S}$. Then by Lemma 3 we have that $S_{1}, S_{2} \in \mathcal{S}^{*}$ and by well-coveredness of G^{X} we obtain that $\left|S_{1}\right|=\left|S_{2}\right|$.

Thus the Theorem is proved.

Let $X_{1} \subseteq V(G)$ and $G^{X_{1}}$ be the duplication of X_{1} in G. For $n \geq 2$ by $G^{X_{1}, \ldots, X_{n}}$ we mean a duplication of X_{n} in $G^{X_{1}, \ldots, X_{n-1}}$.

Using Theorem 2 the next result is obvious:

Theorem 3 Let G be an edge-coloured graph and $X_{i} \subseteq V\left(G^{X_{1}, \ldots, X_{i-1}}\right)$, for $i=$ $1, \ldots, n$. Then $G^{X_{1}, \ldots, X_{n}}$ is well-covered by monochromatic paths if and only if G is well covered by monochromatic paths.

4 Concluding remarks

Note that while many graphs are not well-covered, any graph can be trivially edgecoloured to make it well-covered by monochromatic paths (colour all the edges the same colour and any maximal imp-set is of size one, if the graph is connected). Also one could colour the edges of a well-covered graph in such a way that it would not be well-covered by monochromatic paths. There are a number of interesting open problems related to this area. It is natural to ask about a characterization of well-covered by monochromatic paths graphs when two or more colours are used (in particular if the number of colours is established).

Acknowledgments

The author wishes to thank the referee whose valuable suggestions resulted in an improved paper and some of whose comments are included in the concluding remarks.

References

[1] M. Burlet and J. Uhry, Parity graphs, Annals Discrete Math. 21 (1984), 253-277.
[2] R. Diestel, Graph Theory, Springer-Verleg, Heideberg, New-York, (2005).
[3] O. Favaron and B.L. Hartnell, On well- k-covered graphs, J. Combin. Math. Combin. Comput. 6 (1989), 199-205.
[4] H. Galeana-Sanchez, Kernels in edge-colored digraphs, Discrete Math. 184 (1998), 87-99.
[5] G. Hahn, P. Ille and R. Woodrow, Absorbing sets in arc-coloured tournaments, Discrete Math. 283(1-3) (2004), 93-99.
[6] M. Kucharska, On (k, l)-kernels of orientation of special graphs, Ars Combin. 60 (2001), 137-147.
[7] M.D. Plummer, Some covering concepts in graphs, J. Combin. Theory 8 (1970), 91-98.
[8] B. Sands, N. Sauer and R. Woodrow, On monochromatic paths in edge-coloured digraphs, J. Combin. Theory Ser. B 33 (1982), 271-275.
[9] J. Topp, Domination, independence and irredundance in graphs, Dissertationes Mathematicae, Warszawa, 1995.
[10] J. Topp and L. Volkmann, On the well-coveredness of products of graphs, Ars Combin. 33 (1992), 199-215.
[11] A. Włoch and I. Włoch, The total number of maximal independent sets in the generalized lexicographical product of graphs, Ars Combin. 75 (2005), 163-170.
[12] A. Włoch and I. Włoch, Monochromatic Fibonacci numbers of graphs, Ars Combin. 82 (2007), 125-132.
[13] I. Włoch, On kernels by monochromatic paths in D-join, Ars Combin. (to appear).

