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Abstract

Let n be a positive integer and T be a tree of order 2n. We say that the
complete graph K2n of order 2n has a T -factorization if there are spanning
trees T1, . . . , Tn of K2n, all isomorphic to T , such that each edge of K2n

belongs to exactly one of T1, . . . , Tn. Fronček and Kubesa have raised the
following question. Suppose that K2n has a T -factorization. Is it true
that T possesses a set X of n vertices such that

∑

x∈X degT (x) = 2n−1?
In this paper, we show that the above question has a positive answer if
one of the following conditions holds: (i) The degree set D of T has the
cardinality at most 3; (ii) The maximum degree ∆ of T is at most 4 or
it is at least n − 3.

1 Introduction

All graphs considered in this paper are finite undirected graphs without loops or
multiple edges. If G is a graph, then V (G) and E(G) (or V and E for short) will
denote its vertex set and its edge set, respectively. For a vertex v ∈ V (G), the degree
of v, denoted by degG(v), is the number of neighbours of v. The maximum degree
of G, denoted by ∆(G) (or ∆ for short if G is clear from the context), is the number
max{degG(v) | v ∈ V (G)}. The degree set of G, denoted by D(G) or D for short,
is the set {degG(v) | v ∈ V (G)}. The complete graph of order n is denoted by
Kn. If graphs G1 and G2 are isomorphic, then we write G1

∼= G2. Unless otherwise
indicated, our graph-theoretic terminology will follow [1].

Let n be a positive integer and T be a tree of order 2n. We say that the complete
graph K2n of order 2n has a T -factorization if there are spanning trees T1, T2, . . . , Tn

of K2n, all isomorphic to T , such that each edge of K2n belongs to exactly one of
T1, T2, . . . , Tn. The study of T -factorizations of K2n was begun not long ago by
several authors (see, for example, [2]–[5]). First attempts show that even for very
simple classes of trees like caterpillars and lobsters the task is very complex.

At the workshop in Krynica in 2004, Fronček and Kubesa raised the following
question, which also appeared recently in [6]. Suppose that T is a tree of order



238 NGO DAC TAN

2n and K2n has a T -factorization. Is it then true that the vertex set of T can be
decomposed into two subsets X and Y such that |X| = |Y | = n and

∑

x∈X degT (x) =
∑

y∈Y degT (y)? It is clear that this question is equivalent to the following one.
Suppose that T is a tree of order 2n and K2n has a T -factorization. Is it then true
that T possesses a set X of n vertices such that

∑

x∈X degT (x) = 2n − 1? We shall
adopt the latter formulation of the question for further consideration.

In this paper, we shall prove that the question of Fronček and Kubesa has a
positive answer if one of the following conditions holds: (i) The degree set D of T

has cardinality at most 3; (ii) The maximum degree ∆ of T is at most 4 or is at least
n − 3.

2 Results

First of all, we prove the following Lemma 1 for a tree Q with the degree set D(Q) =
{a, b, 1}, where a and b are integers with a > 1, b > 1 and a 6= b. This result is
needed later for the proof of Theorem 2, one of our main results in this paper. We
note that in this lemma we do not require the tree Q to factorize a complete graph.

Lemma 1. Let Q be a tree with the degree set D(Q) = {a, b, 1}, where a and b are

integers with a > 1, b > 1 and a 6= b. Further, let ta, tb and t1 be the numbers of

vertices of degrees a, b, and 1 in Q, respectively. Then

t1 = (a − 2)ta + (b − 2)tb + 2. (2.1)

Proof. We prove this lemma by induction on ta + tb.
It is clear that the smallest value for ta + tb is 2. Furthermore, in the case

ta + tb = 2, we must have ta = tb = 1 and the vertex of degree a is adjacent to the
vertex of degree b. So, T has (a− 1) + (b− 1) vertices of degree 1 and Formula (2.1)
is true in this case.

Suppose that Formula (2.1) has been proved to be true for any tree Q′ with the
degree set D(Q′) = {a, b, 1} and the sum of the numbers of vertices of degrees a and
b in Q′ that is less than or equal to an integer k ≥ 2. We show that Formula (2.1)
is also true for any tree Q with the degree set D(Q) = {a, b, 1} and ta + tb = k + 1.
Let Q be the graph obtained from Q by deleting all vertices of degree 1. Then Q is a
tree of order k +1 ≥ 3 and therefore it has at least two vertices of degree 1. Further,
since k + 1 ≥ 3, at least one of ta and tb is greater than or equal to 2. From the
above remarks for Q, ta and tb, it is not difficult to see that we can find a vertex u

in Q with the following properties:
(i) deg(u) is greater than 1;
(ii) among the neighbours of u, there is exactly one neighbour with the degree

greater than 1;
(iii) there exists in Q another vertex with the degree equal to deg(u).
For definiteness, without loss of generality we may assume that deg(u) = a. Let

S be the subgraph of Q induced by u and all neighbours of degree 1 of u. Further,
let Q∗ be the graph obtained from Q by replacing S by a vertex u∗ 6∈ V (Q). Then
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Q∗ is a tree and by the properties (i)–(iii) of the chosen vertex u, we can see that
D(Q∗) = {a, b, 1}. Denote by t∗a, t∗b and t∗1 the numbers of vertices of degrees a,
b and 1 in Q∗, respectively. Then by the construction of Q∗ we have t∗a = ta − 1,
t∗b = tb and t∗1 = t1 − (a − 1) + 1 = t1 − (a − 2). So we have t∗a + t∗b = k and
therefore by the induction hypothesis, t∗1 = (a − 2)t∗a + (b − 2)t∗b + 2. It follows that
t1 − (a− 2) = (a− 2)(ta − 1)+ (b− 2)tb +2 if and only if t1 = (a− 2)ta +(b− 2)tb +2
and Formula (2.1) is true for Q.

The proof of Lemma 1 is complete.

Now we formulate and prove our first main result.

Theorem 2. Let n be a positive integer and T be a tree of order 2n such that

the cardinality of the degree set D of T is at most 3. Further, let K2n have a T -

factorization. Then T possesses a set X of n vertices such that
∑

x∈X degT (x) =
2n − 1.

Proof. Since K2n has a T -factorization, there exist in K2n spanning trees T1, T2, . . . ,

Tn, all isomorphic to T , such that each edge of K2n belongs to exactly one of
T1, T2, . . . , Tn. Let v1, v2, . . . , v2n be the vertices of K2n. Consider the following
matrix M with 2n rows and n columns. The i-th row of M is labelled by vi and the
j-th column of M is labelled by Tj. The (i, j)-entry of M is degTj

(vi). Since each
edge of K2n belongs to exactly one of the spanning trees T1, T2, . . . , Tn of K2n, for
each i-th row of M , where i ∈ {1, 2, . . . , 2n}, we have

n∑

j=1

degTj
(vi) = degK2n

(vi) = 2n − 1, (2.2)

where all summands degTj
(vi) are positive.

Let D be the degree set of T . Since T is a tree of order at least 2, the number 1
must be in D. We consider the following cases.

Case 1. |D| = 1.

In this case, D = {1}. Since the only tree T with D = {1} is K2, the theorem is
trivially true in this case.

Case 2. |D| = 2.

In this case, D = {a, 1} with an integer a > 1. Then entries of M are only a or
1. Let ta and t1 be the number of vertices of degrees a and 1 in T , respectively, and
let xi be the number of entries a in the i-th row of M . For any i ∈ {1, 2, . . . , 2n},
Equality (2.2) becomes xia + (n − xi) = 2n − 1, that is, xi = n−1

a−1
. It is clear

that x1 = x2 = · · · = x2n and therefore the total number of entries a in M , if
we count them by rows, is x1 + x2 + · · · + x2n = 2nx1. On the other hand, since
T1

∼= T2
∼= · · · ∼= Tn

∼= T , it is clear that each column of M has exactly ta entries a

and t1 entries 1. So the total number of entries a in M , if we count them by columns,
is nta. So 2nx1 = nta, that is, 2x1 = ta. Hence, t1 = 2n− ta = 2n− 2x1 = 2(n− x1).
In particular, we get x1 < ta and n − x1 < t1. Therefore, we can choose x1 different
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vertices of degree a, say u1, u2, . . . , ux1
, and n− x1 different vertices of degree 1, say

ux1+1, . . . , un, in T . For these n chosen vertices u1, . . . , ux1
, ux1+1, . . . , un, we have

n∑

i=1

degT (ui) = ax1 + (n − x1) = 2n − 1.

The last equality holds because of (2.2). Thus, the theorem is true in this case.

Case 3. |D| = 3.
In this case, D = {a, b, 1}, where a and b are integers, a > 1, b > 1 and a 6= b.

Then entries of M are a, b or 1. Let ta, tb and t1 be the numbers of vertices of degrees
a, b and 1 in T , respectively. Further, let xi and yi be the numbers of entries a and
b in the i-th row of M , respectively. Then xi and yi are nonnegative integers. It is
also clear that the number of entries 1 in the i-th row of M is n − xi − yi. For each
i ∈ {1, 2, . . . , 2n}, by (2.2) we have

axi + byi + (n − xi − yi) = 2n − 1. (2.3)

This implies that
n = (a − 1)xi + (b − 1)yi + 1. (2.4)

Now we count the number of entries a in M in two ways: by columns and by
rows. Since T1

∼= T2
∼= · · · ∼= Tn

∼= T , it is clear that each column of M has exactly
ta entries a. So the total number of entries a in M , if we count them by columns, are
nta. On the other hand, if we count them by rows, then the total number of entries
a in M is x1 + x2 + · · · + x2n. Thus,

x1 + x2 + · · · + x2n = nta. (2.5)

From (2.5) it is not difficult to see that among x1, x2, . . . , x2n there are at least n+1
numbers that are less than or equal to ta. By similar arguments, we can show that
among y1, y2, . . . , y2n there are at least n + 1 numbers that are less than or equal to
tb. Therefore, there is at least one i ∈ {1, . . . , 2n} such that both

xi ≤ ta and yi ≤ tb. (2.6)

hold.
Now we consider the number n − xi − yi. Since T is a tree with the degree set

D = {a, b, 1}, by Lemma 1, t1 can be calculated by Formula (2.1). Therefore, by
using first (2.4), then (2.6) and finally (2.1), we get

n − xi − yi = [(a − 1)xi + (b − 1)yi + 1] − xi − yi

= (a − 2)xi + (b − 2)yi + 1

≤ (a − 2)ta + (b − 2)tb + 2 = t1.

Thus, we also have
n − xi − yi ≤ t1. (2.7)



ON A PROBLEM OF FRONČEK AND KUBESA 241

By (2.6) and (2.7), we can choose in T xi different vertices of degree a, say
u1, u2, . . . , uxi

, yi different vertices of degree b, say uxi+1, uxi+2, . . . , uxi+yi
, and n −

xi−yi different vertices of degree 1, say uxi+yi+1, . . . , un. For these n chosen vertices,
we have

n∑

i=1

degT (ui) = axi + byi + (n − xi − yi) = 2n − 1.

The last equality holds because of (2.3). Thus, the theorem is also true in Case 3.

The proof of Theorem 2 is complete.

Now we prove the second result of the paper.

Theorem 3. Let n be a positive integer and T be a tree of order 2n such that either

∆ ≤ 4 or ∆ ≥ n− 3, where ∆ is the maximum degree of T . Further, let K2n have a

T -factorization. Then T possesses a set X of n vertices such that
∑

x∈X degT (x) =
2n − 1.

Proof. We divide the proof of this theorem into two cases.

Case 1. ∆ ≤ 4.

If ∆ ≤ 3, then the degree set D of T has the cardinality at most 3. Therefore,
by Theorem 2, if ∆ ≤ 3 or ∆ = 4 and |D| ≤ 3, then Theorem 3 is true. So we may
assume further that ∆ = |D| = 4. It follows that D = {1, 2, 3, 4}. Let t1, t2, t3 and
t4 be the numbers of vertices in T of degree 1, 2, 3 and 4, respectively. Then

t1 > 1, t2 ≥ 1, t3 ≥ 1, t4 ≥ 1 and

t1 + t2 + t3 + t4 = 2n.

Further, since
∑

v∈V (T ) degT (v) = 2|E(T )|, it is clear that

t1 + 2t2 + 3t3 + 4t4 = 2(2n − 1).

Let ui
1, u

i
2, . . . , u

i
ti

be the vertices of degree i in T , i ∈ {1, 2, 3, 4}. Since the
number of vertices of odd degrees in a graph must be even, t1 + t3 is an even number.
Therefore, t2 + t4 is also even because |V (T )| = 2n. We consider separately the
following subcases.

Subcase 1.1. t4 is even.

In this subcase, t2 is even because t2 + t4 is even. If t3 is even, then t1 is also
even. For this situation, let

X = {u1
1, . . . , u

1
t1/2, u

2
1, . . . , u

2
t2/2, u

3
1, . . . , u

3
t3/2, u

4
1, . . . , u

4
t4/2}.

Then

|X| =
t1

2
+

t2

2
+

t3

2
+

t4

2
=

t1 + t2 + t3 + t4

2
=

2n

2
= n, and
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∑

ui
j
∈X

degT (ui
j) =

t1

2
+ 2

t2

2
+ 3

t3

2
+ 4

t4

2

=
t1 + 2t2 + 3t3 + 4t4

2

=
2(2n − 1)

2
= 2n − 1.

So Theorem 3 is true in this situation. If t3 is odd, then t1 is also odd. Since t2 ≥ 1
is even, it is at least 2. Let

X = {u1
1, . . . , u

1
(t1+1)/2, u

2
1, . . . , u

2
(t2−2)/2, u

3
1, . . . , u

3
(t3+1)/2, u

4
1, . . . , u

4
t4/2}.

Then

|X| =
t1 + 1

2
+

t2 − 2

2
+

t3 + 1

2
+

t4

2
=

t1 + t2 + t3 + t4

2
=

2n

2
= n and

∑

ui
j
∈X

degT (ui
j) =

t1 + 1

2
+ 2

t2 − 2

2
+ 3

t3 + 1

2
+ 4

t4

2

=
t1 + 2t2 + 3t3 + 4t4

2

=
2(2n − 1)

2
= 2n − 1.

So Theorem 3 is again true.

Subcase 1.2. t4 is odd.

In this subcase, t2 is odd because t2 + t4 is even. If t3 is even, then t1 is also even.
For this situation, let

X = {u1
1, . . . , u

1
t1/2, u

2
1, . . . , u

2
(t2−1)/2, u

3
1, . . . , u

3
(t3+2)/2, u

4
1, . . . , u

4
(t4−1)/2}.

Then

|X| =
t1

2
+

t2 − 1

2
+

t3 + 2

2
+

t4 − 1

2
=

t1 + t2 + t3 + t4

2
=

2n

2
= n and

∑

ui
j
∈X

degT (ui
j) =

t1

2
+ 2

t2 − 1

2
+ 3

t3 + 2

2
+ 4

t4 − 1

2

=
t1 + 2t2 + 3t3 + 4t4

2

=
2(2n − 1)

2
= 2n − 1.

So Theorem 3 is true in this situation. If t3 is odd, then t1 is also odd. For this
situation, let

X = {u1
1, . . . , u

1
(t1+1)/2, u

2
1, . . . , u

2
(t2−1)/2, u

3
1, . . . , u

3
(t3−1)/2, u

4
1, . . . , u

4
(t4+1)/2}.
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No k degT1
(vi) degT2

(vi) degT3
(vi) degT4

(vi) degT5
(vi) degT6

(vi) · · ·

1 0 n 1 1 1 1 1 · · ·

2 1 n − 1 2 1 1 1 1 · · ·

3 2 n − 2 3 1 1 1 1 · · ·

4 2 n − 2 2 2 1 1 1 · · ·

5 3 n − 3 4 1 1 1 1 · · ·

6 3 n − 3 3 2 1 1 1 · · ·

7 3 n − 3 2 2 2 1 1 · · ·

Table 1: Possibilities for the i-th row

Then

|X| =
t1 + 1

2
+

t2 − 1

2
+

t3 − 1

2
+

t4 + 1

2
=

t1 + t2 + t3 + t4

2
=

2n

2
= n and

∑

ui
j
∈X

degT (ui
j) =

t1 + 1

2
+ 2

t2 − 1

2
+ 3

t3 − 1

2
+ 4

t4 + 1

2

=
t1 + 2t2 + 3t3 + 4t4

2

=
2(2n − 1)

2
= 2n − 1.

So Theorem 3 is again true. Case 1 is completely considered.

Case 2. ∆ ≥ n − 3.
Let {T1, T2, . . . , Tn} be a T -factorization and v1, v2, . . . , v2n be the vertices of K2n.

We form the matrix M as in the proof of Theorem 2. Then Equality (2.2) holds for
each i ∈ {1, 2, . . . , 2n}. There exists a row of M with an entry ∆. For this row, say
the i-th row, for definiteness let degT1

(vi) = ∆. Then Equality (2.2) becomes

∆ + degT2
(vi) + · · · + degTn

(vi) = 2n − 1. (2.8)

Since T factorizes K2n, it is necessary that ∆ ≤ n. So for this case ∆ = n − k with
k ∈ {0, 1, 2, 3}.

By Case 1, we may assume further that ∆ = n − k ≥ 5. Also, without loss of
generality, we may assume that in the i-th row of M

∆ = degT1
(vi) ≥ degT2

(vi) ≥ · · · ≥ degTn
(vi).

For each k ∈ {0, 1, 2, 3}, we list all possibilities for the i-th row of M in Table 1. We
need further the following claim 2.1 which is a well known fact. Therefore, we omit
its proof here.
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Claim 2.1. If a tree S possesses a vertex of degree k, then S has at least k vertices

of degree 1.

Now we consider the possibilities for the i-th row of M , that are listed in Table 1,
in turn.

For the possibility 1, by Claim 2.1 the number of vertices of degree 1 in T is at
least n. Therefore, we can choose in T a vertex u1 of degree n and n − 1 different
vertices of degree 1, say u2, u3, . . . , un.

For the possibilities 2 (respectively, 3), since T1
∼= T2

∼= T , there exist in T a vertex
u1 of degree n − 1 (respectively, n − 2) and a vertex u2 of degree 2 (respectively, 3).
Further, by Claim 2.1, we can choose n− 2 different vertices u3, u4, . . . , un of degree
1 in T .

For the possibility 6, since T1
∼= T2

∼= T3
∼= T , there exist in T a vertex u1 of

degree n − 3, a vertex u2 of degree 3 and a vertex u3 of degree 2. By Claim 2.1, we
can choose n − 3 different vertices of degree 1 in T , say u4, u5, . . . , un.

For each of the possibilities 1, 2, 3 and 6, by (2.8), the sum of the degrees of all
n chosen vertices is 2n − 1. So Theorem 3 is true in these situations.

Now we consider the possibility 4. Since Theorem 3 is true if the possibility 3
happens, we may assume further that in every row of M , that contains an entry
∆ = n − 2, there are exactly one entry ∆, two entries 2 and n − 3 entries 1. But
the number of entries ∆ in M is at least n because each column contains at least
one entry ∆. So there are at least n rows of M with an entry ∆. It follows that
the number of entries 2 in M , if we count them by rows, is at least 2n. Hence, since
all columns have the same number of entries 2, each column of M has at least two
entries 2. This means that T has at least two vertices of degree 2. By Claim 2.1
the number of vertices of degree 1 in T is at least n − 2. So we can choose in T a
vertex u1 of degree n− 2, two vertices of degree 2, say u2 and u3, and n− 3 vertices
of degree 1, say u4, u5, . . . , un. For these n chosen vertices, by (2.8)

n∑

i=1

degT (ui) = (n − 2) + 2 + 2 + 1 + · · · + 1
︸ ︷︷ ︸

n−3 times

= 2n − 1

and the theorem is true in this situation.
Next, we consider the possibility 5. Since T1

∼= T2
∼= T , we can choose in T

a vertex u1 of degree n − 3 and a vertex u2 of degree 4. Let w1, w2, . . . , wn−3 be
the neighbours of u1. Denote by T the graph obtained from T by deleting all edges
incident with u1. Then T has the connected components T 0, T 1, . . . , T n−3, where
V (T 0) = {u1} and V (T i) contains wi, i = 1, . . . , n− 3. Without loss of generality we
may assume that the vertex u2 of degree 4 chosen above is in T 1. Then the degree
of u2 in T 1 is at least 3 (degT 1

(u2) = 3 iff u2 = w1). Since T 1 is a tree, by Claim

2.1, T 1 has at least 3 vertices of degree 1 and therefore at least two of them are
different from w1. It follows that T 1 contains at least two vertices of degree 1 in
T . For the remaining components T 2, . . . , T n−3, it is not difficult to see that each of
these components contains at least one vertex of degree 1 of T . Therefore, in total
T has at least n− 2 vertices of degree 1. So we can choose n− 2 different vertices of
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degree 1 in T , say u3, . . . , un. For these chosen vertices u1, u2, . . . , un, by (2.8)

n∑

i=1

degT (ui) = (n − 3) + 4 + 1 + · · · + 1
︸ ︷︷ ︸

n−2 times

= 2n − 1.

and the theorem is again true.
Finally, we consider the possibility 7. Since Theorem 3 has been proved above to

be true if the possibility 5 or the possibility 6 happens, we may assume further that
in every row of M , that contains an entry ∆ = n− 3, there are exactly one entry ∆,
three entries 2 and n − 4 entries 1. Further we can use arguments similar to those
for the possibility 4 to see that Theorem 3 is also true for the possibility 7.

The proof of Theorem 3 is complete.
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[3] D. Fronček, Cyclic decompositions of complete graphs into spanning trees, Dis-

cussiones Math. Graph Theory 24 (2004), 345–353.
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