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On removable series classes in connected matroids
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Abstract

A series class P of a connected matroid M is removable if M \ P is
connected. In this paper, we prove that a connected matroid M with
r∗(M) ≥ 2 has at least r∗(M) + 1 removable series classes. Further, we
obtain certain results from which the following result of Oxley and its
graph theoretic version follow: If C is a circuit of a connected matroid
M with C 6= M such that M \ x is not connected for all x ∈ C, then C
contains at least two nontrivial series classes of M.

1 Introduction

All graphs considered here are loopless. Given a connected graph G with n vertices,
let r∗(G) = |E(G)|−n+1, where E(G) is the set of edges of G. An ear in a graph G
is a maximal path whose all internal vertices have degree two in G. Given a matroid
M, let E(M), r(M) and r∗(M) respectively denote the ground set, the rank and the
corank of M. Let M be a matroid and let x, y ∈ E(M). We say that x and y are in
series if {x, y} is a 2-cocircuit. A series class of M is a maximal subset A of E(M)
such that if a and b are distinct elements of A, then a and b are in series. A series
class P of a connected matroid M is removable if M \ P is connected. An ear P
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of a 2-connected graph G is removable if G − P is 2-connected, where G − P is the
graph with edge set E(G) − E(P ) and vertex set V (G) − {internal vertices of P}.
A connected matroid M is minimally connected if M \ x is not connected for all
x ∈ E(M). We follow the terminologies of Oxley [4] and West [8].

Zhang and Guo [10] proved that a 2-connected graph G with r∗(G) ≥ 2 has at
least r∗(G) + 1 removable ears. We extend this result to matroids as follows.

Theorem 1.1. Let M be a connected matroid with r∗(M) ≥ 2. Then M has at least

r∗(M) + 1 removable series classes.

Since every removable series class of a minimally connected matroid is nontrivial,
it follows from Theorem 1.1 that a minimally connected matroid M has at least
r∗(M) + 1 nontrivial removable series classes. This strengthens the result of Oxley
[3] which states that a minimally connected matroid M with r∗(M) ≥ 2 has at least
r∗(M) + 1 nontrivial series classes. This result of Oxley is an improvement on the
results of Seymour [6], [7], Murty [2] and White [9] regarding existence of a 2-cocircuit
in a minimally 2-connected matroid.

Further, we obtain the following two results.

Theorem 1.2. Let C be a circuit of a connected matroid M with |E(M)| ≥ 2 and

let e ∈ C. Let B be a component of M \ e with |B| ≥ 2 such that no two elements of

B ∩C are in series in M. Then there exists an element f in B ∩C such that M \ f
is connected.

Theorem 1.3. Let C be a cycle of a 2-connected graph G and let e be an edge of C.
Let B be a block of G−e with |E(B)| ≥ 2 such that B contains no vertex of C whose

degree is two in G. Then there exists an edge f in E(B) ∩ E(C) such that G − f is

2-connected.

Oxley [3] proved the following result, and its graph theoretic version, which ex-
tends a result of Dirac [1] and Plummer [5] for minimally 2-connected graphs.

Theorem 1.4 . Let C be a circuit of a connected matroid M with C 6= M such that

M \x is not connected for all x ∈ C. Then C contains at least two distinct nontrivial

series classes of M.

We deduce Theorem 1.4 from Theorem 1.2, and the graph theoretic version of
Theorem 1.4 from Theorem 1.3.

2 Proofs

An element e of a connected matroid M is removable if M \ e is connected.

Proof of Theorem 1.1. We prove the result by induction on r∗(M). First note that
the result can be easily checked if r∗(M) = 2. Thus we may assume that r∗(M) > 2.
Contract all but one element from each nontrivial series class of M to get a connected
matroid N with r∗(N) = r∗(M) and having no nontrivial series class. If e is an
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element of N such that N \ e is connected, then the series class of M containing e is
removable. Thus the number of removable series classes of M is at least the number
of removable elements of N. If N is minimally connected, then it has a nontrivial
series class, which is a contradiction. Hence N has an element x such that N \ x is
connected. Obviously, r∗(N \ x) = r∗(N) − 1 ≥ 2. Apply the induction assumption
to N \x. It has at least r∗(N \x) + 1 removable series classes. Let P be a removable
series class of N \ x.

Claim. There exists an element of P which is removable in N.

Let y ∈ P. Suppose that P = {y}. Since N does not have a nontrivial series class,
there is a circuit C of N containing x but not containing y. Therefore C intersects
N \x\y. This implies that N \y is connected. Suppose that |P | ≥ 2. Let y1 ∈ P −y.
As y and y1 do not belong to the same series class of N, there exists a circuit C1 of N
containing y1 such that y /∈ C1. Hence x ∈ C1. This implies that x and P − y belong
to the same component of N \ y. Therefore, if C1 contains an element of N \ x \ P,
then N \ y is connected.

Suppose that C1 does not contain an element of N \ x \ P. We prove that N \ y1

is connected. By the above arguments, P − y1 and x belong to the same component
of N \y1. Let y2 be an element of N \x\P. Let C2 be a circuit of N \x containing y1

and y2. There exists a circuit C3 such that y2 ∈ C3 ⊆ (C1∪C2)−y1. As C3 intersects
C1 − y1, and P is a series class of N \ x, it follows that x ∈ C3. Therefore C3 and
P − y1 belong to the same component of N \ y1. This implies that that N \ y1 is
connected.

From the above claim it follows that there are at least r∗(N \ x) + 1 elements of
N \ x which are removable in N. Thus N has at least r∗(N) + 1 removable elements.
Hence M has at least r∗(M) + 1 removable series classes. �
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The graph G of Figure 1, which is constructed by Zhang and Guo [10], has pre-
cisely r∗(G) + 1 removable ears. The cycle matroid M of this graph has precisely
r∗(M) + 1 removable series classes. Hence the lower bound for the number of re-
movable series classes given in Theorem 1.1 is sharp. As far as an upper bound
is concerned, note that every element of the uniform matroid Um,n with m ≥ 1,
n ≥ m + 2 is a removable series class.

We now prove Theorem 1.2 and derive Theorem 1.4 from it.

The proof of the following lemma is trivial.
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Lemma 2.1. Let C be a circuit of a connected matroid M with M 6= C. Let P be

a series class of M such that P ∩C 6= ∅. Then every component of M \ P intersects

with C. In particular, if e ∈ C, then every component of M \ e intersects with C. �

Lemma 2.2. Let C be a circuit of a connected matroid M with |E(M)| ≥ 2 and let

e ∈ C. Let B be a component of M \ e with |B| ≥ 2 such that no two elements of

B ∩ C are in series in M. For e1 ∈ B ∩ C, if M \ e1 is not connected, then M \ e1

has a component B1 such that B1 ⊆ B − e1, |B1| ≥ 2, C ∩ B1 6= ∅.

Proof. By Lemma 2.1, B ∩ C 6= ∅. Let e1 ∈ B ∩ C. Since B is connected, it
has a circuit C1 containing e1. There exists a circuit C2 of M such that e ∈ C2 ⊆
(C1∪C)−e1. By Lemma 2.1, C2 intersects all components of M \e. This implies that
C2 and M \ B belong to the same component of M \ e1. Suppose that M \ e1 is not
connected. Let B1 be a component of M \ e1 with B1 ∩ C2 = ∅. Then B1 ⊆ B − e1.
By Lemma 2.1, B1 ∩C 6= ∅. Since no two elements of C ∩B are in series, |B1| ≥ 2.

�

Proof of Theorem 1.2. By Lemma 2.1, C∩B 6= ∅. Let e1 be any element of C∩B.
If M \e1 is connected, then the result follows. Otherwise, by Lemma 2.2, there exists
a component B1 of M \ e1 such that B1 ⊆ B − e1, |B1| ≥ 2, C ∩B1 6= ∅. Further, no
two elements of B1 ∩ C are in series in M.

Let e2 ∈ B1∩C. If M\e2 is connected, then the result holds. Otherwise, by Lemma
2.2, there exists a component B2 of M \ e2 such that B2 ⊆ B1 − e2 ⊆ B − {e1, e2},
|B2| ≥ 2, C ∩ B2 6= ∅. Obviously, no two elements of B2 ∩ C are in series in M.

Since B is finite, continuing the above process we get an element, say ei in C ∩B
such that M \ ei has a component Bi with the property that Bi ⊂ B and C ∩Bi 6= ∅
and M \ f is connected for all f ∈ C ∩ Bi. �

Corollary 2.3. Let C be a circuit of a connected matroid M with |E(M)| ≥ 2.
Suppose that no two elements of C are in series in M. Then there exist distinct

elements f1 and f2 of C such that both M \ f1 and M \ f2 are connected.

Proof. Since M is connected, |C| ≥ 2. Let e ∈ C. Let D be any component of M \e.
It suffices to prove that D contains an element f of C such that M \ f is connected.
By Lemma 2.1, D ∩ C 6= ∅. Since no two elements of C are in series in M, |D| ≥ 2.
By Theorem 1.2, there is f ∈ D ∩ C such that M \ f is connected. �

Proof of Theorem 1.4. By Corollary 2.3, at least two elements x and y of C are
in series in M. Let P be the series class of M containing x and y. Then P ⊂ C. Since
M 6= C, M \x has a nontrivial component D. Obviously, D∩P = ∅. By Lemma 2.1,
D ∩ C 6= ∅. If no two elements of D ∩ C are in series in M, then, by Theorem 1.2,
there exists f ∈ C such that M \ f is connected, which is a contradiction. Hence at
least two elements of D ∩C are in series in M. Since D is connected, the series class
P ′ of M containing this pair of elements is a subset of D ∩ C. Thus P and P ′ are
distinct nontrivial series classes of M. �

Now, we prove Theorem 1.3.
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Lemma 2.4. Let C be a cycle in a 2-connected graph G and let e be an edge of C.
Let B be a block of G−e with |E(B)| ≥ 2 such that B contains no vertex of C whose

degree is two in G. For e1 ∈ E(B) ∩ E(C), if G − e1 is not 2-connected, then it has

a block B1 such that B1 ⊆ B − e1, |E(B1)| ≥ 2, and E(B1) ∩ E(C) 6= ∅.

Proof. Obviously, B contains at least one edge of C. Let e1 ∈ E(B)∩E(C). Suppose
that G − e1 is not 2-connected. Then G − e1 is connected and has exactly two end
blocks. Each end block of G − e1 contains an end vertex of e1 as an internal vertex.
Since the end vertices of e1 belong to V (B)∩V (C), by a hypothesis, both have degree
at least 3 in G. This implies that each end block of G−e1 contains at least two edges.
Let C1 be a cycle in B containing e1. Then there exists a cycle C2 in G containing e
and avoiding e1. As e ∈ E(C2), C2 contains at least one edge of every block of G− e.
This implies that the union of C2 and all blocks of G− e that are different from B is
a 2-connected graph and hence it is contained in a block B′ of G− e1. Let B1 be an
end block of G − e1 such that B1 6= B′. Obviously, |E(B1)| ≥ 2 and B1 is contained
in B − e1. Since e1 ∈ E(C) and B1 is a block of G − e1, E(B1) ∩ E(C) 6= ∅. �

Proof of Theorem 1.3. The proof follows from Lemma 2.4 in the same way just
as the proof of Theorem 1.2 follows from Lemma 2.2. �

Corollary 2.5. Let C be a cycle of a 2-connected graph G such that dG(v) ≥ 3 for

all v ∈ V (C). Then there are two edges e1 and e2 of C such that both G − e1 and

G − e2 are 2-connected.

Proof. If G−f is 2-connected for every edge f of C, then the result follows. Suppose
that G− e is not 2-connected for some edge e ∈ E(C). Then G− e is connected and
has exactly two end blocks B1, B2. Each of B1 and B2 contains an end vertex of e
as an internal vertex. Since the end vertices of e have degree at least two in G − e,
|E(Bi)| ≥ 2 for i = 1, 2. By Theorem 1.3, Bi contains an edge ei of C such that
G − ei is 2-connected for i = 1, 2. �

The following result of Oxley [3], which corresponds to Theorem 1.4 for 2-conn-
ected graphs, follows from Theorem 1.3 and Corollary 2.5.

Theorem 2.6. Let G be a 2-connected graph and let C be a cycle in G with G 6= C
such that for every edge e of C, the graph G− e is not 2-connected. Then C contains

at least two nontrivial ears of G.

Proof. By Corollary 2.5, at least one vertex v1 of C has degree two in G. Let P1 be
the ear of G containing v1. Since both the edges that are incident with v1 belong to
E(C), E(P1) ⊂ E(C). Let e ∈ E(P1). Then G − e is connected and has exactly two
end blocks. Since G 6= C, there exists a block B of G − e such that |E(B)| ≥ 2 and
E(B) ∩ E(P1) = ∅. Further, B contains at least one edge of C. By Theorem 1.3, B
contains a vertex v2 of C such that dG(v2) = 2. Let P2 be the ear of G containing
v2. Then E(P2) ⊂ E(C)∩E(B). Thus C contains distinct nontrivial ears P1 and P2

of G. �
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