Diameter of paired domination edge-critical graphs

M. Edwards R. G. Gibson*
Department of Mathematics and Statistics
University of Victoria
Victoria, BC V8W 3P4
Canada

M. A. Henning ${ }^{\dagger}$
School of Mathematical Sciences
University of KwaZulu-Natal
Pietermaritzburg, 3209
South Africa

C. M. Mynhardt ${ }^{\ddagger}$

Department of Mathematics and Statistics
University of Victoria
Victoria, BC V8W 3P4
Canada

Abstract

A paired dominating set of a graph G without isolated vertices is a dominating set of G whose induced subgraph has a perfect matching. The paired domination number $\gamma_{\mathrm{pr}}(G)$ of G is the minimum cardinality amongst all paired dominating sets of G. The graph G is paired domination edge-critical ($\gamma_{\mathrm{pr}} \mathrm{EC}$) if for every $e \in E(\bar{G}), \gamma_{\mathrm{pr}}(G+e)<\gamma_{\mathrm{pr}}(G)$.

We investigate the diameter of $\gamma_{\mathrm{pr}} \mathrm{EC}$ graphs. To this effect we characterize γ_{pr} EC trees. We show that for arbitrary even $k \geq 4$ there exists a $k_{\mathrm{pr}} \mathrm{EC}$ graph with diameter two. We provide an example which shows that the maximum diameter of a $k_{\mathrm{pr}} \mathrm{EC}$ graph is at least $k-2$ and prove that it is at most $\min \{2 k-6,3 k / 2+3\}$.

[^0]
1 Introduction

Criticality is a fundamental concept for many graph parameters. Much has been written about graphs where a parameter increases or decreases whenever an edge or vertex is removed or added. Sumner and Blitch [28] began the study of those graphs, called domination edge-critical graphs, where the (ordinary) domination number decreases on the addition of any edge. This concept was further investigated in [4, $8,9,11,27,29,30,31]$ and elsewhere. The study of total domination edge-critical graphs, defined analogously, was initiated by Van der Merwe [32] and continued in $[12,15,16,17,18,19,32]$ and elsewhere.

We investigate paired domination edge-critical graphs, first studied by Edwards [6]; in particular, we obtain results on the diameter of these graphs.

2 Definitions

For notation and graph theory terminology we generally follow [13]. Specifically, for a graph $G=(V, E)$ and $v \in V$, the open and closed neighbourhoods of v are, respectively, $N(v)=\{u \in V: u v \in E\}$ and $N[v]=\{v\} \cup N(v)$. For a set $S \subseteq V$, $N(S)=\bigcup_{v \in S} N(v)$ and $N[S]=N(S) \cup S$.

For sets $S, R \subseteq V$, we say that S dominates R (abbreviated $S \succ R$) if $R \subseteq N[S]$, S totally dominates R if $R \subseteq N(S)$, and S pairwise dominates R (abbreviated $S \succ_{\mathrm{pr}} R$) if S dominates R and $G[S]$ contains a perfect matching. If $R=V$ in the above sentence, then S is, respectively, a dominating set, a total dominating set (TDS), and a paired dominating set (PDS) of G. We then write $S \succ G$ and $S \succ_{\text {pr }} G$, respectively. If $S=\{u\}$ and $R=\{v\}$ we also write $u \succ v, S \succ v, u \succ R$, etc.

Two vertices of a PDS S with perfect matching M are said to be paired (by M), or partners in S, if they are joined by an edge of M. Every graph without isolated vertices has a PDS since the end-vertices of any maximal matching form such a set. The total domination number $\gamma_{t}(G)$ (paired domination number $\gamma_{\mathrm{pr}}(G)$, respectively) of G is the minimum cardinality of a TDS (a PDS, respectively). Note that these parameters are defined if and only if G has no isolated vertices. A PDS of cardinality $\gamma_{\mathrm{pr}}(G)$ is called a γ_{pr}-set of G; a γ_{t}-set is defined similarly. Since every PDS of G is a TDS, $2 \leq \gamma_{t}(G) \leq \gamma_{\mathrm{pr}}(G)$ for all graphs G.

Paired domination was introduced by Haynes and Slater [20] as a model for assigning backups to guards for security purposes, and is studied, for example, in $[1,2,3,6,7,10,14,21,22,23,25,26]$.

The graph G is paired domination edge-critical, or $\gamma_{\mathrm{pr}} E C$, if for every edge $e \in$ $E(\bar{G}), \gamma_{\mathrm{pr}}(G+e)<\gamma_{\mathrm{pr}}(G)$. If G is $\gamma_{\mathrm{pr}} \mathrm{EC}$ and $\gamma_{\mathrm{pr}}(G)=k$, we say that G is $k_{\mathrm{pr}} E C$. A total domination edge-critical $\left(\gamma_{t} E C\right)$ graph and a $k_{t} E C$ graph are defined similarly. For example, the 5 -cycle is $3_{t} \mathrm{EC}$ and $4_{\mathrm{pr}} \mathrm{EC}$. Note that since $\gamma_{t}(G), \gamma_{\mathrm{pr}}(G) \geq 2$, the complete graphs are the only $2_{t} \mathrm{EC}$ graphs and also the only $2_{\mathrm{pr}} \mathrm{EC}$ graphs.

If diam $G=k$ and the distance $d(u, v)=k$, then we say that u and v are peripheral vertices, and a shortest $u-v$ path is called a diametrical path of G. A vertex adjacent
to an end-vertex is called a support vertex.
It is intuitively clear that graphs with fixed paired domination number cannot have arbitrary diameter. This idea also suggests that $k_{\mathrm{pr}} \mathrm{EC}$ graphs have smaller diameter than the maximum diameter realized by graphs with $\gamma_{\mathrm{pr}}=k$. We shall show that these notions are indeed correct.

After giving some preliminary results in Section 3, we characterize γ_{pr} EC trees in Section 4. It will follow that $\gamma_{\mathrm{pr}} \mathrm{EC}$ trees have diameter four. In Section 5 we provide an example which shows that the maximum diameter of a $k_{\mathrm{pr}} \mathrm{EC}$ graph is at least $k_{\mathrm{pr}}-2$, and in Section 6 we obtain upper bounds for the diameter of $\gamma_{\mathrm{pr}} \mathrm{EC}$ graphs. Some open problems are given in Section 7.

3 Preliminary results

We first present some preliminary results. A set S is a minimal $P D S$ if S is a PDS and no proper subset of S is a PDS.

Observation 1 [3] A PDS S of a graph G is a minimal PDS if and only if any two vertices $x, y \in S$ satisfy one of the following conditions:
(i) $G[S-\{x, y\}]$ does not contain a perfect matching,
(ii) without loss of generality, x is an end-vertex in $G[S]$ adjacent to y,
(iii) there exists a vertex $u \in V-S$ such that $N(u) \cap S \subseteq\{x, y\}$.

Observation 2 (i) Each support vertex in a graph G is contained in every PDS of G.
(ii) Every vertex in a $\gamma_{\mathrm{pr}} E C$ graph is adjacent to at most one end-vertex.

Observation 3 If G is $\gamma_{\mathrm{pr}} E C$ and $u v \in E(\bar{G})$, then every γ_{pr}-set S of $G+u v$ contains at least one of u and v, and if $\{u, v\} \subseteq S$, then u and v are paired in S.

Observation 4 (i) If G is a $\gamma_{\mathrm{pr}} E C$ graph, then $\gamma_{\mathrm{pr}}(G+e)=\gamma_{\mathrm{pr}}(G)-2$ for every $e \in E(\bar{G})$.
(ii) [16] If G is a $\gamma_{t} E C$ graph, then $\gamma_{t}(G)-2 \leq \gamma_{t}(G+e) \leq \gamma_{t}(G)-1$ for every $e \in E(\bar{G})$. Moreover, the lower bound holds if and only if G is the disjoint union of two or more complete graphs.

If the lower bound holds in Observation $4(i i)$, then G is called γ_{t}-super-edgecritical or γ_{t} SEC. As mentioned in Section 2, C_{5} is $3_{t} \mathrm{EC}$ and $4_{\mathrm{pr}} \mathrm{EC}$. That this is no coincidence was shown in [6].

Theorem 1 [6, Theorem 3.7] If $2 k<\gamma_{t}(G) \leq 2(k+1)=\gamma_{\mathrm{pr}}(G)$ and G is $\gamma_{\mathrm{pr}} E C$, then G is $\gamma_{t} E C$ or $\gamma_{t} S E C$.

Corollary 2 [6, Corollary 3.9] The class of 4_{pr} EC graphs is the union of the classes of $3_{t} E C$ graphs and 4_{t} SEC graphs.

We show in the next section that Corollary 2 does not extend to $k_{\text {pr }}$ EC graphs where $k \geq 6$ (see the remark following the proof of Theorem 5).

In preparation for results on the diameter of $\gamma_{\mathrm{pr}} \mathrm{EC}$ graphs we now bound the diameter of graphs with $\gamma_{\mathrm{pr}}=k$. Let x be a peripheral vertex of a graph G with $\operatorname{diam} G=m$. Define the levels $V_{0}, V_{1}, \ldots, V_{m}$ of G with respect to x by $V_{i}=\{v \in G$: $d(x, v)=i\}$. Notice that $V_{0}=\{x\}$ and $V_{m} \neq \phi$.

Lemma 3 If S is a PDS of a graph G and a and b are paired in S, then $\{a, b\}$ dominates at most four levels of G.

Proof. Suppose $\{a, b\}$ dominates at least five levels $V_{j}, V_{j+1}, \cdots, V_{j+l}(l \geq 4)$ of G. Then every vertex in $W=V_{j} \cup V_{j+1} \cup \cdots \cup V_{j+l}$ is adjacent to at least one of a or b. For $u \in V_{j}$ and $v \in V_{j+l}, d(u, v) \geq l \geq 4$. But each of u and v is adjacent to a or b, hence $d(u, v) \leq 3$, a contradiction.

Proposition 4 If G is connected and $\gamma_{\mathrm{pr}}(G)=k$, then $\operatorname{diam} G \leq 2 k-1$.

Proof. Let $m=\operatorname{diam} G$ and $V_{0}, V_{1}, \ldots, V_{m}$ be the levels of G with respect to a peripheral vertex x. Let S be a γ_{pr}-set of G.

By Lemma 3, every set of partners $\{a, b\} \subseteq S$ dominates at most four levels of G. Since there are $k / 2$ such pairs in S, at most $2 k$ levels of G are dominated. Hence if $\operatorname{diam} G \geq 2 k$, at least one level of G is undominated. Therefore $\operatorname{diam} G \leq 2 k-1$.

4 Trees

We begin the study of the diameter of $\gamma_{\mathrm{pr}} \mathrm{EC}$ graphs by characterizing $\gamma_{\mathrm{pr}} \mathrm{EC}$ trees. The subdivided star $S_{2 n+1}$ is obtained from $K_{1, n}$ by subdividing each edge exactly once.

Theorem 5 A tree $T \neq K_{2}$ is $\gamma_{\mathrm{pr}} E C$ if and only if $T=S_{2 n+1}, n \geq 3$.
Proof. The sufficiency is straightforward to verify. To prove the necessity, let T be a γ_{pr} EC tree. If $\operatorname{diam} T \leq 3$, then T is a star or a double star. But then $\gamma_{\mathrm{pr}}(T)=2$. Since the complete graphs are the only $2_{\mathrm{pr}} \mathrm{EC}$ graphs, $T=K_{2}$. Thus we may assume that $\operatorname{diam} T \geq 4$.

Let $P: v_{0}, v_{1}, v_{2}, \ldots, v_{d}$ be a diametrical path in T and suppose firstly that $\operatorname{diam} T=d \geq 5$. By Observation $2(i i), \operatorname{deg} v_{1}=\operatorname{deg} v_{d-1}=2$. Let $e=v_{2} v_{d-1} \in E(\bar{T})$ and consider the tree $T^{\prime}=T+e$. Since T is $\gamma_{\mathrm{pr}} \mathrm{EC}, \gamma_{\mathrm{pr}}\left(T^{\prime}\right)=\gamma_{\mathrm{pr}}(T)-2$. Let S^{\prime} be a γ_{pr}-set of T^{\prime}. By Observation $2(i), S^{\prime}$ contains the two support vertices v_{1} and v_{d-1}.

If $v_{2} \notin S^{\prime}$, let $S=S^{\prime}$. If $v_{2} \in S^{\prime}$, then (Observation 3) v_{2} is paired with $v_{d-1} \in S^{\prime}$, hence v_{1} is paired with v_{0} in S^{\prime}, and we let $S=\left(S^{\prime} \backslash\left\{v_{0}\right\}\right) \cup\left\{v_{d}\right\}$. In both cases S is a PDS of T with $|S|=\left|S^{\prime}\right|=\gamma_{\mathrm{pr}}\left(T^{\prime}\right)$. (In the latter case observe that v_{1} is paired with v_{2}, v_{d-1} is paired with v_{d} while all other pairings in S remain unchanged from those in S^{\prime}.) Thus $\gamma_{\mathrm{pr}}(T) \leq \gamma_{\mathrm{pr}}\left(T^{\prime}\right)$, a contradiction. Hence diam $T \leq 4$ and so $d=\operatorname{diam} T=4$.

If $T=P_{5}$, then $T+v_{0} v_{4}=C_{5}$. But $\gamma_{\mathrm{pr}}\left(P_{5}\right)=\gamma_{\mathrm{pr}}\left(C_{5}\right)=4$, contradicting the fact that T is $\gamma_{\mathrm{pr}} \mathrm{EC}$. Hence $\Delta(T) \geq 3$. Thus, by Observation $2(i i), T$ is obtained from $K_{1, n}, n \geq 3$, by subdividing every edge, except for possibly one edge. Let v be the central vertex of $K_{1, n}$ and $N(v)=\left\{\ell_{1}, \ldots, \ell_{n}\right\}$. Suppose $v \ell_{i}$ has been subdivided by the vertex $u_{i}, i=1, \ldots, n-1$, but not $v \ell_{n}$. Then $\bigcup_{i=2}^{n-1}\left\{u_{i}, \ell_{i}\right\} \cup\left\{v, u_{1}\right\}$ is a γ_{pr}-set of T and of $T+u_{1} \ell_{n}$, a contradiction. Therefore each edge $v \ell_{i}$ has been subdivided by u_{i}, so that $T=S_{2 n+1}$ and $\bigcup_{i=1}^{n}\left\{u_{i}, \ell_{i}\right\}$ is a γ_{pr}-set of T.

Thus all γ_{pr} EC trees have diameter 4. As shown in the proof of Theorem 5, $\gamma_{\mathrm{pr}}\left(S_{2 n+1}\right)=2 n$ and it is easy to see that $S_{2 n+1}$ is $2 n_{\mathrm{pr}} \mathrm{EC}$. It is also easy to see that $\gamma_{t}\left(S_{2 n+1}\right)=n+1$ and that $S_{2 n+1}$ is not γ_{t} EC. Thus Corollary 2 does not extend to $k_{\text {pr }}$ EC graphs where $k \geq 6$.

$5 \quad \gamma_{\mathrm{pr}}$-Edge critical graphs with small/large diameter

The only graphs with diameter 1 are the complete graphs, and, except for K_{1}, they are vacuously $2_{\mathrm{pr}} \mathrm{EC}$. In this section we provide constructions of, firstly, a $k_{\mathrm{pr}} \mathrm{EC}$ graph with diameter two for each $k \geq 4$, and secondly, γ_{pr} EC graphs with large diameter. The latter result shows that the maximum diameter of a $\gamma_{\mathrm{pr}} \mathrm{EC}$ graph is at least $\gamma_{\mathrm{pr}}(G)-2$.

Proposition 6 For every even $k \geq 4$ there exists a $k_{\mathrm{pr}} E C$ graph of diameter 2.
Proof. For $k=2 l, l \geq 2$, consider the Cartesian product of the graph K_{k} with itself, i.e. the graph $G_{k}=K_{k} \times K_{k}$. We can think of G_{k} as having k disjoint copies of K_{k} in "rows" and k disjoint copies of K_{k} in "columns". In other words, we consider the vertices of G_{k} as a matrix, where vertex $v_{i j}$ is in the $i^{\text {th }}$ row (copy of K_{k}) and the $j^{\text {th }}$ column (copy of K_{k}). For ease of discussion we shall use the words row and column to mean a "copy of K_{k} ".

We show first that $\gamma_{\mathrm{pr}}\left(G_{k}\right)=k$. Since $\left\{v_{11}, v_{21}, \ldots, v_{k 1}\right\}$ is a dominating set with a perfect matching, $\gamma_{\mathrm{pr}}\left(G_{k}\right) \leq k$. Suppose $\gamma_{\mathrm{pr}}\left(G_{k}\right) \leq k-2$. Then for any γ_{pr}-set S there exists an i such that S does not have a vertex in row i. Any vertex in S dominates only one vertex of row i, implying that at most $k-2$ of the k vertices of row i are dominated, a contradiction. Thus $\gamma_{\mathrm{pr}}\left(G_{k}\right)=k$.

We now show that $\operatorname{diam} G=2$. Clearly, for $k \geq 2, G_{k}$ is not complete and so $\operatorname{diam} G \geq 2$. Consider distinct vertices $x, y \in V\left(G_{k}\right)$. If x and y are in the same row, i.e. $x=v_{i j}$ and $y=v_{i k}$, then $d(x, y)=1$; this is also true if x and y are in the same column. If x and y are not in the same row or column, i.e. $x=v_{h i}$ and $y=v_{j k}$ where

Figure 1: A $2(l+1)_{\mathrm{pr}}$-edge critical graph with diameter $2 l$
$h \neq j$ and $i \neq k$, let $z=v_{h k}$. Then $d(x, z)=1$ and $d(z, y)=1$ and so $d(x, y)=2$. It follows that $\operatorname{diam} G_{k}=2$.

If G_{k} is $k_{\mathrm{pr}} \mathrm{EC}$, then we are finished. Otherwise, as can be seen by adding edges to G_{k} without changing $\gamma_{\mathrm{pr}}, G_{k}$ is a spanning subgraph of some $k_{\mathrm{pr}} \mathrm{EC}$ graph G^{\prime} and, since G^{\prime} is not complete, $\operatorname{diam} G^{\prime}=2$.

We next construct a $(2 l+2)_{\mathrm{pr}}$-EC graph with diameter $2 l$, where $l \geq 1$. For each $i=1, \ldots, l$, let $H_{i} \cong P_{4}$ with vertex sequence $x_{i}, u_{i}, v_{i}, y_{i}$. Construct G_{l} recursively as follows. Let $G_{0}=K_{2}$ with $V\left(G_{0}\right)=\left\{u_{0}, v_{0}\right\}$, and once G_{i-1} has been constructed, let G_{i} be the graph with $V\left(G_{i}\right)=V\left(G_{i-1}\right) \cup V\left(H_{i}\right)$ and $E\left(G_{i}\right)=E\left(G_{i-1}\right) \cup E\left(H_{i}\right) \cup$ $\left\{u_{i-1} x_{i}, u_{i-1} y_{i}, v_{i-1} x_{i}, v_{i-1} y_{i}\right\}$. See Figure 1.

Proposition 7 For any $l \geq 1, G_{l}$ is a $(2 l+2)_{\mathrm{pr}}-E C$ graph with diameter $2 l$.
Proof. It is obvious that diam $G_{l}=2 l$. We first prove by induction that $\gamma_{\mathrm{pr}}\left(G_{l}\right)=$ $2(l+1)$. Since $D=\bigcup_{i=0}^{l}\left\{u_{i}, v_{i}\right\}$ is a PDS of G_{l} with $|D|=2(l+1)$, it remains to show that $\gamma_{\mathrm{pr}}\left(G_{l}\right) \geq 2(l+1)$. This is easy to verify for G_{1}. For $l \geq 2$, assume $\gamma_{\mathrm{pr}}\left(G_{l-1}\right) \geq 2 l$ and let S be any minimal PDS of G_{l}.

Suppose firstly that $S \cap\left\{x_{l}, y_{l}\right\}=\phi$. Then $S^{\prime}=S \cap V\left(G_{l-1}\right)$ is a PDS of G_{l-1}, hence by assumption $\left|S^{\prime}\right| \geq 2 l$. Since S^{\prime} does not dominate u_{l} or $v_{l},\left\{u_{l}, v_{l}\right\} \subseteq S$ to pairwise dominate $\left\{u_{l}, v_{l}\right\}$, hence $|S| \geq 2(l+1)$.

Now assume without loss of generality that $x_{l} \in S$. Then x_{l} is paired in S with $w \in\left\{u_{l-1}, v_{l-1}, u_{l}\right\}$.

Suppose $w \neq u_{l}$. By symmetry we may then assume that $w=u_{l-1}$. To dominate $v_{l}, S \cap\left\{u_{l}, v_{l}, y_{l}\right\} \neq \phi$. If $v_{l-1} \notin S$, or if $v_{l-1} \in S$ and v_{l-1} is not partnered by y_{l}, then $\left|S \cap\left\{u_{l}, v_{l}, y_{l}\right\}\right| \geq 2$. In the latter case, v_{l-1} is partnered by y_{l-1}; moreover $x_{l-1} \notin S$, otherwise $\left\{u_{l-1}, x_{l}\right\}$ satisfies none of the conditions of Observation 1. Define S^{*} by

$$
S^{*}= \begin{cases}\left(S-\left\{x_{l}, u_{l}, v_{l}, y_{l}\right\}\right) \cup\left\{x_{l-1}\right\} & \text { if } v_{l-1} \in S \text { is partnered by } y_{l-1} \\ \left(S-\left\{x_{l}, u_{l}, v_{l}, y_{l}\right\}\right) \cup\left\{v_{l-1}\right\} & \text { otherwise. }\end{cases}
$$

In the first instance of the definition of S^{*}, each of the sets $\left\{u_{l-1}, x_{l-1}\right\}$ and $\left\{v_{l-1}, y_{l-1}\right\}$ is a pair, and in the second instance $\left\{u_{l-1}, v_{l-1}\right\}$ is a pair; in either case $\left|S^{*}\right| \leq|S|-2$.

Also, S^{*} is a PDS of G_{l-1}, hence by the induction hypothesis $\left|S^{*}\right| \geq 2 l$ and so $|S| \geq 2(l+1)$.

Suppose $w=u_{l}$. To pairwise dominate $y_{l},\left|S \cap\left\{u_{l-1}, v_{l-1}, y_{l}, v_{l}\right\}\right| \geq 1$. If $S \cap$ $\left\{u_{l-1}, v_{l-1}\right\} \neq \phi$, then $S^{\prime}=S-\left\{x_{l}, u_{l}\right\} \succ_{\mathrm{pr}} G_{l-1}$, hence $\left|S^{\prime}\right| \geq 2 l$ and $|S| \geq$ $2(l+1)$. If $S \cap\left\{u_{l-1}, v_{l-1}\right\}=\phi$, then $\left\{y_{l}, v_{l}\right\} \subseteq S$. In this case $\left(S-\left\{u_{l}, v_{l}, x_{l}, y_{l}\right\}\right) \cup$ $\left\{u_{l-1}, v_{l-1}\right\} \succ_{\text {pr }} G_{l-1}$ and again $|S| \geq 2(l+1)$. It follows that $\gamma_{\mathrm{pr}}\left(G_{l}\right)=2(l+1)$.

We next prove by induction that G_{l} is $\gamma_{\mathrm{pr}} \mathrm{EC}$, the case $l=1$ being easy to verify. For $l \geq 2$, assume that G_{l-1} is $\gamma_{\mathrm{pr}} \mathrm{EC}$ and let $e=a b \in E\left(\bar{G}_{l}\right)$.

If $e \in E\left(\bar{G}_{l-1}\right)$, let S^{\prime} be any γ_{pr}-set of $G_{l-1}+e$ and $S=S^{\prime} \cup\left\{u_{l}, v_{l}\right\}$. Then $S \succ_{\mathrm{pr}} G_{l}+e$ and $|S|=\left|S^{\prime}\right|+2=2 l$ by the induction hypothesis.

If $e \in E\left(\bar{H}_{l}\right)=\left\{x_{l} y_{l}, x_{l} v_{l}, y_{l} u_{l}\right\}$, let $S=\left(\bigcup_{i=0}^{l-2}\left\{u_{i}, v_{i}\right\}\right) \cup\{a, b\}$. Then $S \succ_{\mathrm{pr}} G_{l}+e$ and $|S|=2 l$.

Hence assume $a \in V\left(G_{l-1}\right)$ and $b \in\left\{x_{l}, u_{l}, v_{l}, y_{l}\right\}$. We may assume without loss of generality that $a \in\left\{u_{0}, u_{1}, \ldots, u_{l-1}\right\} \cup\left\{x_{1}, x_{2}, \ldots, x_{l-1}\right\}$. By symmetry we may also assume without loss of generality that $b \in\left\{y_{l}, v_{l}\right\}$. If $b=v_{l}$, then regardless of a, let $S=\bigcup_{i=0}^{l-1}\left\{u_{i} x_{i+1}\right\}$, and if $b=y_{l}$, let $S=\left(\bigcup_{i=0}^{l-2}\left\{u_{i} x_{i+1}\right\}\right) \cup\left\{x_{l}, u_{l}\right\}$. In either case $S \succ_{\mathrm{pr}} G_{l}+e$ and $|S|=2 l$. Therefore G_{l} is $\gamma_{\mathrm{pr}} \mathrm{EC}$.

6 Bounds on the diameter

In general, the diameter of a $k_{\mathrm{pr}} \mathrm{EC}$ graph is smaller than the general upper bound established in Proposition 4 for graphs with $\gamma_{\mathrm{pr}}=k$. In this section we establish upper bounds on the diameter of connected $k_{\mathrm{pr}} \mathrm{EC}$ graphs.

In Section 5 we exhibited a $4_{\mathrm{pr}} \mathrm{EC}$ graph with diameter 2. However, this is not the maximum diameter amongst $4_{\text {pr }}$ EC graphs, because, as shown in [16], $2 \leq$ $\operatorname{diam} G \leq 3$ whenever G is a connected 3_{t} EC graph, and the bounds are sharp. The corresponding result for connected 4_{pr} EC graphs follows from Observation $4(i i)$ and Corollary 2.

We henceforth consider connected $k_{\text {pr }}$ EC graphs with $k \geq 6$.
Theorem 8 If G is a connected $k_{\mathrm{pr}} E C$ graph with $k \geq 6$, then $\operatorname{diam} G \leq 2 k-6$.
Proof. Suppose to the contrary that G is a k_{pr} EC graph, $k \geq 6$, such that $\operatorname{diam} G \geq$ $2 k-5$. Since G is $k_{\mathrm{pr}} \mathrm{EC}, \gamma_{\mathrm{pr}}(G+e)=k-2$ for any $e \in E(\bar{G})$. Let $k=2 l$ and consider the nonempty levels $V_{0}, V_{1}, \ldots, V_{2 k-5}$ with respect to a peripheral vertex v. Let $u \in V_{4}$. Then $u v \in E(\bar{G}), \gamma_{\mathrm{pr}}(G+u v)=2 l-2$ and, by Observation 3, any γ_{pr}-set D of $G+u v$ contains at least one of u and v, where u and v are paired in D if D contains both.

Suppose first that $\{u, v\} \subseteq D$. Then the pair $\{u, v\}$ dominates only vertices in $V_{0} \cup V_{1} \cup V_{3} \cup V_{4} \cup V_{5}$. Let u^{\prime}, v^{\prime} be paired in D such that $\left\{u^{\prime}, v^{\prime}\right\}$ dominates vertices in V_{2}. Then by Lemma $3,\left\{u^{\prime}, v^{\prime}\right\}$ does not dominate any vertices in $V_{t}, t \geq 6$. Hence the remaining $2(l-3)$ vertices in D dominate all of $\bigcup_{t=6}^{2 k-5} V_{t}$, a total of $4 l-10$ levels
of G. (Note that $2 k-10>0$ because $k \geq 6$.) Using Lemma 3 and the pigeonhole principle, we see that this is impossible.

If $\{u, v\} \cap D=\{u\}$, then u is paired with a vertex $u^{\prime} \in V_{3} \cup V_{4} \cup V_{5}$. By Lemma 3, $\left\{u, u^{\prime}\right\}$ dominates only (some) vertices in $V_{0} \cup V_{2} \cup V_{3} \cup V_{4} \cup V_{5} \cup V_{6}$. At least one more pair of vertices in D is needed to dominate V_{1}, and by Lemma 3, this pair does not dominate any vertex in $V_{t}, t \geq 7$. Hence the remaining $2(l-3)$ vertices in D dominate at least $4 l-11$ levels. By the pigeonhole principle, at least one pair dominates at least five levels, contradicting Lemma 3.

Hence we conclude that $u \notin D$ and so $v \in D$. Necessarily, v is paired with the vertex $v^{\prime} \in V_{1}$. Then the pair $\left\{v, v^{\prime}\right\}$ dominates only vertices in $V_{0} \cup V_{1} \cup V_{2} \cup V_{4}$. At least one more pair is needed to dominate V_{3}, and by Lemma 3, no such pair dominates any vertices in $V_{t}, t \geq 7$. This leads to a contradiction as before.

Therefore $\operatorname{diam} G \leq 2 k-6$.
It is not known whether the bound in Theorem 8 is the best possible if G is $6_{\text {pr }} \mathrm{EC}$; the graph constructed in Section 5 for $k=6$ has diameter 4, and we have not found a $6_{\text {pr }} E C$ graph with diameter 5 or 6 . The bound can be improved to $2 k-7$ and $2 k-8$ for $k=8$ and $k=10$, respectively, which suggests that the coefficient of k in the bound in Theorem 8 is incorrect. We show next that this coefficient can be decreased from 2 to $\frac{3}{2}$; the bound in Theorem 10 is better than the one in Theorem 8 if $k>18$.

We start with a lemma.
Lemma 9 Let G be a connected graph with $S_{1}, S_{2} \subseteq V$. If there exist sets $D_{1}, D_{2} \subseteq$ V such that $D_{i} \succ_{\mathrm{pr}} S_{i}, i=1,2$, then there exists a set $D \subseteq V$ such that $|D| \leq$ $\left|D_{1}\right|+\left|D_{2}\right|$ and $D \succ_{\text {pr }} S_{1} \cup S_{2}$.

Proof. Let M_{i} be a perfect matching in $\left\langle D_{i}\right\rangle, i=1,2$. Partition M_{2} into three sets P_{1}, P_{2}, P_{3} as follows. Let

$$
\begin{aligned}
P_{1} & =\left\{a b \in M_{2}: a, b \notin D_{1}\right\}, \\
P_{2} & =\left\{a b \in M_{2}: \text { without loss of generality, } a \in D_{1} \text { and } b \notin D_{1}\right\} \\
\text { and } P_{3} & =\left\{a b \in M_{2}: a, b \in D_{1}\right\} .
\end{aligned}
$$

Say $P_{2}=\left\{a_{1} b_{1}, a_{2} b_{2}, \ldots, a_{t} b_{t}\right\}$ for some $0 \leq t \leq\left|D_{1} \cap D_{2}\right|$. If $t=0$, let $D=D_{1} \cup D_{2}$ and $M=M_{1} \cup P_{1}$. Then $|D|=\left|D_{1}\right|+\left|D_{2}\right|-\left|D_{1} \cap D_{2}\right| \leq\left|D_{1}\right|+\left|D_{2}\right|$ and M is a perfect matching in $\langle D\rangle$; thus $D \succ_{\text {pr }} S_{1} \cup S_{2}$ and we are done. So assume $t \geq 1$. Let $T_{0}=D_{1} \cup D_{2}-\left\{b_{1}, \ldots, b_{t}\right\}$. Then $M_{1} \cup P_{1}$ is a perfect matching in $\left\langle T_{0}\right\rangle$ and so $T_{0} \succ_{\text {pr }} S_{1} \cup S_{2}-\bigcup_{i=1}^{t} N\left[b_{i}\right]$. For $1 \leq i \leq t$, we inductively define T_{i} as follows.

If $N\left(b_{i}\right) \subseteq T_{i-1}$, then let $T_{i}=T_{i-1}$. Note that since G is connected, b_{i} has at least one neighbour and that neighbour is in T_{i}.

Otherwise, there exists a vertex $c_{i} \in V-T_{i-1}$ such that $b_{i} c_{i} \in E(G)$. In this case, let $T_{i}=T_{i-1} \cup\left\{b_{i}, c_{i}\right\}$.

In either case $T_{i} \succ N\left[b_{i}\right]$. Let $D=T_{t}$. Then

$$
\begin{aligned}
|D| & \leq\left|D_{1}\right|+\left|D_{2}\right|-\left|D_{1} \cap D_{2}\right|-\left|\left\{b_{1}, \ldots, b_{t}\right\}\right|+2 t \\
& \leq\left|D_{1}\right|+\left|D_{2}\right|-t-t+2 t=\left|D_{1}\right|+\left|D_{2}\right|
\end{aligned}
$$

Since $T_{0} \subseteq D$, we have $D \succ S_{1} \cup S_{2}-\bigcup_{i=1}^{t} N\left[b_{i}\right]$ and since $T_{i} \subseteq D$ for all $1 \leq i \leq t$, we have $D \succ N\left[b_{i}\right]$ for all $1 \leq i \leq t$; thus $D \succ S_{1} \cup S_{2}$. Let

$$
M=M_{1} \cup P_{1} \cup\left\{b_{i} c_{i}: N\left(b_{i}\right) \nsubseteq T_{i-1}, 1 \leq i \leq t\right\}
$$

Then M is a perfect matching in $\langle D\rangle$ and so $D \succ_{\text {pr }} S_{1} \cup S_{2}$.
Theorem 10 If G is $k_{\mathrm{pr}} E C$, then diam $G \leq \frac{3 k}{2}+3$.

Proof. Assume $k \geq 8$ (we already have this for small k). For $m=\operatorname{diam} G$, let $V_{0}, V_{1}, \ldots, V_{m}$ be the levels of G with respect to a peripheral vertex v_{0}. Suppose $m \geq \frac{3 k}{2}+4(\geq 16)$. Let $v_{4} \in V_{4}$. Then $e=v_{0} v_{4} \in E(\bar{G})$ and thus by the criticality of $G, \gamma_{\mathrm{pr}}(G+e)=k-2$. Let A be a γ_{pr}-set of $G+e$. Then (Observation 3) $\left\{v_{0}, v_{4}\right\} \cap A \neq \phi$.

If $\left\{v_{0}, v_{4}\right\} \subseteq A$, then v_{0}, v_{4} are paired in A. Note that $\left\{v_{0}, v_{4}\right\}$ only dominates vertices in $V_{0} \cup V_{1} \cup V_{3} \cup V_{4} \cup V_{5}$ and so there exists another pair of vertices in A that dominates vertices in V_{2}. This pair does not dominate any vertices in V_{i} for all $i \geq 7$ (Lemma 3).

If $\left\{v_{0}, v_{4}\right\} \cap A=\left\{v_{0}\right\}$, then v_{0} is necessarily paired with a vertex $v_{1} \in V_{1}$. Note that $\left\{v_{0}, v_{1}\right\}$ only dominates vertices in $V_{0} \cup V_{1} \cup V_{2} \cup V_{4}$ and so there exists another pair of vertices in A that dominates vertices in V_{3}. This pair does not dominate any vertices in V_{i} for all $i \geq 7$.

If $\left\{v_{0}, v_{4}\right\} \cap A=\left\{v_{4}\right\}$, then v_{4} is paired with a vertex $w \in V_{3} \cup V_{4} \cup V_{5}$. Hence $\left\{v_{4}, w\right\}$ does not dominate any vertices in V_{1} and so there exists another pair of vertices that dominates vertices in V_{1}. Note that neither pair dominates any vertices in V_{i} for all $i \geq 7$.

Thus in any of the three possibilities listed above, there exist two pairs of vertices in A that do not dominate any vertices in V_{i} for all $i \geq 7$. Thus there exists a set $D_{1} \subseteq A$ such that $\left|D_{1}\right| \leq k-6$ and $D_{1} \succ_{\text {pr }} \bigcup_{i=7}^{m} V_{i}$ in $G+e$ and thus in G. We generalize this result as follows.

For each $j \in\left\{1, \ldots,\left\lceil\frac{k}{6}\right\rceil\right\}$ there exists a set $D_{j} \subseteq V(G)$ such that

$$
\begin{equation*}
\left|D_{j}\right| \leq k-6 j \text { and } D_{j} \succ_{\mathrm{pr}} \bigcup_{i=9(j-1)+7}^{m} V_{i} \text { in } G . \tag{1}
\end{equation*}
$$

We prove (1) by induction on j. The base case holds for $j=1$ as shown above. Thus let $j \in\left\{2, \ldots,\left\lceil\frac{k}{6}\right\rceil\right\}$ and assume that (1) holds for $j-1$; i.e. there exists a set
$D_{j-1} \subseteq V(G)$ such that $\left|D_{j-1}\right| \leq k-6(j-1)$ and $D_{j-1} \succ_{\text {pr }} \bigcup_{i=9(j-2)+7}^{m} V_{i}$ in G. Since k is even, $j \leq\left\lceil\frac{k}{6}\right\rceil \leq \frac{k}{6}+\frac{2}{3} \leq \frac{m-4}{9}+\frac{2}{3}$. Thus

$$
\begin{equation*}
9(j-1)+7 \leq m \tag{2}
\end{equation*}
$$

Consider vertices $w_{1} \in V_{9(j-1)}$ and $w_{2} \in V_{9(j-1)+4}$. Then $e=w_{1} w_{2} \in E(\bar{G})$ and thus by the criticality of $G, \gamma_{\mathrm{pr}}(G+e)=k-2$. Let B_{j} be a γ_{pr}-set of $G+e$. By Observation 3, $\left\{w_{1}, w_{2}\right\} \cap B_{j} \neq \phi$.

- We show, in each of three cases, that there are two pairs of vertices in B_{j} that do not dominate any vertices of G in levels V_{i}, for all integers i in the intervals $I_{1}=[0,9(j-2)+6]$ and $I_{2}=[9(j-1)+7, m]$. The endpoints of I_{2} have been chosen to match those of the union in (1), while the endpoints of I_{1} have been chosen not necessarily to maximise the length of the interval, but to facilitate the proof of (1).

If $\left\{w_{1}, w_{2}\right\} \subseteq B_{j}$, then w_{1}, w_{2} are paired in B_{j}. Note that $\left\{w_{1}, w_{2}\right\}$ only dominates (some) vertices in

$$
\left(\bigcup_{i=-1}^{5} V_{9(j-1)+i}\right)-V_{9(j-1)+2}
$$

and so there exists another pair of vertices in B_{j} that dominates vertices in $V_{9(j-1)+2}$. This pair dominates at most four levels of G and hence the two pairs of vertices do not dominate any vertices in V_{i} for all $i \in I_{1} \cup I_{2}$.

If $\left\{w_{1}, w_{2}\right\} \cap B_{j}=\left\{w_{1}\right\}$, then w_{1} is paired with a vertex $w \in V_{9(j-1)-1} \cup V_{9(j-1)} \cup$ $V_{9(j-1)+1}$. Then $\left\{w_{1}, w\right\}$ does not dominate any vertices in $V_{9(j-1)+3}$ and so there exists another pair of vertices in B_{j} that dominates vertices in $V_{9(j-1)+3}$. These two pairs of vertices do not dominate any vertices in $V_{i}, i \in I_{1} \cup I_{2}$.

If $\left\{w_{1}, w_{2}\right\} \cap B_{j}=\left\{w_{2}\right\}$, then w_{2} is paired with $u \in V_{9(j-1)+3} \cup V_{9(j-1)+4} \cup V_{9(j-1)+5}$. In any case, $\left\{w_{2}, u\right\}$ does not dominate any vertices in $V_{9(j-1)+1}$ and so there exists another pair of vertices that dominates vertices in $V_{9(j-1)+1}$. Again these two pairs of vertices do not dominate any vertices in $V_{i}, i \in I_{1} \cup I_{2}$.

Thus in any of the three possibilities listed above, there exist two pairs of vertices in B_{j} that do not dominate any vertices in V_{i} for all $i \in I_{1} \cup I_{2}$. Therefore there exists a set $C_{j} \subseteq B_{j}$ such that $\left|C_{j}\right| \leq k-6$ and

$$
C_{j} \succ_{\mathrm{pr}} \bigcup_{i \in I_{1} \cup I_{2}} V_{i}
$$

in $G+e$ and thus in G.
Suppose there exists a set $D^{\prime} \subseteq C_{j}$ such that $\left|D^{\prime}\right| \leq 6(j-1)-2$ and $D^{\prime} \succ_{\mathrm{pr}}$ $\bigcup_{i \in I_{1}} V_{i}$. Then by Lemma 9 and the induction hypothesis, there exists a set $D^{\prime \prime} \subseteq$ $V(G)$ such that $\left|D^{\prime \prime}\right| \leq\left|D^{\prime}\right|+\left|D_{j-1}\right| \leq k-2$ and

$$
D^{\prime \prime} \succ_{\mathrm{pr}}\left(\bigcup_{i=0}^{9(j-2)+6} V_{i}\right) \cup\left(\bigcup_{i=9(j-2)+7}^{m} V_{i}\right)=V(G)
$$

a contradiction since $\gamma_{\mathrm{pr}}(G)=k$. Thus at least $6(j-1)$ vertices in C_{j} are required to pairwise dominate the vertices in $\bigcup_{i \in I_{1}} V_{i}$. Since none of these vertices dominates any vertices in $\bigcup_{i \in I_{2}} V_{i}$ (Lemma 3), at most $k-6-6(j-1)=k-6 j$ vertices in C_{j} remain to dominate the vertices in $\bigcup_{i \in I_{2}} V_{i}$. It follows that there exists a set $D_{j} \subseteq C_{j}$ such that $\left|D_{j}\right| \leq k-6 j$ and $D_{j} \succ_{\text {pr }} \bigcup_{i \in I_{2}} V_{i}$, and thus (1) holds.

Now for $j=\left\lceil\frac{k}{6}\right\rceil, 9(j-1)+7 \leq m$ by (2) and thus $\bigcup_{i \in I_{2}} V_{i} \neq \phi$. However, by (1), $\left|D_{j}\right| \leq k-6 j=k-6\left\lceil\frac{k}{6}\right\rceil \leq 0$ and $D_{j} \succ_{\mathrm{pr}} \bigcup_{i \in I_{2}} V_{i}$, which is absurd. Thus $\operatorname{diam} G \leq \frac{3 k}{2}+3$.

If $k \equiv 0(\bmod 6)$, then the same proof shows that if G is $k_{\mathrm{pr}} \mathrm{EC}$, then $\operatorname{diam} G \leq$ $\frac{3 k}{2}-3$, which generalizes the bound in Theorem 8 for the case $k=6$.

7 Open Problems

We conclude with a few open problems.

1. As remarked above it is not known whether the bound in Theorem 8 is the best possible if G is $6_{\mathrm{pr}} \mathrm{EC}$, and the graph constructed in Section 5 for $k=6$ has diameter 4 . Find a 6 pr EC graph with diameter 5 or 6 , or improve this bound.
2. In general, let d_{k} be the maximum value of the diameter for a $k_{\mathrm{pr}} \mathrm{EC}$ graph. Find a sharp upper bound for d_{k}, or at least improve the bound in Theorem 10.
3. We showed in Section 5 that the minimum value for the diameter of a noncomplete $\gamma_{\mathrm{pr}} \mathrm{EC}$ graph is 2 , and that $k_{\mathrm{pr}} \mathrm{EC}$ graphs satisfying this diameter exist for all even $k \geq 4$. What is the spectrum of diameters for $k_{\mathrm{pr}} \mathrm{EC}$ graphs? In particular, is it true that there exists a $k_{\mathrm{pr}} \mathrm{EC}$ graph of diameter l for every $2 \leq l \leq d_{k}$?
4. In Section 4 we characterized γ_{pr} EC trees. It is evident that they have diameter 4 , regardless of the value of γ_{pr}. Characterize bipartite γ_{pr} EC graphs and determine or bound their diameter.
5. All the above questions may be also be asked (with obvious modifications) for paired domination vertex-critical graphs, i.e. graphs G for which $\gamma_{\mathrm{pr}}(G-v)<$ $\gamma_{\mathrm{pr}}(G)$ for all $v \in V$. See [6,24] for results on these graphs.

References

[1] M. Chellali and T. W. Haynes, Trees with unique minimum paired-dominating sets, Ars Combin. 73 (2004), 3-12.
[2] M. Chellali and T. W. Haynes, Total and paired-domination numbers of a tree, AKCE Int. J. Graphs Comb. 1 (2004), 69-75.
[3] M. Chellali and T. W. Haynes, On paired and double domination in graphs, Utilitas Math. 67 (2005), 161-171.
[4] Y. Chen, F. Tian and B. Wei, The 3-domination-critical graphs with toughness one, Utilitas Math. 61 (2002) 239-253.
[5] P. Dorbec, M. A. Henning and J. McCoy, Upper total domination versus upper paired-domination, submitted.
[6] M. Edwards, Criticality concepts for paired domination in graphs, Masters Thesis, University of Victoria, 2006.
[7] O. Favaron and M. A. Henning, Paired domination in claw-free cubic graphs, Graphs Combin. 20 (2004), 447-456.
[8] O. Favaron, D. Sumner and E. Wojcicka, The diameter of domination-critical graphs, J. Graph Theory 18 (1994), 723-734.
[9] O. Favaron, F. Tian and L. Zhang, Independence and hamiltonicity in 3-domination-critical graphs, J. Graph Theory 25 (1997), 173-184.
[10] S. Fitzpatrick and B. Hartnell, Paired-domination, Discuss. Math. Graph Theory 18 (1998), 63-72.
[11] E. Flandrin, F. Tian, B. Wei and L. Zhang, Some properties of 3-dominationcritical graphs, Discrete Math. 205 (1999), 65-76.
[12] D. Hanson and P. Wang, A note on extremal total domination edge critical graphs, Utilitas Math. 63 (2003), 89-96.
[13] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[14] T. W. Haynes and M. A. Henning, Trees with large paired-domination number, Utilitas Math. 71 (2006, 3-12).
[15] T. W. Haynes, M. A. Henning and L. C. van der Merwe, Total domination critical graphs with respect to relative complements, Ars Combin. 64 (2002), 169-179.
[16] T. W. Haynes, C. M. Mynhardt and L. C. van der Merwe, Total domination edge critical graphs, Util. Math. 54 (1998), 229-240.
[17] T. W. Haynes, C. M. Mynhardt and L. C. van der Merwe, 3-domination critical graphs with arbitrary independent domination numbers, Bull. Inst. Combin. Appl. 27 (1999), 85-88.
[18] T. W. Haynes, C. M. Mynhardt and L. C. van der Merwe, Total domination edge critical graphs with maximum diameter, Discuss. Math. Graph Theory 21 (2001), 187-205.
[19] T. W. Haynes, C. M. Mynhardt and L. C. van der Merwe, Total domination edge critical graphs with minimum diameter, Ars Combin. 66 (2003), 79-96.
[20] T. W. Haynes and P. J. Slater, Paired-domination and the paired-domatic number, Congr. Numer. 109 (1995), 65-72.
[21] T. W. Haynes and P. J. Slater, Paired-domination in graphs, Networks 32 (1998), 199-206.
[22] M. A. Henning, Trees with equal total domination and paired-domination numbers, Utilitas Math. 69 (2006), 207-218.
[23] M. A. Henning, Graphs with large paired-domination number, J. Combin. Optimization. 13 (2007), 61-78.
[24] M. A. Henning and C. M. Mynhardt, The diameter of paired-domination vertex critical graphs, submitted.
[25] M. A. Henning and M. D. Plummer, Vertices contained in all or in no minimum paired-dominating set of a tree, J. Combin. Optimization 10 (2005), 283-294.
[26] H. Qiao, L. Kang, M. Cardei and Ding-Zhu, Paired-domination of trees, J. Global Optimization 25 (2003), 43-54.
[27] D. P. Sumner, Critical concepts in domination, Discrete Math. 86 (1990) 33-46.
[28] D. P. Sumner and P. Blitch, Domination critical graphs, J. Combin. Theory Ser. B 34 (1983) 65-76.
[29] D. P. Sumner and E. Wojcicka, Graphs critical with respect to the domination number, Domination in Graphs: Advanced Topics (Chapter 16), T. W. Haynes, S. T. Hedetniemi and P. J. Slater, eds. Marcel Dekker, Inc., New York (1998).
[30] F. Tian, B. Wei and L. Zhang, Hamiltonicity in 3-domination-critical graphs with $\alpha=\delta+2$, Discrete Appl. Math. 92 (1999), 57-70.
[31] E. Wojcicka, Hamiltonian properties of domination-critical graphs, J. Graph Theory 14 (1990) 205-215.
[32] L. C. van der Merwe, Total domination edge critical graphs, Ph.D. Thesis, University of South Africa, 1999.

[^0]: * Recipient of an Undergraduate Student Research Award from the Canadian National Science and Engineering Research Council, Summer 2006. Current address: Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada V5A1S6. richardg@sfu. ca
 \dagger Research supported in part by the South African National Research Foundation and the University of KwaZulu-Natal.
 \ddagger Research supported by the Natural Sciences and Engineering Research Council of Canada.

